Supplemental materials

Screening of endogenous strong promoters for enhanced production of medium-chain-length polyhydroxyalkanoates in *Pseudomonas mendocina* NK-01

Fengjie Zhao,¹ Xiangsheng Liu,¹ Annie Kong,¹ Yuxin Zhao,¹ Xu Fan,¹ Ting Ma,¹ Weixia Gao,²* Shufang Wang,²* Chao Yang¹*

¹Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, Nankai University, Tianjin 300071, China ²State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China

Correspondence to: Weixia Gao Tel./Fax: +86 22 23503753 E-mail: watersave@126.com Shufang Wang Tel./Fax: +86 22 23503753 E-mail: wangshufang@nankai.edu.cn Chao Yang Tel./Fax: +86 22 23503866 E-mail: yangc20119@nankai.edu.cn

 Table S1 The top 30 genes ranked by transcriptional level based on their RPKM

 values in RNA-seq analysis

 Table S2 The molecular weights of mcl-PHAs synthesized by *P. mendocina* NKU and its mutants

 Table S3 The monomer composition ratios of mcl-PHA synthesized by *P. mendocina*

 NKU and its mutants

Table S4 Primers used in this study

Fig. S1 Cloned promoter sequences and predicted promoter sequences

Fig. S2 The growth curves of all the constructed strains for promoter characterization

Fig. S3 Transcriptional levels of the five strong promoters and *lac* promoter in different growth phases

Fig. S4 GC-MS analysis for the monomer compositions of mcl-PHA synthesized by *P. mendocina* NKU and its mutants

Fig. S5 The molecular structure of mcl-PHA produced by P. mendocina NK-01

Fig. S6 Transcriptional levels of *phaC1* and *phaC2* for the different mutant strains at 12 h and 24 h.

Gene ID	Productions	Promoters	RPKM
MDS_4427	hypothetical protein	P1	36681.95
MDS_r003	16S ribosomal RNA	P2	33511.23
MDS_1604	hypothetical protein	Р3	29531.20
MDS_2118	hypothetical protein	P4	24593.43
MDS_1524	anti sigma-E protein,RseA	P5	24300.80
MDS_0756	hypothetical protein	P6	24066.04
MDS_2424	general stress protein	P7	19061.06
MDS_3781	hypothetical protein	P8	17212.90
MDS_3450	hypothetical protein	P9	16182.31
MDS_3307	hypothetical protein	P10	15688.80
MDS_4616	hypothetical protein	P11	14094.26
MDS_1176	UspA domain-containing protein	P12	13610.24
MDS_1400	hypothetical protein	P13	13273.27
MDS_2117	hypothetical protein	P14	10945.60
MDS_3417	glyoxalase/bleomycin resistance protein/dioxygenase	P15	9162.63
MDS_2531	alcohol dehydrogenase	P16	8949.33
MDS_0957	ribosomal protein S30P / sigma 54 modulation protein	P17	8412.46
MDS_0563	poly(hydroxyalkanoate) granule-associated protein	P18	8222.26
MDS_2561	DNA-binding transcriptional activator	P19	7903.00
MDS_1497	17 kDa surface antigen/outer membrane lipoprotein	P20	7267.13
MDS_3574	PfpI family intracellular peptidase	P21	7239.34
MDS_4560	hypothetical protein	P22	7213.88
MDS_1161	arginine/ornithine antiporter	P23	6935.83
MDS_2084	hypothetical protein	P24	6818.40
MDS_4257	outer membrane protein W	P25	6637.68
MDS_1159	ornithine carbamoyltransferase	P26	6455.59
MDS_2628	OmpF family protein	P27	5967.23
MDS_0564	poly(hydroxyalkanoate) granule-associated protein	P28	5905.14
MDS_3908	transport-associated protein	P29	5888.12
MDS_2110	transglutaminase domain-containing protein	P30	5796.17

Table S1 The top 30 genes ranked by transcriptional level based on their RPKMvalues in RNA-seq analysis

Strains	M_w / $ imes 10^4$ Da	M_n / $ imes 10^4$ Da	M_w/M_n
NKU	25.2	14.3	1.76
NKU- $\Delta phaZ$	22.5	15.8	1.42
NKU-∆ <i>phaZ</i> -4C1	18.8	13.3	1.41
NKU-∆ <i>phaZ</i> -6C1	29.1	15.1	1.93
NKU-∆phaZ-16C1	17.5	11.7	1.50

