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SUPPLEMENTARY METHODS 

  

1. Determination of age-associated metabolites (Additional information) 

As described in Thevenot et al., the ropls R package implements the PLS(-DA) approaches with the 
original version of the algorithm (Wold et al., 2001) and includes the R2 and Q2 quality metrics 
which estimate the significance of the model by permutation testing, the permutation diagnostics, the 
computation of the VIP values, the score distances to detect outliers, as well as many graphics 
(scores, loadings, predictions, diagnostics, outliers, etc.).  

The ropls.opls function was executed with the normalized metabolomics dataset and sample age in 
hours as the response to be modeled. Model output was as follows: 

47 samples x 105 variables and 1 response 

standard scaling of predictors and response(s) 

   R2X(cum)  R2Y(cum)  Q2(cum)  RMSEE  pre ort  pR2Y  pQ2 

Total 0.49  0.978    0.921    8.8    3    0      0.05  0.05 

RMSEE is the square root of the mean error between the actual and the predicted responses. 
Basically, the summary statistics show that the model provides good predictions (Q2 is close to 1) but 
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with the proviso that the underlying data are noisy (RMSEE is large). R2X (respectively R2Y): is the 
cumulative percentage of predictor (respectively response) variance explained by the full model. Q2 
is the cumulative predictive performance of the model estimated by cross- validation. Pre is the 
number of components required to achieve predictive performance, ort is the number of orthogonal 
components (not relevant for this scenario).  

Metabolites were considered to be age-associated if their Variable Influence on Projection (VIP) 
given by the model was greater than 1.  

 

2. Determination of longevity modulating metabolites 

To determine which metabolites were known to be longevity modulators in C. elegans, i.e. those 
that extended lifespan when supplemented to C. elegans, we consulted the DrugAge database of 
known longevity modulators (Barardo et al., 2017) and our own examination of the published 
literature. Note the DrugAge database also includes metabolites that are detrimental to longevity, 
and in some cases conflicting results were found in DrugAge (e.g. glucose, for which DrugAge 
contained a record of an assay in which glucose supplementation had extended longevity, and 
several records of assays in which glucose supplementation had reduced longevity). In general, 
we went with the majority of reports in DrugAge - for example, in the case of glucose, we went 
with the consensus of no positive effect.  

 

3. Flux variability analysis 

Flux variability analysis (FVA) evaluates, for each reaction, the maximum and minimum fluxes 
that would be possible with the same objective value. We evaluated the flux variabilities 
consistent with the objective by using the COBRAPy “cobra.flux_analysis.flux 
_variability_analysis” implementation as a second step after obtaining the optimal value for the 
objective function. Flux variability gives a maximum and a minimum flux for each reaction; to 
obtain the flux variability range we calculated (maximum - minimum).  

 

4. Pathway analysis  

Pathway enrichment was performed using R package Gage (Luo et al., 2009) on the 
transcriptomics and metabolomics data for FEMs between day 5 and day 10, then visualized 
using the R Package Pathview (Luo and Brouwer, 2013). This allowed us to extract enriched 
pathways, and visualize directional changes in the same schematic of both transcript and 
metabolites. 
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5. Flux-based pathway enrichment analysis 

To investigate which pathways are most responsible for the changes observed between times, we 
used a binomial test to identify overrepresentation of pathways in the 10% most different 
reactions in FEMS between days 5 and 10 for Standard FBA and days 4-5 and 5-10 for 
Metab_FBA, tested against a background list of all reactions. We also identified fold enrichment 
for each pathway as described in (Zhang et al., 2005).  

