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SUMMARY
Recent advances in human pluripotent stem cell (hPSC) differentiation protocols have generated insulin-producing cells resembling

pancreatic b cells. While these stem cell-derived b (SC-b) cells are capable of undergoing glucose-stimulated insulin secretion (GSIS),

insulin secretion per cell remains low comparedwith islets and cells lack dynamic insulin release. Herein, we report a differentiation strat-

egy focused onmodulating transforming growth factor b (TGF-b) signaling, controlling cellular cluster size, and using an enriched serum-

free media to generate SC-b cells that express b cell markers and undergo GSIS with first- and second-phase dynamic insulin secretion.

Transplantation of these cells into mice greatly improves glucose tolerance. These results reveal that specific time frames for inhibiting

and permitting TGF-b signaling are required during SC-b cell differentiation to achieve dynamic function. The capacity of these cells to

undergo GSIS with dynamic insulin release makes them a promising cell source for diabetes cellular therapy.
INTRODUCTION

Diabetes mellitus is a global health problem affecting over

400 million people worldwide and is increasing in preva-

lence (Mathers and Loncar, 2006; Stokes and Preston,

2017). Diabetes is principally caused by the death or

dysfunction of insulin-producing b cells found within the

islets of Langerhans in the pancreas, resulting in improper

insulin secretion and failure of patients tomaintain normal

glycemia, which in severe cases can cause ketoacidosis and

death. Patients are often reliant on insulin injections but

can still suffer from long-term complications, including

retinopathy, neuropathy, nephropathy, and cardiovascular

disease (Nathan, 1993). An alternative treatment is replace-

ment of the endogenous b cells by transplantation of

pancreatic islets (Bellin et al., 2012; Hering et al., 2016;

Lacy and Kostianovsky, 1967; Scharp et al., 1990; Shapiro

et al., 2000). While this therapy has had clinical success,

limited availability of cadaveric donor islets largely ham-

pers its widespread application (Bonner-Weir and Weir,

2005).

Differentiation of human pluripotent stem cells (hPSCs)

into stem cell-derived b cells (SC-b cells) is a promising

alternative cell source for diabetes cell replacement therapy

as well as other applications, such as modeling disease and

studying pancreatic development (Millman and Pagliuca,

2017). Through modulation of pathways identified from

embryonic development, studies with hPSCs have detailed

protocols for generating cells that resemble early endoderm

and pancreatic progenitors (D’Amour et al., 2006; D’Amour

et al., 2005; Kroon et al., 2008; Nostro et al., 2015; Rezania

et al., 2012), the latter of which can be transplanted into

rodents and spontaneously differentiated into b-like cells
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after several months (Bruin et al., 2015; Kroon et al.,

2008; Millman et al., 2016; Rezania et al., 2012).

We (Pagliuca et al., 2014) and others (Rezania et al., 2014)

published similar approaches for generating SC-b cells

in vitro that in part use the compound Alk5 inhibitor type

II (Alk5i) to inhibit transforming growth factor b (TGF-b)

signaling during the last stages of differentiation. These ap-

proaches produced SC-b cells capable of undergoing

glucose-stimulated insulin secretion (GSIS) in static incu-

bations, expressing b cell markers, and controling blood

sugar in diabetic mice after several weeks. However, even

with this significant breakthrough, these cells had inferior

function compared with human islets, including lower in-

sulin secretion and little to no first- and second-phase insu-

lin release in response to a high glucose challenge, demon-

strating that these SC-b cells were less mature than b cells

from islets. Several follow-up studies have been performed

introducing additional differentiation factors or opti-

mizing the process but have failed to bring SC-b cell func-

tion equivalent to human islets (Ghazizadeh et al., 2017;

Millman et al., 2016; Russ et al., 2015; Zhu et al., 2016).

Here we report a six-stage differentiation strategy that

generates almost pure populations of endocrine cells con-

taining b-like cells that secrete high levels of insulin and ex-

press b cell markers. This is achieved by modulating Alk5i

exposure to inhibit and permit TGF-b signaling during

key stages in combination with cellular cluster resizing

and enriched serum-free media (ESFM) culture. These cells

are glucose responsive, exhibiting first- and second-phase

insulin release, and respond to multiple secretagogues.

Transplanted cells greatly improve glucose tolerance in

mice. We identify that inhibiting TGF-b signaling during

stage 6 greatly reduces the function of these differentiated
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cells while treatment with Alk5i during stage 5 is necessary

for a robust b-like cell phenotype.
RESULTS

Differentiation to Glucose-Responsive SC-b Cells

In Vitro

We set out to develop an improved differentiation protocol

starting from the approach we described in Pagliuca et al.

(2014) using the HUES8 cell line. We included Y27632 dur-

ing stages 3 to 4 and activin A during stage 4 as we reported

previously (Millman et al., 2016) to help maintain cluster

integrity and shortened stage 3 from 2 days to only 1 day

to enhance progenitors (Nostro et al., 2015). We also devel-

oped an ESFM for stage 6 to replace the serum-containing

media used previously to have a serum-free protocol.

During our protocol pilot studies, we observed that both

resizing clusters and removal of Alk5i and T3 increased in-

sulin secretion while maintaining the C-peptide+ popula-

tion (Figures S1A and S1B).

Combining these modifications resulted in our six-stage

differentiation protocol outlined in Figure 1A. Stage 6 cells

are grown as clusters in suspension culture (Figure 1B) that

averaged 172 ± 34 mm (mean ± SD; n = 353 individual clus-

ters) in diameter, less than half the diameter of the clusters

before resizing, which was 364 ± 55 mm (n = 155 individual

clusters). Stage 6 clusters stained red for the zinc-chelating

dye dithizone, which stains b cells. Immunostaining of

sectioned clusters revealed most cells to be C-peptide+, a

protein also produced by the INS gene, in addition to

PDX1+ and NKX6-1+, b cell markers (Figure 1C). A subset

of cells stained positive for GCG or were polyhormonal,

staining positive for both C-peptide and GCG. These poly-

hormonal cells are known to not to resemble adult b cells

and are not functional (D’Amour et al., 2006; Hrvatin

et al., 2014).

We tested function of stage 6 cells generated with our dif-

ferentiation protocol using both static (Figures 1D, 1E, and

S1C) and dynamic GSIS assays (Figures 1F and S1D) and

found that not only do the cells secrete insulin but also in-

crease insulin release when moved from low to high

glucose. With static GSIS, while there was some variability,

stage 6 cells increased insulin secretion on average by a fac-

tor of 3.0 ± 0.1 whenmoved from 2 to 20mM glucose. This

is an improvement compared with cells generated with the

protocol described in Pagliuca et al. (2014) (1.4 ± 0.1),

referred to here as the Pagliuca protocol, but less than

human islets (3.2 ± 0.1) on average (Figure 1D). Stage 6 cells

from this study did not increase insulin secretion in

response to 5.6 mM glucose but did increase secretion in

response to higher concentrations (11.1 and 20 mM), indi-

cating that the cells are only stimulated at higher glucose
352 Stem Cell Reports j Vol. 12 j 351–365 j February 12, 2019
threshold (Figure 1E). In terms of insulin secretion per

cell, stage 6 cells secreted on average 5.3 ± 0.5 mIU/103 cells

at 20mMglucose, 9.2 ± 1.1 timesmore than cells generated

with the Pagliuca protocol and 2.3 ± 0.3 times less than hu-

man islets, on average (Figure 1D). It is important to note

that our insulin values with the Pagliuca protocol are

within range of the 2014 report but were lower on average,

with differentiated HUES8 reported to secrete 0.2–

2.6 mIU/103 cells (average 1.4) and increase secretion by

0.4–4.1 (average 1.7) to high glucose.

With dynamic GSIS, stage 6 cells displayed a rapid first-

phase insulin release within 3–5 min of high glucose expo-

sure, increasing insulin secretion by a factor of 7.6 ± 1.3 to

159 ± 21 mIU/mg DNA, higher than stage 6 cells generated

from the Pagliuca protocol (1.7 ± 0.23 increase to 11 ±

1 mIU/mg DNA) but lower than human islets (15.0 ± 2.43

increase to 245 ± 26 mIU/mgDNA) (Figure 1F). Second-phase

insulin secretion was observed with continued high

glucose exposure, with cells maintaining 2.1 ± 0.3 higher

insulin secretion than the initial low glucose, a higher in-

crease than with the Pagliuca protocol (0.9 ± 0.1) but lower

than human islets (6.7 ± 0.8) (Figure 1F). When the cells

were returned to low glucose, insulin secretion from stage

6 cells returned to a reduced rate. Elevating insulin secre-

tion and displaying first- and second-phase insulin release

to a high glucose challenge are key features of b cell

behavior. Overall, stage 6 cells generated with this differen-

tiation strategy produces cells with clear first- and second-

phase insulin secretion, which was not demonstrated by

Pagliuca et al. (2014) and Rezania et al. (2014) and not

seenwith stage 6 cells producedwith the Pagliuca protocol.