Table S2 The molecular weights of mcl-PHAs synthesized by *P. mendocina* NKU and its mutants

	Monomer composition (%)			
Strains	C8	C10	C12	
NKU	17.87	77.84	4.29	
NKU- $\Delta phaZ$	16.27	79.35	4.38	
NKU-∆ <i>phaZ</i> -4C1	19.38	74.39	6.23	
NKU-∆ <i>phaZ</i> -6C1	22.13	73.41	4.46	
NKU- <i>AphaZ</i> -16C1	15.11	79.86	5.03	

Table S3 The monomer composition ratios of mcl-PHA synthesized by P. mendocina

NKU and its mutants

Primers Description Source or literature P4-F TATAGGGCGAATTGGAGCTCGGTACCGAGGTTTCCTGTGGTGAGCA This work ATGAATTCGCCTCCTGAATTCGTGGGCGTGTCAGCTTGG P4-R This work gfp-P4-F CACGCCCACGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P6-F TATAGGGCGAATTGGAGCTCGGTACCGGCTGAAGCGGCCTCCT This work P6-R ATGAATTCGCCTCCTGAATTCGTTGGGGAGTAATAAGTGGCTTC This work gfp-P6-F CTCCCCAACGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P9-F TATAGGGCGAATTG**GAGCTC**GGTACCCCTGCTGCGCCTTTCACAAGAC This work P9-R ATGAATTCGCCTCCTGAATTCAGCGGGGTTGTGGGTTGGGTATG This work gfp-P9-F AACCCCGCTGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P16-F TATAGGGCGAATTGGAGCTCGGTACCATCCGAGGGATACGGGCCTTGTC This work ATGAATTCGCCTCCTGAATTCGAGCTTGATCGCGGATTAACAC This work P16-R ATGAATTCGCCTCCTGAATTCGAGCTTGATCGCGGATTAACAC This work *gfp*-16-F P17-F TATAGGGCGAATTG**GAGCTC**GGTACCGCCAGATCGACTGAAGGCACAAG This work P17-R ATGAATTCGCCTCCTGAATTCGTTGCCTTGTGTAAGAGACG This work *gfp*-17-F CAAGGCAACGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P18-F TATAGGGCGAATTGGAGCTCGGTACC AGCTTCAAGCGGCAAGCCAC This work P18-R ATGAATTCGCCTCCTGAATTCGACAGTTAGCGGAAACGCCCAC This work *gfp*-18-F CTAACTGTCGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P20-F TATAGGGCGAATTG**GAGCTC**CAGGACGAACCTAGCTGAAC This work P20-R ATGAATTCGCCTCCTGAATTCGAATTCAGAGGTATCCTGATCCATTAG This work GATACCTCTGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC gfp-20-F This work P23-F TATAGGGCGAATTG**GAGCTC**GGTACCCGTGGAAAGCTGGCTGAAAG This work P23-R ATGAATTCGCCTCCTGAATTCGTATCACAGGGAGACATAGG This work gfp-P23-F CTGTGATACGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P25-F TATAGGGCGAATTGGAGCTCGGTACC GCGCAGAGGGTCCTCGACAG This work P25-R ATGAATTCGCCTCCTGAATTCGAGTCGGTTGTGTGTGTCTTG This work gfp-P25-F AACCGACTCGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work P29-F TATAGGGCGAATTGGAGCTCGGTACC GCACGGTTAGCCTGTTCG This work P29-R ATGAATTCGCCTCCT GAATTCGTACATTCCAGACAATCTGC This work GGAATGTACGAATTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC gfp-P29-F This work CCGCCACCGCGGTG**GAGCTC**CTATTTGTATAGTTCATCCATG gfp-R This work GCCGCCACCGCGGTGGAGCTCAGGAGGCGAATTCATGAGTAAAGGAGAAGAAC This work gfp-lac-F gfp-lac-R TATAGGGCGAATTGGAGCTCCTATTTGTATAGTTCATCCATG This work CGCGGATCCGCCGAAGACGGCATCAAG This work nhaC1-PUF phaC1-PUR GAATTCTACATGACTAGGTACCGAGTCGCGCACTGGCCGTGTTC This work phaC1-PDF GGTACCTAGTCATGTAGAATTCAGGACATTGGAGCGTCGTAG This work CGCGGATCCAGGTCAGGGCATTGACTTTAG phaC1-PDR This work This work phaZ-UF CAGGTCGACTCTAGAGGATCCTTCCTCGACGGCTTGCACGTAAC GCCGCAACCATTCGTGGTTCGCCAGCATTGAC phaZ-UR This work CAATGCTGGCGAACCACGAATGGTTGCGGCATGGG phaZ-DF This work