 

6. RNA-sequencing library preparation. 
Samples of at least 1000 worms were washed 3X in M9 by settling then snap-frozen in Trizol 
and kept at -80C until library-prep. Samples were freeze-thawed 10 times to break worm cuticle 
and RNA was precipitated using chloroform-isopropanol. RNA was treated with 10U DNase I 
(Roche #04716728001) for 20 minutes at 37°C and purified on Qiagen RNeasy columns 
(QIAGEN 15596-026). Libraries were prepared using combined protocols from SuperScript II 
Reverse Transcriptase (Invitrogen 18064-014), NEBNext mRNA Second Strand Synthesis 
Module (E6111), and NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB-E7645). Half 
reactions were used for all steps except the final PCR amplification. Briefly, Oligo d(T)25 beads 
(NEB-S1419S) were washed and resuspended in 2X RNA Binding Buffer (2 M LiCl , 80 mM 
Tris HCl (pH 7.5), 4 mM EDTA , 0.2% Triton X-100) in a 1:1 ratio and 500ng of total RNA 
was added. RNA was denatured by incubating at 65C for 5 minutes and mRNA was allowed to 
bind to beads. Beads were washed twice in Wash Buffer (150 mM LiCl , 20 mM Tris HCl (pH 
7.5), 1.0 mM EDTA , 0.01% Triton X-100) and mRNA eluted in 10 mM Tris Buffer by 
incubating at 80C for 2 minutes. An equal volume of Binding Buffer was added, washed once 
more, and the mRNA was eluted into a First Strand Synthesis Reaction Buffer containing 4µl 5X 
First-Strand Buffer (Invitrogen), 1µl 50µM Random hexamers (Invitrogen N8080127), 0.5µl 
10mM dNTP mix, and 1.5µl 0.1M DTT. 0.5µl RNaseOUT (Invitrogen 10777-019), 2.5µl 
0.1µg/µl Actinomycin D (Sigma A1410), and 0.5µl SuperScript II Reverse Transcriptase were 
added and samples were incubated in a thermal cycler for 10 minutes at 25°C, 15 minutes at 
42°C, and 15 minutes at 70°C. Second strand synthesis was performed immediately using the 
NEBNext mRNA Second Strand Synthesis Module. Libraries were then generated using the 
NEBNext Ultra II DNA Library Prep Kit. For PCR library enrichment, 13 cycles of 
amplification were performed. Library quality was assessed on a Bioanalyzer High Sensitivity 
DNA Chip (Agilent 5067-4626) and concentration was determined using KAPA Library 
Quantification Kit (KK4824). Libraries were sequenced on an Illumina HiSeq 2500 system by 
the Babraham Sequencing Facility. 

 

7. RNA-Seq data preparation and normalization 

Libraries were trimmed to 50bp with trim galore v0.4.4 using default parameters. Trimmed data was 
mapped to the C. elegans WBCel235 genome assembly using hisat2 v2.1.0 guided by splice 
junctions taken from Ensembl v75. Mapped positions with MAPQ < 20 and all non-primary 
alignments were discarded before the data was analyzed. All libraries were mapped as non-
directional single-end. Only exactly overlapping reads were assigned to a gene and transcript-
isoforms were merged. Raw counts were generated using Seqmonk and all subsequent analysis was 
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performed in R. The DESeq2 package was used to generate normalised counts. Library metrics are 
presented in Supp. Table 14. 

During normalization, DEseq2 accounts for differences in sequencing depth by calculating a size 
factor using the "median ratio method" (Anders and Huber, 2010). This method mitigates the effect 
of small numbers of highly and differentially expressed genes by using the median ratio of observed 
counts to calculate a unique size factor that is then used to scale the libraries. When considering 
strains that possess substantially different tissue composition this may introduce a significant 
confounding factor. For example, a gene that is enriched in the germline would produce a high ratio 
in a germline(+) animal, and a low ratio in a germline(-) animal. Multiplied over many thousands of 
genes, this would have the effect of increasing the median ratio in germline(+) animals and reducing 
it in germline(-) animals. Consequently, normalised gene counts for non-germline enriched genes 
would be artificially deflated or inflated in germline(+) and germline(-) animals respectively. This 
would particularly affect our GEM samples, which displayed delayed expression of germline-
enriched genes. 