However, when compared with human islets containing

b cells, these stage 6 cells still have lower insulin secretion

per cell at high glucose, lower glucose stimulation on

average, and slightly slower first-phase insulin release.

To further characterize stage 6 cells generated with our

differentiation protocol, we immunostained cells with a

panel of pancreatic islet markers (Figures 2A–2C and S2).

The vast majority of cells expressed CHGA (96% ± 1%), a

pan-endocrine marker, and most cells expressed C-peptide

(73% ± 3%) (Figure 2). These fractions are higher than in

stage 6 cells generatedwith thePagliuca protocol (Figure S2)

and reported in Pagliuca et al. (2014). Many C-peptide+

cells from both protocols expressed other markers

found in b cells and expression of the other pancreatic

hormones was observed (Figures 2 and S2). The majority

of C-peptide+ cells expressed NKX6-1 (Figure 2) and were

monohormonal, which we presumed to be the SC-b cell

population as done previously (Pagliuca et al., 2014). The

fraction of C-peptide+ cells not expressing another hor-

mone was increased compared with stage 6 cells generated

with the Pagliuca protocol and reported in Pagliuca et al.

(2014), while the fraction of these cells expressing another



Figure 1. SC-b Cell Clusters undergo GSIS
(A) Overview of our differentiation procedure.
(B) Images of unstained whole stage 6 clusters under phase contrast (top) or stained with dithizone (DTZ) (bottom) imaged under bright
field. Scale bars, 400 mm.
(C) Immunostaining of sectioned stage 6 clusters stained for glucagon (GCG), NKX6-1, PDX1, C-peptide (CP), or with the nuclei marker
DAPI. Scale bar, 100 mm.
(D) Human insulin secretion of stage 6 cells generated with the protocol from this study (n = 16), stage 6 cells generated with the
Pagliuca protocol (n = 12), and cadaveric human islets (n = 12) in a static GSIS assay. **p < 0.01, ****p < 0.001 by one-sided paired t test.
###p < 0.001, ####p < 0.0001 by one-way ANOVA Dunnett multiple comparison test compared with this study.
(E) Static GSIS assay of stage 6 cells from this study subjected to either 2, 5.6, 11.1, or 20 mM glucose (n = 4). *p < 0.05, ***p < 0.001, n.s.,
not significant by one-way ANOVA Dunnett multiple comparison test compared with 2 mM glucose.
(F) Dynamic human insulin secretion of stage 6 cells generated with the protocol from this study (n = 12), stage 6 cells generated with the
Pagliuca protocol (n = 4), and cadaveric human islets (n = 12) in a perfusion GSIS assay. Cells are perfused with low glucose (2 mM) except
where high glucose (20 mM) is indicated. Act A, activin A; CHIR, CHIR9901; KGF, keratinocyte growth factor; RA, retinoic acid; Y, Y27632;
LDN, LDN193189; PdbU, phorbol 12,13-dibutyrate; T3, triiodothyronine; Alk5i, Alk5 inhibitor type II; ESFM, enriched serum-free medium.
All stage 6 data shown are with HUES8.
Data are shown as means ± SEM.
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hormone was comparable (Figures 2 and S2). These data

show that stage 6 cells generated with our differentiation

strategy are predominantly pancreatic endocrine with the

majority expressing C-peptide.

We measured expression of several genes compared with

stage 6 cells generated with the Pagliuca protocol and

human islets (Figures 2D and S3). Many islet and b cell

genes were increased compared with the Pagliuca protocol,

including INS, CHGA, NKX2-2, PDX1, NKX6-1, MAFB,

GCK, andGLUT1. Interestingly, LDHA and SLC16A1, disal-

lowed b cell genes, had reduced expression in our stage 6

cells comparedwith both the Pagliuca protocol and human

islets (LDHA) and the Pagliuca protocol (SLC16A1). Our

stage 6 cells had increased expression of CHGA, NKX6-1,

MAFB, GCK, and GLUT1 compared with human islets.

However, INS, GCG, SST, and particularly MAFA and

UCN3 had reduced expression compared with stage 6 cells.

However, several recent reports have provided evidence

that question the utility of MAFA and UCN3 in evaluating

human SC-b cell maturation. MAFA expression is low in

juvenile human b cells (Arda et al., 2016). MAFB is ex-

pressed in human but not mouse b cells (Arda et al.,

2016; Tritschler et al., 2017; Xin et al., 2016). UCN3 expres-

sion is much higher in mouse than human b cells (Xin

et al., 2016) and is also expressed by human a cells (Baron

et al., 2016; Tritschler et al., 2017). These data show that

our stage 6 cells have improved gene expression for many

markers compared with the Pagliuca protocol and, while

the expression of several b cell markers are equal to or great

than human islets, other markers remain low.

Transplantation of SC-b Cells into Glucose-Intolerant

Mice

To evaluate the functional potential of stage 6 cells in vivo,

we first transplanted cells under the renal capsule of non-

diabetic mice and evaluated the ability of the graft to

respond to a glucose challenge (Figure 3A). We observed

that, even after extended time post-transplantation

(6 months), the grafts responded to a glucose injection by

increasing human insulin by a factor of 1.9 ± 0.5. Excision

and immunostaining of the transplanted kidneys revealed

C-peptide+ cells that tended to be clustered together in

addition to other pancreatic endocrine and exocrine
Figure 2. SC-b Cells Express b Cell and Islet Markers
(A) Immunostaining of dispersed stage 6 clusters plated overnight a
NEUROD1, NKX6-1, PDX1, PAX6, C-peptide (CP), or with DAPI. Scale b
(B) Representative flow cytometric dot plots of dispersed stage 6 clu
(C) Box-and-whiskers plots quantifying fraction of cells expressing th
(D) Real-time PCR analysis of stage 6 cells generated with the protoco
protocol (n = 5), and cadaveric human islets (n = 7). n.s., not significa
ANOVA Dunnett multiple comparison test compared with this study.
Data are shown as means ± SEM.
markers (Figures 3B and S4A). To more rigorously evaluate

stage 6 cells in vivo, we transplanted a separate mouse

cohort that had been chemically induced to be diabetic

with streptozotocin (STZ) and evaluated function at early

(10 and 16 day) and late (10 week) time points. After only

10 days post-transplantation, STZ-treated mice receiving

stage 6 cells had greatly improved glucose tolerance

compared with STZ-treated sham mice and had similar

glucose clearance as the non-STZ-treated mice (Figures 3C

and 3D). Measurements of human insulin 16 days after

transplantation revealed high insulin concentrations that

increased by a factor of 2.3 ± 0.6 with a glucose injection

to 16.6 ± 3.1 mIU/mL (Figure 3E). These values are greater

than what was reported in Pagliuca et al. (2014) under

similar conditions, which had an insulin increase of 1.4 ±

0.3 and concentration of 3.8 ± 0.8 mIU/mL. Observing

our cohort 10 weeks after transplantation revealed similar

results as the 10- and 16-day data, with transplanted mice

having greatly improved glucose tolerance (Figures 3F

and 3G) and glucose-responsive insulin secretion (Fig-

ure 3H). Mice not receiving STZ had similar glucose toler-

ance as mice receiving a therapeutic dose of human islets

(Pagliuca et al., 2014).Mice that did not receive stage 6 cells

had undetectable human insulin and mice that received

STZ had drastically reduced mouse C-peptide compared

with non-STZ-treated mice (Figures S4B and S4C). Grafts

from these STZ-treated mice contained cells that expressed

b cell markers in addition to other endocrine and exocrine

markers (Figure S4D). Overall these data demonstrate that

stage 6 cells generated with our protocol are functional

both at early and late time points in vivo, greatly improving

glucose tolerance to equal that of non-STZ-treated mice.

Characterization of SC-b Cell Dynamic Function

Since the differentiation protocol produces cells that are

capable of dynamic insulin secretion, we studied this

phenotype in more detail. We performed dynamic GSIS

on cells as they progressed through stage 6 (Figure 4A).

