Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

Jan Valtera¹, Tomas Kalous², Pavel Pokorny², Ondrej Batka¹, Martin Bilek¹, Jiri Chvojka², Petr Mikes², Eva Kuzelova Kostakova², Petr Zabka¹, Jana Ornstova², Jaroslav Beran¹, Andrei Stanishevsky³ and David Lukas^{2,*}

¹Technical University of Liberec, Faculty of Mechanical Engineering, Liberec, 46117, Czech Republic

²Technical University of Liberec, Faculty of Textile Engineering, Liberec, 46117, Czech Republic

³Department of Physics, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, Alabama 35294

Supplementary Information:

Supplementary information 1 — The nanofibre plume produced by the AC spinning method.

Supplementary information 2 – The nanofibre plume produced by the AC spinning method; high-speed camera recording.

Supplementary information 3 – The nanofibre plume wrapping around the ballooning yarn core.

Supplementary information 4 – The nanofibre plume wrapping around the ballooning yarn core; high-speed camera recording.

Supplementary information 5 – The process of the nanofibrous plume wrapping around the ballooning yarn core, documenting its partial elasticity; video recording from a high-speed camera.

Supplementary information 6 – Ballooning core of the yarn when the yarn stress is changing.

Supplementary information 7 – The ballooning yarn core; high-speed camera recording.

Supplementary information 8 – The ballooning yarn core being enwrapped by a plume of nanofibres when the yarn stress is changing.