To determine whether the ratio of germline to somatic gene counts may be affecting our data in this 
way, we calculated size factors with and without genes that were shown to be enriched in the 
germline (Han et al., 2017) and which displayed clear reproductive expression patterns and gene 
ontologies in our data, hereafter referred to as “germline-enriched”. When these genes were 
excluded, size factors for GEM samples increased at early time points and decreased at later time 
points (Supp. Figure S1A), mirroring the rising expression of germline enriched genes in this strain. 
These results confirmed that the ratio of germline to somatic transcripts was having a direct effect on 
the scaling of our libraries. 

To test whether exclusion of germline enriched genes during normalization produced a more accurate 
estimation of somatic gene counts, we compared gene counts between 49hrs (D1) and 137hrs (D5) 
timepoints in GEM, where the difference in germline:soma ratio would be the greatest. If the ratio 
was distorting the data in a consistent manner we would expect non-germline enriched gene counts to 
be deflated in D5 samples and inflated in D1 samples when counts were scaled to the entire genome. 
We plotted the counts for non-germline-enriched genes and observed a clear upshift in mean 
expression in D1 samples when counts were normalised to the entire genome (Figure S1C). When we 
excluded germline-enriched genes during normalization, this bias was mitigated (Figure S1D). As 
expected, when making comparison between samples with stable expression of germline-enriched 
genes (FEM 49hrs vs. FEM 137hrs), this correction had no effect (Supp. Figure S1 E and F). In light 
of this, we excluded germline-enriched genes when calculating size-factors to produce normalised 
counts.  
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SUPPLEMENTARY FIGURES 
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Figure S1. Excluding germline-enriched genes during normalization mitigates bias introduced 
by different germline:soma ratios. 
(A and B) DEseq size factors calculated with (pale dots) or without (dark dots) germline-enriched 
genes: when germline-enriched genes are excluded size-factors are reduced in germline(+) samples 
(e.g. GEM 137hrs) and increased in germline(-) samples (e.g. GEM 49hrs). (C) When germline-
enriched genes are included during normalization, non-germline-enriched gene counts are inflated in 
germline(-) samples (GEM 49hrs) compared to germline(+) samples (GEM 137hrs). (D) Excluding 
germline-enriched genes during normalization mitigated the over-estimation of gene counts, 
illustrated by alignment of the fitted linear model (red line) with the expected mean (black line). (E 
and F) Germline-enriched genes were stably expressed across all timepoints in FEM so comparisons 
between early and late timepoints in FEM were not affected by the germline:soma ratio. 

 

 

 

 

Figure S2. FEM and GEM strains have lifespans comparable to wild type (N2). Lifespan 
analysis of animals at 25°C. N2, mean lifespan = 11.51 days, GEM mean lifespan = 11.71 days 
(compared to N2: Log-Rank P = 0.7268 (NS), Wilcoxon P = 0.5979 (NS)), FEM mean lifespan = 
11.04 days (compared to N2: Log-Rank P = 0.8502 (NS), Wilcoxon P = 0.2837 (NS)). Data shown 
are representative of 3 biological replicates. 
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Figure S3. (A-B) In vivo measured and FBA predicted fluxes through TCA in mutant strains 
lacking isocitrate dehydrogenase (C-D) Fold Enrichment for pathways that are differentially 
represented in flux solutions for FEM. 
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(A) Diagram representing the metabolite alterations observed in idh-1 mutants. Metabolic 

labeling studied by following the incorporation of 1,6 13C2-glucose ingestion in day 1 animals 

(Schrier Vergano et al., 2014). Metabolites that are found changed due to altered fluxes in idh-1 

mutants compared to wild type are color coded as follows: blue and red were found to be 

decreased and increased respectively; black represents metabolites that do not change with age 

and white represents unmeasured metabolites. Explanation of the TCA cycle: The starting 

molecule of the TCA cycle is Oxaloacetate (OAA), a 4-carbon molecule which when combined 

with acetyl-CoA (AcCoA) by citrate synthase forms a 6-carbon molecule, citrate (Cit) (reaction 

1) that is further isomerized to Isocitrate (IsoCit) by aconitase (reaction 2). The next two 

enzymatic reactions result in the loss of 2 carbons in the form of CO2 and in the release of 

reducing agents NADH and NADPH, which drive ATP synthesis via the electron transport chain 