We observed that robust dynamic function was transient,

with cells at 5 days secreting low amounts of insulin and

exhibiting weak first- and second-phase response, with

later time points (9–26 days) secreting higher amounts of

insulin with a clear first- and second-phase response.
nd stained for chromogranin A (CHGA), GCG, somatostatin (SST),
ar, 100 mm.
sters immunostained for the indicated markers.
e indicated markers. Each point is an independent experiment.
l from this study (n = 8), stage 6 cells generated with the Pagliuca
nt, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 by one-way
All stage 6 data shown are with HUES8.
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Figure 3. SC-b Cells Greatly Improve Glucose Tolerance and Have Persistent Function for Months after Transplantation
(A) Serum human insulin of a non-STZ-treated mouse cohort (n = 3) 6 months after transplantation fasted overnight 0 and 60 min after an
injection of 2 g/kg glucose. **p < 0.01 by one-sided paired t test.
(B) Immunostaining of sectioned explanted kidneys of non-STZ-treated mice 6 months after transplantation for C-peptide, PDX1, or with
DAPI. The white dashed line is manually drawn to show the border between kidney and graft (*). Scale bars, 50 mm.
(C) Glucose tolerance test (GTT) 10days after surgery for STZ-treated mice cohort without a transplant (STZ, No Txp; n = 6), untreated mice
without a transplant (No STZ, No Txp; n = 5), and STZ-treated mice with a transplant (STZ, Txp; n = 6). *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001 by two-way ANOVA Tukey multiple comparison.
(D) Area under the curve (AUC) calculations for data shown in (C). **p < 0.01 by one-way ANOVA Tukey multiple comparison test.
(E) Serum human insulin of STZ, Txp mice (n = 5) fasted overnight 0 and 60 min after an injection of 2 g/kg glucose. **p < 0.01 by one-
sided paired t test.
(F) GTT 10 weeks after surgery for STZ, No Txp mice (n = 6), No STZ, No Txp mice (n = 4), and STZ, Txp mice (n = 5). **p < 0.01, ***p < 0.001,
****p < 0.0001 by two-way ANOVA Tukey multiple comparison test.
(G) AUC calculations for data shown in (D). ***p < 0.001 by one-way ANOVA Tukey multiple comparison test.
(H) Serum human insulin of STZ, Txp mice (n = 5) fasted overnight 0 and 60 min after an injection of 2 g/kg glucose. **p < 0.01 by one-
sided paired t test. All data shown are with HUES8. (A and B) are severe combined immunodeficiency (SCID)/Beige and (C–H) are non-
obese diabetic/SCID mice.
Data are shown as means ± SEM.
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Figure 4. SC-b Cells have Transient Dynamic Function In Vitro, Respond to Multiple Stimuli, and Sustain Second-Phase Insulin
Secretion at High Glucose
(A) Dynamic human insulin secretion cells in stage 6 for 5, 9, 15, 22, 26, and 35 days in a perfusion GSIS assay. Data for each individual
time point is shown as mean ± SEM and the final graph shows only the means of each graph. Cells are perfused with low glucose (2 mM)
except where high glucose (20 mM) is indicated (n = 3 for each stage 6 time point).
(B) Dynamic human insulin secretion of stage 6 cells in a perfusion GSIS assay treated withmultiple secretagogues. Cells are perfused with low
glucose (2 mM) except where high (20 mM) glucose is indicated (Glu), then perfused with a second challenge of high glucose alone or with
additional compounds (tolbutamide, IBMX, and Extendin-4 on the left; KCL and L-arginine on the right) where indicated (Glu + Factor). Note
that the high glucose-only challenge is shown in both left and right graphs and the scale change (n = 3 except glucose, which is n = 2).
(C) Dynamic human insulin secretion of stage 6 cells in a perfusion GSIS assay with an extended high glucose treatment. Cells are perfused
with low glucose (2 mM) except where high glucose (20 mM) is indicated (n = 3). All data shown are with HUES8.
Data are shown as means ± SEM.
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During this time, the fraction of C-peptide+ cells decreased

slightly (Figure S5A). By 35 days, insulin secretion at low

glucose had risen such that first and second phases were

difficult to clearly identify. These data show that SC-b cells

require 9 days in stage 6 to acquire dynamic function, this

function persists for weeks, but after extended in vitro

culture glucose responsiveness is lost. Similarly, cadaveric

human islets are known to have a limited functional life-

time in vitro, but the cause of this is not clear. These data

further suggest an optimal time frame for these cells to be

used in transplantation and drug-screening studies.

To further characterize dynamic insulin secretion, we

performed perifusion experiments to assay whether SC-b

cells could respond to sequential challenges with several

known secretagogues (Figure 4B). After an initial high

glucose challenge, SC-b cells were able to respond to a

second high glucose-only challenge, albeit less strongly

than the first challenge, and extending the first glucose

challenge to 1 hr in a separate experiment did not reduce

insulin secretion (Figure 4C). Addition of other secreta-

gogues during the second challenge further increased

insulin secretion (Figure 4B). Membrane depolarizers KCl

and L-arginine had the largest increases. Tolbutamide

(blocks potassium channel), 3-isobutyl-1-methylxanthine

(IBMX) (raises cytosolic cAMP), and exendin-4 (agonist of

GLP-1 receptor) also increased insulin secretion over high

glucose alone. Not only was insulin secretion increased

but it rose faster than with high glucose alone. However,

we noted that the response of stage 6 cells to KCl challenge

was stronger than in human islets (Figure S5B), an observa-

tion made by others comparing b-like cells to human islets

(Rezania et al., 2014), possibly indicative of continued

immature or juvenile b cell phenotype. Taken together,

these data show that SC-b cells can respond to several secre-

tagogues that have diverse modes of action and have

potential application in drug screening.

Role of TGF-b Signaling in SC-b Cell Differentiation

and Maturation

After having evaluated SC-b cells generated with our proto-

col, we investigated the protocol changes that were made

to gain insights into SC-b cell differentiation and matura-

tion. We found that, while inclusion of Alk5i during stage

6 resulted in relatively weak but statistically significant

GSIS in a static assay, similar to data from the Pagliuca pro-

tocol (Figure 1D), omission of Alk5i drastically increased

insulin secretion and glucose stimulation (Figures 5A and

S6A). Insulin content also increased with removal of

Alk5i during stage 6 (Figure 5B), but the proinsulin/insulin

ratio remained similar (Figure 5C), suggesting that the

increased insulin content is not due to hormone process-

ing. Furthermore, the fraction of cells expressing pancre-

atic endocrine markers, including C-peptide, remained
358 Stem Cell Reports j Vol. 12 j 351–365 j February 12, 2019
similar between DMSO- and Alk5i-treated cells (Figures

5D, 5E, and S6B). Gene expression was similar overall

with and without Alk5i treatment, with cluster resizing

typically having a larger effect (Figure S6C). Cells treated

with Alk5i during stage 6 also had dramatically reduced

insulin secretion with the dynamic GSIS assay, displaying

weak to no first- and second-phase response (Figure 5F),

similar to cells generated with the Pagliuca protocol (Fig-

ure 1F). These data show that Alk5i treatment during stage

6 inhibits functional maturation of SC-b cells.

Our studies with Alk5i during stage 6 suggested that

permitting TGF-b signaling was necessary for robust func-

tional maturation of SC-b cells, as inhibition of TGFBR1

is the canonical function of Alk5i. To test this hypothesis,

we first used western blot analysis to validate that TGF-b

signaling was occurring in our stage 6 cells via SMAD phos-

phorylation (Figure 6A). Alk5i treatment diminished phos-

phorylated SMAD, confirming that TGF-b signaling was

indeed occurring and inhibited by Alk5i. SMAD phosphor-

ylation was observed in stage 6 clusters regardless of

whether they were resized, consistent with observations

that Alk5i treatment reduced GSIS regardless of resizing

(Figure S7). Next, we generated two lentiviruses carrying

short hairpin RNA (shRNA) designed to knock down

TGFBR1 (TGFBR1 no. 1 and no. 2). These viruses were

capable of reducing TGFBR1 transcript compared with con-

trol virus targeting GFP in stage 6 cells (Figure 6B) and

reduced SMAD phosphorylation (Figures 6C and S7C),

albeit to much lesser extent than Alk5i treatment (Fig-

ure 6A). Similar to Alk5i treatment (Figures 5A and 5F),

stage 6 cells transduced with shRNA against TGFBR1 had

reduced insulin secretion and reduced positive glucose

responsiveness in the static GSIS assay (Figure 6C) and

blunted glucose response in the dynamic GSIS assay (Fig-

ure 6D). These data show that permitting TGF-b signaling

during stage 6 is important for SC-b cell functional matura-

tion, which is inhibited by treatment with Alk5i.