Table S4 Primers used in this study

This work

GAGCTCGGTACCCGGGGGATCCACCGGCAGCAAAGACGTGAAC

phaZ-DR

gfp-QF	TGCACTACTGGAAAACTACC	This work
gfp-QR	ACTCGATGCGATTAACAAGG	This work
phaC1-QF	GGCACTCAAACAACCCTTCC	This work
phaC1-QR	TCACCGTCTTCGGGCTTTAG	This work
phaZ-QF	TGGTGCCACTGCTGATCTTC	This work
phaZ-QR	TGGCCGTAGTCGAGGTAATC	This work
phaC2-QF	GCACCTCAATCCCTTCTATC	This work
phaC2-QR	TGTTGAACAGCTCCTTTACC	This work
16S-QF	TCACGATTACTAGCGATTCC	This work
16S-QR	AACCCTTGTCCTTAGTTACC	This work

P4:

Start End Score Predicted promoter sequences:

173 218 0.56 TGCCGGATCGAATCACCATCAGCCGCCTCGATAGTTACCATGCACACCAT

P6:

 Start
 End
 Score
 Predicted promoter sequences:

 178
 223
 0.82
 GATGTTCACTATCAGGTCAGTCAAGTTCTTATCTTCGCTCATGTCCTCAA

P9:

CCGCTGCGCCACGGCCGCTCCGGCCGTGGCCTGCTGCGCCTTTCACAAGACCTTGAGCGCTCTATTTC GGGCGTTTCAGCAAGCATCAGCGGCATCGATGTTCACCATCATGCCAATGAAGTTCTCTGAAAAAAT CCAGTGCGTAACATCTGCTC CATACCCAACCACCACCGCT

Start	End	Score	Predicted promoter sequences:
115	160	0.65	AATGAAGTTCTCTGAAAAAATCCAGTGCGTAACATCTGCTCCATACCCA

P16:

ATCCGAGGGATACGGGCCTTGTCAGCACGGTGTTGCTAATGAGAGCCTTTGCCCGGGCAATAGTACG GGCAGTGTGTAGCGGATTGAAAGACGCTGAATCACTGACAGGCATGAAGACTATCGATAGAGTCTGA TAGTGTCGCCGCCGCACAGCGGATAGAGTCCACAGTCATTGAAGTGTTAATCCGCGATCAAGCTC

Start	End	Score	Predicted promoter sequences:
96	141	0.89	${\tt GAATCACTGACAGGCATGAAGACTATCGATAGAGTCTGAT} A {\tt GTGTCGCCG}$
129	174	0.86	GTCTGATAGTGTCGCCGCCGCACAGCGGATAGAGTCCACAGTCATTGAAG

P17:

GCCAGATCGACTGAAGGCACAAGGTCTTCAGGCCAAAGTGTTCCGGCGGCGGGGCGAATAGGGCCCG TCTCTTACACAAGGCAAC

Start	End	Score	Predicted promoter sequences:
5	50	0.82	${\tt GATCGACTGAAGGCACAAGGTCTTCAGGCCAAAGTGTTCC} GCCGGCGGGT$

P18:

AGCTTCAAGCGGCAAGCCACTAGCTTCAAGTAAGGGCAGAAGCGATACGGAGTGGTTGATAGGCTTC GGGCGGGCTTGCAACTTGCGGCTTGAAGCTTGCCGCTGCTCCTAGTATGTGATTTCTAATTTTTCTCCC TAGGGTGTACCCAAGCCTGCATTCCGTGGGCGTTTCCGCTAACTGTC

Start	End	Score	Predicted promoter sequences:
95	140	0.85	GCTTGCCGCTGCTCCTAGTATGTGATTTCTAATTTTTCTCCCCTAGGGTGT

P20:

CAGGACGAACCTAGCTGAACTCGGTCTGTCTGAGTTAACAATTGTTAAGACTCAGCCGTGACAGTTAC GCGCGCCCGGCGTCTAATGGATCAGGATACCTCT

Start	End	Score	Predicted promoter sequences:
52	97	0.92	TCAGCCGTGACAGTTACGCGCGCCCGGCGTCTAATGGATCAGGATACCTC

P23:

Start	End	Score	Predicted promoter sequences:
216	261	0.57	GCCATCATTGCGTAACGAAAAGTTCGGACTATGGTGTCAG GACGGTCGCC
331	376	0.55	ATGTGCGTTGACGAATCCTGACTGTTGACTCAAGTCAGGATGTTCTGCTC

P25:

GCGCAGAGGGTCCTCGACAGACAGGCTTGCTTCAAAAAGAGAAACATTATCATCTAGAGATGCATTT GAAGCAATGGACAAAACACCGCAGCAGAGCCCGTCGATCTATTGAGCCAGGTCAAAAAGTGGATTGT TGCTTGGCTTAGCATTGATTCCAGCCAAGACACAACAACCGACTC

Start	End	Score	Predicted promoter sequences:
19	64	0.51	AGACAGGCTTGCTTCAAAAAGAGAAACATTATCATCTAGAGATGCATTTG

P29:

GCACGGTTAGCCTGTTCGAACCAGAAGGGCTCCCGCGGGAGCCCTTTTTTGTGCCCGTCCGCCAGGTT TGAGGGGGATTCTCTCGCTGCGCCCGCGGGGCGCGGGGATGTAGCGTCAGCGGGGACGTTCTCGCCTCG TCTTGCGTAGCTGCCAGGCACTTTGCTTGTCCCTTTCACGGATGACCTTCGCTCGACCTCTTTTCGTCT TGGGACATGCCCTGTACGGCAGTACCTAAAGATCATGCAAATTGCCCGAGAGATTTTTTCAGACTCGG CGAAATGCAATTAAAAGCCTTCTTTGATTGATTTCTAAGTTATTGTTTTTAAAGAATTTATAAGTTTTT TAAAAACTGGCACAGCGCTTGCGATAGTACTGGTGAACCTGCAGCCAGGAGTTGGTTTGCAGATTGT

CTGGAATGTAC

Start	End	Score	Predicted promoter sequences:
255	300	1.00	AGATTTTTTCAGACTCGGCGAAATGCAATTAAAAGCCTTCTTTGATTGA
295	340	0.88	TTTGATTGATTTCTAAGTTATTGTTTTTAAAGAATTTATAAGTTTTTTAA
313	358	1.00	TATTGTTTTTAAAGAATTTATAAGTTTTTTAAAAACTGGCACAGCGCTTG
335	380	1.00	AGTTTTTTAAAAACTGGCACAGCGCTTGCGATAGTACTGGTGAACCTGCA

Fig. S1 Cloned promoter sequences and predicted promoter sequences. Each cloned promoter sequences were submitted into the web-based promoter prediction platform (Neural Network Promoter Prediction, http://www.fruitfly.org/seq_tools/promoter.html) and then the predicted promoter sequences were shown and scored. The transcription start was shown in larger font.

Fig. S2 The growth curves of all the constructed strains for promoter characterization. Data represent the mean values \pm standard deviations of triplicate measurements from three independent experiments.

Fig. S3 Transcriptional levels of the five strong promoters and *lac* promoter in different growth phases. The relative transcriptional value of each promoter in early log phase was set as 1. Data represent the mean values \pm standard deviations of triplicate measurements from three independent experiments.

Retention time/min

Fig. S4 GC-MS analysis for the monomer compositions of mcl-PHAs synthesized by *P. mendocina* NKU and its mutants. (a) The chromatogram for the various standards of methyl-3-hydroxy fatty acids and for the various monomers generated by the acidolysis of mcl-PHA. (b) The mass spectra of the various monomers generated by the acidolysis of mcl-PHA. Prior to GC-MS analysis, mcl-PHA sample was pretreated with H_2SO_4 and CH₃OH at 100°C for the acidolysis and methyl esterification. The peak in 4.387 min was methyl benzoate which was acted as the internal reference.

Fig. S5 The molecular structure of mcl-PHA produced by P. mendocina NK-01

Fig. S6 Transcriptional levels of *phaC1* and *phaC2* for the different mutant strains at 12 h and 24 h. (a) Transcriptional levels of *phaC1* in 12 h. (b) Transcriptional levels of *phaC2* in 12 h. (c) Transcriptional levels of *phaC1* in 24 h. (d) Transcriptional levels of *phaC2* in 24 h. The transcriptional level for strain NKU- Δ *phaZ* was set as 1. Data represent the mean values \pm standard deviations of triplicate measurements from three independent experiments.