(ETC) and fuel lipid synthesis respectively. Isocitrate is the substrate of isocitrate dehydrogenase 

(IDH) to produce alpha-ketoglutarate (aKG, reaction 3), which is further dehydrogenated into 

succinyl-CoA (SuccCoA, reaction 4). SuccCoA is metabolized into succinate (Succ), the only 

ATP releasing step of the TCA cycle (reaction 5). SuccCoA is the substrate of Succinate-

coenzyme Q reductase or enzyme complex II, which participates in both TCA and the ETC and 

generates the reducing agent FADH2 and fumarate (Fum) (reaction 6). Fum is further hydrated 

into malate (Mal) which undergoes the last removal of protons generating NADH and OAA 

(reaction 7). Other abbreviations: Cis-aconitate (cis-Acon), Glyoxylate (Glx), Pyruvate (Pyr), 

Lactate (Lac), Glutamate (Glu), Aspartate (Asp), electron transport chain (ETC). Reactions 1-11 

occur inside the mitochondria and 12-13 in the cytosol. (B) FBA comparing a wild type young 

adult with an idh-1; idh-2 in silico knock out. Escher was used to build a diagram of the TCA 

cycle. Blue represents decreased fluxes, gray unchanged, and light pink a small increase in 

fluxes. (C-D) Bar plots showing statistical significance and fold enrichment for 

overrepresentation of pathways in the top 10% of flux differences in FEM data. (C) without 

metabolomics data included in the objective of the model for days 5 versus 10, and (D) in days 

4-5 time frame versus days 5-10 timeframe when metabolomics data was included in the 

objective. 
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Figure S4. The sample-to-sample correlations are shown for the metabolomics and 
transcriptomics datasets. (A) shows the metabolomics dataset and (B) shows the transcriptomics 
dataset. Samples are ordered by strain and then by age in hours. These plots illustrate that there is 
greater variability between samples in the metabolomics dataset, and that the variability is greatest 
between aged samples in the metabolome but between young samples in the transcriptome. The least 
variability is within the FEM transcriptome. All samples are positively correlated, as we would 
expect for a dataset from an isogenic population under controlled conditions. It is clear that the 
metabolomics dataset has more technical (i.e. between replicate) variability.   
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Figure S5. PLS-DA model for ageing metabolome. This Figure is generated by the ropls library 
when fitting the predictive model to the provided metabolomics dataset. Top left: significance 
diagnostic: the R2Y and Q2Y of the model are compared with the corresponding values obtained 
after random permutation of the y response; Top right: inertia barplot: the graphic here suggests that 
3 components may be sufficient to capture most of the inertia; Bottom left: outlier diagnostics; 
Bottom right: x-score plot: the number of components and the cumulative R2X, R2Y and Q2Y are 
indicated below the plot. In the scores plot, the ellipse corresponds to 95% of the multivariate normal 
distribution with the samples covariance. 
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Figure S6. Rate of body size growth with age in wild type C.elegans.  

Body length significantly increases between Day 1 (41 hours) and Day 5 (137 hours) in both the 
GEM (P<0.0001) and the FEM (P<0.0001) strains. Between Day 5 and Day 10 (257 hours) no 
significant change in body length is observed in either strain. Points plotted represent the mean body 
length measured from at least 30 animals, biological replicate count n=3 for each timepoint, per 
strain. 
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Figure S7. Pathview comparison of FEM day 5 and 10.  (A) The Pathview map of the glutathione 
metabolism pathway illustrating differences in FEM transcriptomics and metabolomics between days 
5 and 10. (B) The Pathview map of the TCA cycle illustrating differences in FEM transcriptomics 
and metabolomics between days 5 and 10.  

 

 

Figure S8. Metabolite measurements show that aged worms have a defective TCA cycle. 

Metabolites that are found changed due to altered fluxes in (A) our dataset of old worms, and (B) idh-
1 mutants compared to wild type from (Schrier Vergano et al., 2014). The metabolites are color 
coded as follows: blue and red were found to be decreased and increased respectively; black 
represents metabolites that do not change with age and white represents unmeasured metabolites.   
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Figure S9. Flux Variability Analysis of the Transcriptomics, Metabolomics + FBA predictions. 