Finally, we studied the role of Alk5i during stage 5 of dif-

ferentiation to evaluate its effects on differentiation toward

pancreatic endocrine cells, as it had been used previously

for endocrine induction (Millman et al., 2016; Pagliuca

et al., 2014; Rezania et al., 2014; Russ et al., 2015; Zhu

et al., 2016). These experimentswere performed as outlined

in Figure 1A in the presence or absence of Alk5i. We

observed that the fraction of cells differentiated to endo-

crine cells (CHGA+) was unchanged but the fraction of cells

differentiated to a C-peptide+ phenotype was decreased by

omitting Alk5i (Figures 7A–7C). Similarly, the fraction of

cells co-expressing C-peptide and NKX6-1, an important

transcription factor for specifying b cells (Rezania et al.,

2013; Rieck et al., 2012), was decreased by omitting Alk5i.

INS and GCG gene expression decreased with Alk5i omis-

sion, but surprisingly SST expression was slightly increased



Figure 5. Alk5i Reduces SC-b Cell GSIS
(A) Box-and-whiskers plot of human insulin secretion of stage 6 cells in static GSIS assay treated with DMSO or Alk5i (n = 9). ***p < 0.001,
****p < 0.0001 by two-way paired t test; ####p < 0.0001 by two-way unpaired t test.
(B) Cellular insulin content of stage 6 cells treated with DMSO or Alk5i (n = 18). ****p < 0.0001 by two-way unpaired t test.
(C) Cellular proinsulin/insulin content ratio of stage 6 cells treated with DMSO or Alk5i (n = 17). n.s., not significant by two-way unpaired
t test.
(D and E) Representative flow cytometric dot plots of dispersed stage 6 clusters immunostained for CHGA and PDX1 (D) or C-peptide and
NKX6-1 (E).
(F) Dynamic human insulin secretion of stage 6 cells treated with DMSO or Alk5i in a perfusion GSIS assay. Cells are perfused with low
glucose (2 mM) except where high glucose (20 mM) is indicated (n = 12). All data shown are with HUES8.
Data are shown as means ± SEM.
(Figure 7D). Expression of NKX6-1 and PDX1 were reduced

without Alk5i (Figure 7E), while expression of several

pancreatic endocrine markers were either unchanged or

only slightly changed (Figure 7F). To further test the impor-

tance of Alk5i during stage 5, cells treated with or without

Alk5i during stage 5were further cultured for 7 days in stage

6 without Alk5i nor cluster resizing, and insulin secretion
was substantially higher in cells treated with Alk5i during

stage 5 (Figure 7G). Taken together, these data show that

Alk5i treatment during stage 5 positively influences specifi-

cation to b-like cell fate, not necessary to specify endocrine

cells, and is necessary for high insulin secretion of resulting

SC-b cells. In addition, these observations illustrate the

importance of stage-specific treatment of the TGF-b
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Figure 6. Blocking TGF-b Signaling during
Stage 6 Hampers GSIS
(A) Western blot of stage 6 cells cultured
with DMSO or Alk5i stained for phosphory-
lated SMAD 2/3 (pSMAD2/3), total SMAD 2/3
(tSMAD2/3), and actin. Data shown are from
HUES8.
(B) Real-time PCR of stage 6 cells transduced
with lentiviruses containing GFP (control) or
one of two sequences against TGFBR1
(TGFBR1 no. 1 and no. 2) (n = 3) shRNA.
****p < 0.0001 by one-way ANOVA Dunnett
multiple comparison test compared with GFP.
(C) Western blot of stage 6 cells transduced
with lentiviruses containing GFP or TGFBR1
no. 1 shRNA. Data shown are from 1013-4FA.
(D) Human insulin secretion of stage 6 cells
in static GSIS assay transduced with lentivi-
ruses containing GFP, TGFBR1 no. 1 or no. 2
shRNA (n = 3). **p < 0.01 by paired two-way
t test. ##p < 0.01 by one-way ANOVA Dunnett
multiple comparison test compared with GFP.
Data shown are from HUES8.

(E) Dynamic human insulin secretion of stage 6 cells transduced with lentiviruses containing GFP or TGFBR1 no. 1 shRNA in a perfusion GSIS
assay. Cells are perfused with low glucose (2 mM) except where high glucose (20 mM) is indicated (n = 4). Data shown are from HUES8.
Data are shown as means ± SEM.
signaling-inhibitor Alk5i to both generate and functionally

mature SC-b cells.
DISCUSSION

Herewe demonstrate that enhanced functionalmaturation

of SC-b cells is achieved with our six-stage differentiation

strategy. These cells secrete a large amount of insulin and

are glucose responsive, displaying both first- and second-

phase insulin release. This differentiation procedure gener-

ates almost pure endocrine cell populations without

selection or sorting, and most cells express C-peptide and

other b cellmarkers. Upon transplantation into STZ-treated

mice, glucose tolerance is rapidly restored and function

persists for months. These SC-b cells respond to multiple

secretagogues in a perifusion assay. We found modulating

TGF-b signaling to be crucial for success, with inhibition

during stage 5 increasing SC-b cell differentiation but

inhibition during stage 6 reducing function and insulin

content. Permitting TGF-b signaling during stage 6 was

necessary for robust dynamic function.

Even though the protocols reported previously by us (Pa-

gliuca et al., 2014) and others (Rezania et al., 2014) both

generated b-like cells with much greater function and bet-

ter marker expression than prior reports (Hrvatin et al.,

2014), robust first- and second-phase insulin release in

response to glucose stimulation was not observed. Both
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protocols inhibited TGF-b signaling during the final stage

of differentiation, and many subsequent reports also

include inhibitors of TGF-b signaling without demon-

strating proper dynamic function (Ghazizadeh et al.,

2017; Millman et al., 2016; Song and Millman, 2016; Sui

et al., 2018; Vegas et al., 2016; Zeng et al., 2016; Zhu

et al., 2016). However, a major observation of the current

study is that correct modulation of TGF-b signaling during

key cell transition and maturation steps is critical for

successful differentiation to functional SC-b cells, with

permitting TGF-b signaling being required for improved

functional maturation during stage 6.

SC-b cells in this report were able to control glucose in

STZ-treated mice rapidly within 10 days. Prior reports

with in-vitro-differentiated b-like cells without demon-

strated robust dynamic function have successfully

controlled blood sugar with a glucose tolerance test or

demonstrated glucose-responsive serum human insulin/

C-peptide in mice after several weeks or months (Millman

et al., 2016; Pagliuca et al., 2014; Rezania et al., 2014; Vegas

et al., 2016; Zhu et al., 2016), but our SC-b cells had higher

measured human insulin levels compared with Pagliuca

et al. (2014) with equal cell numbers transplanted. Vegas

et al. (2016) did demonstrate reduced blood glucose within

aweek but did not test glucose tolerance ormeasure human

insulin until much later. Currently, a key limitation in dia-

betes cell replacement therapy is the need for sustainable

source of functional b cells (Weir et al., 2011), and



Figure 7. Alk5i Treatment during Stage 5 Is Important for Generation of Insulin-Producing Cells
(A and B) Representative flow cytometric dot plots of dispersed stage 5 clusters immunostained for CHGA and NKX6-1 (A) or C-peptide and
NKX6-1 (B).
(C) Fraction of cells expressing the indicated markers (n = 4 except CHGA, which was n = 3). *p < 0.05, **p < 0.01 or n.s., not significant by
unpaired two-way t test.
(D–F) Real-time PCR measuring relative gene expression of stage 5 cells cultured with DMSO or Alk5i for pancreatic hormones (D), b cell
markers (E), or endocrine markers (F) (n = 6). *p < 0.05, **p < 0.01, ****p < 0.0001, or n.s., not significant by unpaired two-way t test.
(G) Human insulin secretion at 20 mM glucose of cells cultured in stage 5 in either DMSO or Alk5i plus an additional 7days in stage 6
without Alk5i and without cluster resizing (n = 3). **p < 0.01 by unpaired two-way t test. All data shown are from HUES8.
Data are shown as means ± SEM.
improving the quality of SC-b cells to be transplanted helps

overcome this challenge (Tomei et al., 2015). Transplanta-

tion of immature pancreatic progenitor cells are an alterna-
tive cell type that has shown promise in rodents, where

some cells undergo in vivo maturation to b-like cells after

several months (Bruin et al., 2015; Kroon et al., 2008;
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Millman et al., 2016; Rezania et al., 2012). However, the

mechanism is unknown, and how successful the process

would be in humans is not clear, especially since the effi-

ciency between rats and mice is very different (Bruin

et al., 2015). Our process for making SC-b cells is scalable,

with the cells grown and differentiated as clusters in

suspension culture. The use of clusters in suspension cul-

ture allows flexibility for many applications, such as large

animal transplantation studies or therapy (order 109 cells)

(McCall and Shapiro, 2012; Shapiro et al., 2006) or study-

ing patient cells and disease pathology (<108 cells) (Kudva

et al., 2012; Maehr et al., 2009; Millman et al., 2016; Shang

et al., 2014; Simsek et al., 2016; Teo et al., 2013).

Our strategy enhances the utility of in-vitro-differentiated

SC-b cells for drug screening due to their improved kinetics.

Proper dynamic insulin release is an important feature of

b cell metabolism that is commonly lost in diabetes

(Caumo and Luzi, 2004; Del Prato and Tiengo, 2001; Seino

et al., 2011; Zhang et al., 2001). We have established a

renewable resource of SC-b cells with dynamic insulin

release that can be used to better study the mechanism of

b cell failure in diabetes and demonstrated their response

to several secretagogues.

The culmination of numerous modifications to the pro-

tocol produced SC-b cells exhibiting dynamic glucose

response. In addition tomodulating TGF-b signaling, other

notable changes included the removal of serum, reducing

cluster size, and the lack of several additional factors (T3,

N-acetyl cysteine, Trolox, H1152, and R428) used in other

reports during the last stage. We hope that these insights

provide the basis for further innovations for differentiating

SC-b cells and improving function, especially as a recent

report indicates there may be multiple pathways to b cells

(Petersen et al., 2017). While we demonstrate reproduc-

ibility of the protocol across multiple cell lines, marker

expression and function were greatest in the HUES8 cell

line. As this protocol was initially developed for this line,

we suspect additional optimization to be beneficial when

applying this protocol to additional lines.

Even with these functional improvements over previ-

ously published SC-b cells, islets averaged higher insulin

secretion and glucose stimulation, particularly second-

phase release. These differences are more pronounced

when comparing the best human islets in this dataset,

which secreted 21 mIU/103 cells and had stimulated insulin

increase of 11, to the best stage 6 cells, which secreted

9 mIU/103 cells and had a stimulated increase of 5, in static

assays. Our stage 6 cells had reduced average insulin secre-

tion at low glucose in static assays, but elevated insulin

secretion at low glucose in perifusion assays compared

with islets on average, perhaps due to paracrine differences.

Comparisons with islets were complicated due to donor-to-

donor variation, which has been observed previously (Kay-
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ton et al., 2015; Lyon et al., 2016; Pagliuca et al., 2014). We

do note that islets in our study were typically more func-

tional than in other studies (Ghazizadeh et al., 2017;

Pagliuca et al., 2014; Rezania et al., 2014; Russ et al.,

2015; Sui et al., 2018), which we believe is important to

rigorously benchmark SC-b cells. In addition, some islet

genes remain underexpressed in our cells. Furthermore,

while the data we generated with the Pagliuca protocol

were within the range of data presented in the 2014 report,

we acknowledge that the static GSIS values were lower on

average, likely due in part to technical differences in how

the assays were performed. Another potential contributor

is batch-to-batch variability, as stated in the 2014 report,

which could be caused by the use of different lots of serum

during stage 6 and was eliminated in our protocol. Even

with these difficulties and insights, we acknowledge that

even further maturation of SC-b cells is possible, building

on this report and the original 2014 breakthroughs.

This study provides insights into the role of TGF-b

signaling in functional maturation. Prior reports are un-

clear on this topic, with some showing TGF-b inhibition

to benefit (Lin et al., 2009) and others to harm (Totsuka

et al., 1989) secretion. Inhibition has been shown to pro-

mote replication (Dhawan et al., 2016), protect against

stress-induced loss of phenotype (Blum et al., 2014; Mill-

man et al., 2016), and reduce apoptosis in a GLIS3

knockout model (Amin et al., 2018). Interestingly, we also

observed that removal of Alk5i during stage 5 does not

affect the overall percentage of cells expressing CHGA,

but influences the expression of INS, GCG, and SST, sug-

gesting a role in TGF-b signaling in endocrine subtype spec-

ification. It is important to note that we did not identify the

downstream effectors of TGF-b signaling responsible for

the reported phenotypes, and further study is warranted.
EXPERIMENTAL PROCEDURES

Culture of Undifferentiated Cells
Undifferentiated hPSC lines were cultured usingmTeSR1 in 30-mL

spinner flasks on a rotator stir plate spinning at 60 rpm in a humid-

ified 5% CO2 37�C incubator. Cells were passaged every 3–4 days

by single-cell dispersion.
Cell Line Differentiation
To initiate differentiation, undifferentiated cells were single-cell

dispersed and seeded at 6 3 105 cells/mL in a 30-mL spinner flask.

Cells were cultured for 72 hr in mTeSR1 and then cultured in the

differentiation media for 6 stages outlined in the Supplemental

Experimental Procedures, except where otherwise noted. Cells

were resized the first day of stage 6 by incubating in Gentle Cell

Dissociation Reagent and passing through a cell strainer. Assess-

ment assays were performed between 10 and 16 days of stage

6 unless otherwise stated.



Static GSIS
Clusters were incubated at 2 mM glucose for a 1 hr equilibration in

a transwell. The transwell was then drained and transferred into a

new2mMglucosewell, incubated 1 hr (first challenge), then trans-

ferred into a solution of 2, 5.6, 11.1, or 20 mM glucose (second

challenge), incubated 1 hr, and then normalized by cell count

and insulin quantified with ELISA.

Dynamic GSIS
A perifusion system was assembled as reported previously (Bentsi-

Barnes et al., 2011). Stage 6 clusters and islets were assayed with

effluent collected at a 100-mL/min flow rate every 2–4min, exposed

to the indicated secretagogues, including glucose, Extendin-4,

IBMX, tolbutamide, L-arginine, and KCl. After sample collection,

DNA and insulin were quantified.

Transplantation Studies
All animal work was performed in accordance toWashington Uni-

versity International Animal Care andUse Committee regulations.

Mice were injected with �5 3 106 stage 6 cells under the kidney

capsule (Pagliuca et al., 2014) and monitored up to 6 months by

performing glucose tolerance tests and in vivo GSIS.

Statistical Analysis
Statistical significance was calculated using GraphPad Prism using

the indicated statistical test. Slope and error in slope was calculated

with the LINEST function in Excel. Data shown as mean ± SEM

unless otherwise noted or box-and-whiskers showing minimum

to maximum point range, as indicated. n indicates the total num-

ber of independent experiments.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and seven figures and can be found with this article

online at https://doi.org/10.1016/j.stemcr.2018.12.012.
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Supplemental Figures 

  



 
 

Figure S1. Pilot data leading to our differentiation strategy and hiPSC reproduction, related to Figure 1. (A) Human insulin 

secretion of Stage 6 cells generated in CMRLS or ESFM, with or without resizing, and with or without factors (Alk5i and T3) in a 

static GSIS assay. The combinations investigated were (1) CMRLS, no resize, no factors (n=3), (2) CMRLS, yes resize, no factors 

(n=6), (3) ESFM, no resize, no factors (n=3), (4) ESFM, yes resize, no factors (n=3), (5) ESFM, yes resize, yes factors (n=3). HUES8 

cell line used. (B) Flow cytometric dot plots of Stage 6 cells generated in CMRLS or ESFM, with or without resizing, and with or 



without factors (Alk5i and T3) immunostained for C-peptide and NKX6-1. HUES8 cell line used. (C) Human insulin secretion in a 

static GSIS assay of three hiPSC lines (n=3 each). *P < 0.05, **P < 0.01, and ***P < 0.0001 by one-sided paired t-test. (D) Dynamic 

human insulin secretion of Stage 6 cells generated with two hiPSC lines in a perfusion GSIS assay. Cells are perfused with low 

glucose (2 mM) except where high glucose (20 mM) is indicated (n=3 for 1013-4FA and n=4 for 1016SeVA).  

 

 

 

  



 
Figure S2. Additional immunostaining data for Stage 6 cells, related to Figure 2. (A) Immunostaining of Stage 6 clusters single-

cell dispersed, plated overnight, and stained for the indicated markers. Stage 6 cells were generated from two hiPSC lines with the 

protocol from this paper and the HUES8 cell line with the Pagliuca protocol. Scale bar=50 μm for 1016SeVA and 1013-4FA and 25 

μm for Pagliuca protocol. (B-C) Flow cytometric dot plots of Stage 6 cells generated from two hiPSC lines with the protocol from this 

paper and the HUES8 cell line with the Pagliuca protocol stained with the indicated markers. 