(A) We conducted a Flux Variability Range analysis to validate the multi-omics inclusion with FBA, 
by computing the flux variability for each reaction in the model under three conditions: (1) with no -
omics data; (2) with transcriptomics data only (no metabolomics); and (3) with both transcriptomics 
and metabolomics data (with multi-omics). The mean of the flux variability range 
(variability.maximum - variability.minimum) is taken across all the reactions in the dataset and 
plotted per time point and strain. As can be seen, the addition of transcriptomics-based constraints to 
the model dramatically reduces the mean of the flux variability range, while the use of the 
metabolomics in the objective function did not cause any significant further reduction although it 
does cause the variability ranges to change slightly at some of the time points. Time points 41 and 97 
had no significant metabolomics shifts thus the scenarios are the same with and without 
metabolomics.  (B) We evaluated the use of constraints to include metabolomics information as 
compared to the use of the objective function to include the metabolomics information, by comparing 
the overall growth rate (biomass production) in four different conditions: Metab FBA (with 
metabolomics as objective function), Metab FBA with added constraints, Standard FBA (only 
transcriptomics information) and Standard FBA with constraints added from the metabolomics 
information but no objective function (similar to TREM-flux approach). It is clear that for some time 
points (65, 89, 137 and 257), the addition of the metabolomics-based constraints substantially 
reduces the ability of the model to create biomass.  
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Supplementary Tables are included as named sheets in the Supplementary Tables 
Excel file.  

 

Supplementary Table 1: Fluxes obtained for FEM and GEM when applying standard FBA. 

Supplementary Table 2:  Fold enrichment of fluxes obtained using standard FBA and Metab FBA 
for FEM day 5 compared to day 10.  

Supplementary Table 3: Fluxes obtained when using FBA IDH-1/2 KO in FEM when applying 
standard FBA.  

Supplementary Table 4: Metabolomics data normalised 

Supplementary Table 5: Results of PLS-DA on our metabolomics data showing 44 significantly 
changed metabolites with annotations with regards to their involvement in longevity. “SIG” indicates 
that the metabolite was found to change significantly with age, and those rows that are significant are 
also highlighted in grey. Of the significant rows, some are marked as INCREASING and others as 
DECREASING depending on the cluster they fell into.  

Supplementary Table 6: Comparison of the metabolomics data with other similar studies. Grey 
highlighted rows are in disagreement with some published finding, while orange highlighted rows are 
in agreement with all published findings. 

Supplementary Table 7: Fluxes through FEM and GEM when using metab_FBA.  

Supplementary Table 8: Fluxes obtained when using FBA_metab_no_OAA. 

Supplementary Table 9: Fluxes obtained when using FBA_metab_no_GLUT  

Supplementary Table 10: Fluxes through TCA reactions using Standard FBA, Metab_FBA and 
Metab_FBA_ no_OAA. 

Supplementary Table 11: Fluxes through production and consumption of gultamate (GLU) related 
to TCA cycle activity. 

Supplementary Table 12: Metabolite names used in WormJam model.  

Supplementary Table 13: Reactions names as used in WormJam model.  

Supplementary Table 14: RNA Library Metrics.  

 

Supplementary ZIP file: “Scripts, model and data files.zip” includes all the scripts, model and data 
files required to reproduce these results. The included files are (a) the model file (wormjam-
20180125.sbml,input-reaction-bounds.csv), (b) the metabolomics differences in a CSV file (metabo-
diffs.csv), (c) the transcriptomics data means (GroupMeans.csv), (d) the gene information used to 
map between the transcriptomics and the model (GeneInfoForModelGenes.csv,genes-
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notfound.csv,metabo-model-mapping.csv), (e) Python script for running FBA (FBAPipeline.py), (f) 
R script and associated data files for processing the metabolomics data 
(ProcessMetabolomicsData.R,2017-09-06_(Mains_UK_65)_RelativeQuant.csv,all.sampleInfo.csv).  
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