 

 



Figure S3. Additional gene expression data for Stage 6 cells, related to Figure 2. Gene expression data for Stage 6 cells generated 

with our differentiation protocol from the HUES8 (n=8) and 1013-4FA (n=10) lines and human islets (n=7) measured with real-time 

PCR. The HUES8 and human islet plotted here is the same as from Figure 2.  



 

 

 

Figure S4. Additional immunostaining, serum human insulin measurements, and mouse C-peptide measurements, related to 

Figure 3. (A) Immunostaining of sectioned paraffin-embedded explanted kidneys of non-STZ-treated mice 6 months after 

transplantation for C-peptide (CP; β cell marker), PDX1 (β cell marker), glucagon (GCG; α cell marker), somatostatin (SST; δ cell 

marker), KRT19 (ductal marker), and trypsin (acinar marker). Scale bar=25 µm. (B) Serum human insulin of STZ, No Txp mice (n=6) 

and No Stz, No Txp (n=5) fasted overnight 0 and 60 min after an injection of 2 g/kg glucose. (B) Serum mouse C-peptide of STZ, No 

Txp (n=6), No STZ, No Txp (n=4), and STZ, TXP (n=5). ****P < 0.0001 and ns by one-way ANOVA Tukey multiple comparison 

test. (C) Immunostaining of sectioned paraffin-embedded explanted kidneys of STZ-treated mice 11 wk after transplantation for the 

indicated markers. Scale bar=25 µm. HUES8 cell line used.  

 

  



 
 

Figure S5. Temporal flow cytometry during Stage 6 and KCl challenge of human islets, related to Figure 4. (A) Flow cytometric 

dot plots of Stage 6 cells at early (9 d) and late (26 d) time points stained for C-peptide and NKX6-1. HUES8 cell line used. (B) 

Dynamic human insulin secretion of human islets in a perfusion GSIS assay perfused with low glucose (2 mM) except where high (20 

mM) glucose is indicated (Glu), then perfused with a second challenge of high glucose with KCl where indicated (Glu+Factor) (n=4).  

 

  



 
Figure S6. Stage 6 cells generated from hiPSC undergo GSIS that is inhibited by Alk5i, flow cytometry controls, and gene 

expression data, related to Figure 5. (A) Human insulin secretion of Stage 6 cells generated from three hiPSC lines (1013-4FA, n=4; 



1016SeVA, n=3; 1019SeVF, n=3) in static GSIS assay treated with DMSO or Alk5i. *P < 0.05, **P < 0.01 , ****P < 0.0001 by two-

way paired t-test; ##P < 0.01, ###P < 0.001, ####P < 0.0001 by two-way unpaired t-test. The control data here is the same data in 

Figure S1. (B) Flow cytometry controls for Figure 5. The C-peptide/NKX6-1 control is the same as shown in Figure 2. (C) Real-time 

PCR analysis of Stage 6 cells with or without resizing treated with Alk5i or DMSO (n=3). Data generated with the 1013-4FA cell line. 

 

  



 

Figure S7. Resized and unresized Stage 6 clusters have SMAD2/3 phosphorylation and reduced GSIS with Alk5i treatment 

and TGFBR1 #2 western blot, related to Figure 6. (A) Western blot of Stage 6 cells with and without resizing stained for 

phosphorylated SMAD 2/3 (pSMAD2/3), total SMAD 2/3 (tSMAD2/3), and Actin. Data shown is from 1013-4FA. (B) Human insulin 

secretion of Stage 6 cells in static GSIS assay resized or unresized with treatment of DMSO or Alk5i. Data shown is from 1013-4FA. 

(C) Western blot of Stage 6 cells transduced with lentiviruses containing GFP or TGFBR1 #2 shRNA. Data shown is from HUES8. 

 

 

 

 

 

  



Supplemental Experimental Procedures 

 

Culture of Undifferentiated Cells. The HUES8 hESC line, 1013-4FA (a non-diabetic hiPSC line referenced as ND-1 in Millman et 

al., 2016), 1016SeVA (a non-diabetic hiPSC line referenced as ND-2 in Millman et al. 2016), and 1019SeVF (a type 1-diabetic hiPSC 

line referenced as T1D-1 in Millman et al. 2016) have been previously published (Millman et al., 2016; Pagliuca et al., 2014) and were 

generously provided by Dr. Douglas Melton (Harvard University). Undifferentiated cells were cultured using mTeSR1 (StemCell 

Technologies; 05850) in 30-mL spinner flasks (REPROCELL; ABBWVS03A) on a rotator stir plate (Chemglass) spinning at 60 RPM 

in a humidified 5% CO2 37 °C incubator. Cells were passaged every 3-4 days by single cell dispersion using Accutase (StemCell 

Technologies; 07920), viable cells counted with Vi-Cell XR (Beckman Coulter), and seeded at 6 x 105 cells/mL in mTeSR1+ 10 μM 

Y27632 (Abcam; ab120129). 

 

Cell Line Differentiation. To initiate differentiation, undifferentiated cells were single-cell dispersed using Accutase and seeded at 6 

x 105 cells/mL in mTeSR1+ 10 μM Y27632 in a 30-ml spinner flask. Cells were then cultured for 72 hr in mTeSR1 and then cultured 

in the following differentiation media. Stage 1 (3 days): S1 media + 100 ng/ml Activin A (R&D Systems; 338-AC) + 3 μM Chir99021 

(Stemgent; 04-0004-10) for 1 day. S1 media + 100 ng/ml Activin A for 2 days. Stage 2 (3 days): S2 media + 50 ng/ml KGF 

(Peprotech; AF-100-19). Stage 3 (1 day): S3 media + 50 ng/ml KGF + 200 nM LDN193189 (Reprocell; 040074) + 500 nM PdBU 

(MilliporeSigma; 524390) + 2 μM Retinoic Acid (MilliporeSigma; R2625) + 0.25 μM Sant1 (MilliporeSigma; S4572) + 10 µM 

Y27632. Stage 4 (5 days): S4 media + 5 ng/mL Activin A + 50 ng/mL KGF + 0.1 µM Retinoic Acid + 0.25 µM SANT1 + 10 µM 

Y27632. Stage 5 (7 days): S5 media + 10 µM ALK5i II (Enzo Life Sciences; ALX-270-445-M005) + 20 ng/mL Betacellulin (R&D 

Systems; 261-CE-050) + 0.1 µM Retinoic Acid + 0.25 µM SANT1 + 1 µM T3 (Biosciences; 64245) + 1 µM XXI (MilliporeSigma; 

595790). Stage 6 (7-35 days): ESFM.  

Differentiation media formulations used were the following. S1 media: 500mL MCDB 131 (Cellgro; 15-100-CV) supplemented with 

0.22 g glucose (MilliporeSigma; G7528), 1.23 g sodium bicarbonate (MilliporeSigma; S3817), 10 g bovine serum albumin (BSA) 

(Proliant; 68700), 10 µL ITS-X (Invitrogen; 51500056), 5 mL GlutaMAX (Invitrogen; 35050079), 22 mg vitamin C (MilliporeSigma; 

A4544), and 5 mL penicillin/streptomycin (P/S) solution (Cellgro; 30-002-CI). S2 media: 500mL MCDB 131 supplemented with 0.22 

g glucose, 0.615 g sodium bicarbonate, 10 g BSA, 10 µL ITS-X, 5 mL GlutaMAX, 22 mg vitamin C, and 5 mL P/S. S3 media: 500mL 

MCDB 131 supplemented with 0.22 g glucose, 0.615 g sodium bicarbonate, 10 g BSA, 2.5 mL ITS-X, 5 mL GlutaMAX, 22 mg 

vitamin C, and 5 mL P/S. S5 media: 500mL MCDB 131 supplemented with 1.8 g glucose, 0.877 g sodium bicarbonate, 10 g BSA, 2.5 

mL ITS-X, 5 mL GlutaMAX, 22 mg vitamin C, 5 mL P/S, and 5 mg heparin (MilliporeSigma; A4544). ESFM: 500mL MCDB 131 

supplemented with 0.23 g glucose, 10.5 g BSA, 5.2 mL GlutaMAX, 5.2 mL P/S, 5 mg heparin, 5.2 mL MEM nonessential amino 

acids (Corning; 20-025-CI), 84 µg ZnSO4 (MilliporeSigma; 10883), 523 µL Trace Elements A (Corning; 25-021-CI), and 523 µL 

Trace Elements B (Corning; 25-022-CI). Cells were sometimes cultured with 0.01% DMSO. Cells were resized the first day of Stage 

6 by incubating in Gentle Cell Dissociation Reagent (StemCell Technologies; 07174) for 8 min, washed with ESFM, passed through a 

100 µm nylon cell strainer (Corning; 431752), and cultured in ESFM in 6-well plates on an Orbi-Shaker (Benchmark) set at 100 RPM. 

Assessment assays were performed between 10-16 days of stage 6 unless otherwise stated. Human islets were acquired from Prodo 

Labs for comparison. A subset of Stage 6 experiments were performed without cluster resizing, with Alk5i and T3, with Alk5i, and/or 

CMRL 1066 Supplemented (CMRLS) (Mediatech; 99-603-CV) + 10% fetal bovine serum (FBS) (HyClone; 16777) + 1% P/S rather 

than ESFM, as indicated. To perform the Pagliuca protocol, the protocol outlined in Pagliuca, Millman, Gürtler et al. 2014 was 

followed in 30-mL spinner flasks. 

 

Light Microscopy. Light Microscopy images were taken of unstained or stained with 2.5 µg/mL DTZ (MilliporeSigma; 194832) cell 

clusters using an inverted light microscope (Leica DMi1). 

 

Immunostaining. To immunostain in vitro cell clusters or ex vivo transplanted grafts within mouse kidneys, samples were fixed with 

4% paraformaldehyde (Electron Microscopy Science; 15714) overnight at 4 °C. After fixation, cell clusters were embedded in 

Histogel (Thermo Scientific; hg-4000-012). Embedded cell clusters and grafts were placed in 70% ethanol and submitted for paraffin-

embedding and sectioning to the Division of Comparative Medicine (DCM) Research Animal Diagnostic Laboratory Core at 

Washington University. Paraffin was removed using Histoclear (Thermo Scientific; C78-2-G), samples rehydrated, and antigens 

retrieved with 0.05 M EDTA (Ambion; AM9261) in a pressure cooker (Proteogenix; 2100 Retriever). Samples were blocked and 

permeabilized for 30-min with staining buffer (5% donkey serum (Jackson Immunoresearch; 017-000-121) and 0.1% Triton-X 100 

(Acros Organics; 327371000) in PBS), stained overnight with primary antibodies at 4 °C, stained for 2 hr with secondary antibodies at 

4 °C, and treated with mounting solution DAPI Fluoromount-G (SouthernBiotech; 0100-20). To immunostain plated cells, clusters 

were single-cell dispersed using TryplE Express (Fisher, 12604039), plated down onto Matrigel (Fisher, 356230)-coated plates, 

cultured in ESFM for 16 hr, and fixed for 30 min with 4% paraformaldehyde at RT. Fixed cells were blocked and permeabilized with 

staining buffer for 45 min at RT, stained overnight with primary antibodies at 4 °C, stained for 2 hr with secondary antibodies at RT, 

and stained with DAPI for 5 min. Imaging was performed on a Nikon A1Rsi confocal microscope or Leica 

DMI4000 fluorescence microscope. 

 

Primary antibody solutions were made in staining buffer with the following antibodies at 1:300 dilution unless otherwise noted: rat-

anti-C-peptide (DSHB; GN-ID4-S), 1:100 mouse-anti-nkx6.1 (DSHB, F55A12-S), mouse-anti-glucagon (ABCAM; ab82270), goat-

anti-pdx1 (R&D Systems; AF2419), rabbit-anti-somatostatin (ABCAM; ab64053), mouse-anti-pax6 (BDBiosciences;561462), rabbit-

anti-chromogranin a (ABCAM; ab15160), goat-anti-neurod1 (R&D Systems; AF2746), mouse-anti -Islet1 (DSHB, 40.2d6-s), 1:100 



mouse-anti-cytokeratin 19 (Dako; MO888), undiluted rabbit-anti-glucagon (Cell Marque; 259A-18), 1:100 sheep-anti-trypsin (R&D 

Systems; AF3586). Secondary antibody solutions were made in staining buffer with the following antibodies at 1:300 dilution: anti-

rat-alexa fluor 488 (Invitrogen; a21208), anti-mouse-alexa fluor 594 (Invitrogen; a21203), anti-rabbit-alexa fluor 594 (Invitrogen; 

a21207), anti-goat-alexa fluor 594 (Invitrogen; a11058).  

 

Static GSIS. Assays were performed by collecting ~20-30 stage 6 clusters or cadaveric human islets, washed twice with KRB buffer 

(128 mM NaCl, 5 mM KCl, 2.7 mM CaCl2 1.2 mM MgSO4, 1 mM Na2HPO4, 1.2 mM KH2PO4, 5 mM NaHCO3, 10 mM HEPES 

(Gibco; 15630-080), and 0.1% BSA), resuspended in 2 mM glucose KRB, and placed into transwells (Corning; 431752) in 24-well 

plates. Clusters were incubated at 2 mM glucose KRB for a 1 hr equilibration. The transwell was then drained and transferred into a 

new 2 mM glucose KRB well, discarding the old KRB solution. Clusters were again incubated for 1 hr at low glucose and then the 

transwell is drained and transferred into a new 2, 5.6, 11.1, or 20 mM glucose KRB well, retaining the old 2 mM glucose KRB. 

Clusters were then incubated for 1 hr at high glucose and then the transwell was drained and the old glucose KRB was retained. The 

retained KRB was run with the Human Insulin Elisa (ALPCO; 80-INSHU-E10.1) to quantify insulin secretion. The cells were single-

cell dispersed by TrypLE treatment, counted on a Vi-Cell XR, and viable cell counts used to normalize insulin secretion.  

 

Dynamic Glucose-Stimulated Insulin Secretion. A perifusion system was assembled as has been previously reported (Bentsi-Barnes 

et al., 2011). Our system used a high precision 8-channel dispenser pump (ISMATEC; ISM931C) in conjunction with 0.015” inlet and 

outlet two-stop tubing (ISMATEC; 070602-04i-ND) connected to 275-µl cell chamber (BioRep; Peri-Chamber) and dispensing nozzle 

(BioRep; PERI-NOZZLE) using 0.04” connection tubbing (BioRep; Peri-TUB-040). Solutions, tubing, and cells were maintained at 

37 °C in a water bath. Stage 6 clusters and cadaveric human islets were washed with KRB twice and resuspended in 2 mM glucose 

KRB. Cells were then loaded onto a Biorep perifusion chamber sandwiched between two layers of Bio-Gel P-4 polyacrylamide beads 

(Bio-Rad; 150-4124). Cells were perfused with 2 mM glucose KRB for 90 min prior to sample collection for equilibration. For single 

high glucose challenges, sample collection was started with cells exposed to 2 mM glucose KRB for 12 min, followed by 24 min of 20 

mM glucose KRB, and back to 2 mM glucose KRB for an additional 12 min. For multiple secretagogue challenges, sample collection 

was started with cells exposed to 2 mM glucose KRB for 6 min, followed by 12 min of 20 mM glucose KRB, 6 min 2 mM glucose 

KRB, 12 min of 20 mM glucose KRB plus treatment, and finally 6 min of 2 mM glucose KRB. Treatments with multiple 

secretagogues were as follows: 20 mM glucose only, 10 nM Extendin-4 (MilliporeSigma; E7144), 100 µM IBMX (MilliporeSigma; 

I5879), 300 µM Tolbutamide (MilliporeSigma; T0891), 20 mM L-Arginine (MilliporeSigma; A5006), and 30 mM KCL (Thermo 

Fisher; BP366500). Effluent was collected at a 100 µl/min flow rate with 2-4 min collection points. After sample collection, clusters 

were collected and lysed in 10 mM Tris (MilliporeSigma; T6066), 1 mM EDTA, and 0.2% Triton-X 100 solution and DNA was 

quantified using Quant-iT Picogreen dsDNA assay kit (Invitrogen; P7589). Insulin secretion was quantified using the Human Insulin 

Elisa kit. 

 

Flow Cytometry. Clusters were single-cell dispersed with TrypLE, fixed with 4% paraformaldehyde for 30 min at 4 °C, blocked and 

permeabilized with staining buffer for 30 min at 4 °C, incubated with primary antibodies in staining buffer overnight at 4 °C, 

incubated with secondary antibodies in staining buffer for 2 hr at 4 °C, resuspended in staining buffer, and analyzed on an LSRII (BD 

Biosciences) or X-20 (BD Biosciences). Dot plots and percentages were generated using FlowJo. All antibodies were used at 1:300 

dilution except where noted. The antibodies used were: rat-anti-C-peptide (DSHB; GN-ID4-S), mouse-anti -nkx6.1 (1:100; DSHB, 

F55A12-S), mouse-anti -glucagon (ABCAM; ab82270), rabbit-anti-somatostatin (ABCAM; ab64053), rabbit-anti-chromogranin A 

(1:1000; ABCAM; ab15160), goat-anti-pdx1(R&D Systems; AF2419), anti-rat-alexa fluor 488 (Invitrogen; a21208), anti-mouse-alexa 

fluor 647 (Invitrogen; a31571), anti-rabbit-alexa fluor 647 (Invitrogen; a31573), anti-goat-alexa fluor 647 (Invitrogen; a21447), anti-

rabbit-alexa fluor 488 (Invitrogen; a21206). 

 

Real-Time PCR. RNA was extracted using the RNeasy Mini Kit (Qiagen; 74016) with DNase treatment (Qiagen; 79254), and cDNA 

was synthesized using High Capacity cDNA Reverse Transcriptase Kit (Applied Biosystems; 4368814). Real-time PCR reactions 

were performed in PowerUp SYBR Green Master Mix (Applied Biosystems; A25741) on a StepOnePlus (Applied Biosystems) and 

analyzed using ∆∆Ct methodology. TBP was used as a normalization gene. Primer sequences used were (gene, forward primer, 

reverse primer): INS, CAATGCCACGCTTCTGC, TTCTACACACCCAAGACCCG; PDX1,CGTCCGCTTGTTCTCCTC, 

CCTTTCCCATGGATGAAGTC; GCG, AGCTGCCTTGTACCAGCATT, TGCTCTCTCTTCACCTGCTCT; SST, 

TGGGTTCAGACAGCAGCTC, CCCAGACTCCGTCAGTTTCT; TBP, GCCATAAGGCATCATTGGAC, 

AACAACAGCCTGCCACCTTA; NKX6-1, CCGAGTCCTGCTTCTTCTTG, ATTCGTTGGGGATGACAGAG; CHGA, 

TGACCTCAACGATGCATTTC, CTGTCCTGGCTCTTCTGCTC; NEUROD1, ATGCCCGGAACTTTTTCTTT, 

CATAGAGAACGTGGCAGCAA; NGN3, CTTCGTCTTCCGAGGCTCT, CTATTCTTTTGCGCCGGTAG; NKX2-2, 

GGAGCTTGAGTCCTGAGGG, TCTACGACAGCAGCGACAAC; TGFBR1, CGACGGCGTTACAGTGTTTCT, 

CCCATCTGTCACACAAGTAAA; GUSB, CGTCCCACCTAGAATCTGCT, TTGCTCACAAAGGTCACAGG; UCN3, 

GGAGGGAAGTCCACTCTCG, TGTAGAACTTGTGGGGGAGG; MAFA, GAGAGCGAGAAGTGCCAACT, 

TTCTCCTTGTACAGGTCCCG; GCK, ATGCTGGACGACAGAGCC, CCTTCTTCAGGTCCTCCTCC; MAFB, 

CATAGAGAACGTGGCAGCAA, ATGCCCGGAACTTTTTCTTT; LDHA, GGCCTGTGCCATCAGTATCT, 

GGAGATCCATCATCTCTCCC; GLUT1, ATGGAGCCCAGCAGCAA, GGCATTGATGACTCCAGTGTT; SLC16A1, 

CACTTAAAATGCCACCAGCA, AGAGAAGCCGATGGAAATGA 

 



Transplantation Studies. All animal work was performed in accordance to Washington University International Animal Care and 

Use Committee regulations. Mice were randomly assigned to transplantation or no transplantation groups, mouse number was chosen 

to be sufficient to allow for statistical significance based on prior studies (Millman et al., 2016; Pagliuca et al., 2014; Song and 

Millman, 2016). All procedures were performed by unblinded individuals. Two mouse cohorts were used in this study. The first 

consisted of non-STZ treated SCID/Beige male mice 50-56 days of age purchased from Charles River. The second consisted of STZ-

treated and control-treated NOD/SCID male mice 6 weeks of age purchased from Jackson Laboratories. Mice were anaesthetized with 

isoflurane and injected with ~5x106 Stage 6 cells or saline (no transplant control) under the kidney capsule, similar to as previously 

reported (Millman et al., 2016; Pagliuca et al., 2014). Mice were monitored up to 6 months after transplantation by performing 

glucose-tolerance tests and in vivo GSIS. Mice were fasted 16 hr and then injected with 2 g/kg of glucose. Blood was collected via tail 

bleed. Blood glucose levels were measured with a handheld glucometer (Contour Blood Glucose Monitoring System Model 9545C; 

Bayer). Human insulin was determined by collecting blood and separating serum in microvettes (Sarstedt; 16.443.100) and 

quantifying using the Human Ultrasensitive Insulin ELISA (ALPCO Diagnostics; 80-ENSHUU-E01.1). Serum mouse C-peptide 

concentration was determined by collecting blood from fed mice, separating serum in microvettes, and quantifying using a Mouse C-

peptide ELISA (ALPCO Diagnostics; 80-CPTMS-E01). 

 

Insulin and Proinsulin Content. Stage 6 clusters were washed thoroughly with PBS, immersed in a solution of 1.5% HCl and 70% 

ethanol, kept at -20 °C for 24 hr, retrieved and vortexed vigorously, returned and kept at -20 °C for an additional 24 hr, retrieved and 

vortexed vigorously, and centrifuged at 2100 RCF for 15 min. The supernatant was collected and neutralized with an equal volume of 

1 M TRIS (pH 7.5). Human insulin and pro-insulin content were quantified using Human Insulin Elisa and Proinsulin Elisa 

(Mercodia; 10-1118-01) respectively. Samples were normalized to viable cell counts made using the Vi-Cell XR.  

 

Western Blot. Protein was extracted from cell clusters after washing with PBS by placing in western blot lysis buffer consisting 50 

mM HEPES, 140 mM NaCl (MilliporeSigma; 7647-14-5), 1 mM EDTA (MilliporeSigna; 1233508), 1% Triton X-100, 0.1% Na-

deoxycholate (MilliporeSigma: D6750), 0.1% SDS (ThermoScientific; 24730020), 1mM Na3VO4 (MilliporeSigma; 450243), 10 mM 

NaF (MilliporeSigma; S7920), and 1% Protease Inhibitor Cocktail (MilliporeSigma; p8340), incubating on a shaker for 15 min at 4 

°C, and centrifuging at 10000 RCF for 10 min at 4 °C. Protein amount was quantified with the Pierce BCA Protein Assay (Thermo 

Scientific; 23228). Protein (30 µg) was loaded onto a 4-20% gradient polyacrylamide gel (Invitrogen; SP04200BOX), resolved by 

electrophoresis, and transferred onto a 0.45 µm nitrocellulose membrane (BioRad; 1620115). The nitrocellulose membrane was 

blocked with Blotting Grade Blocker (BioRad; 170-6404) and incubated with rabbit-anti-phospho-SMAD2/3 1:1000 (Cell Signaling 

Technologies; 8828) and rabbit-anti-Actin 1:1000 (Santa Cruz Biotechnology; SC1616) antibodies in blocker overnight at 4 °C. 

Membrane was washed and stained with rabbit secondary antibody 1:2500 (Jackson Immuno Research Laboratories; 211-032-171) in 

blocker for 2 hr at 4 °C and developed using SuperSignal West Femto (Thermo Scientific; 34096). Images were taken on an Odyssey 

FC (Li-COR). After imaging, the nitrocellulose membrane was stripped using Restore Western Blot Stripping Buffer (Thermo 

Scientific; 21059), incubated withrabbit-anti-SMAD2/3 (Cell Signaling Technologies; 8685) antibody overnight at 4 °C, washed and 

stained with rabbit secondary antibody 1:2500 in blocker for 2 hr at RT, developed using SuperSignal West Femto, and imaged using 

the Odyssey FC. 

 

Lentivirus. pLKO.1 TRC plasmids containing shRNA sequences were received from the RNAi Core at the Washington University 

containing the following sequences: shRNA GFP, GCGCGATCACATGGTCCTGCT; shRNA TGFBR1 #1, 

GATCATGATTACTGTCGATAA; shRNA TGFBR1 #2, GCAGGATTCTTTAGGCTTTAT. Lentivirus particles were generated and 

tittered by the Hope Center Viral Vectors Core at Washington University using pMD-Lgp/RRE and pCMV-G, and RSV-REV 

packaging plasmids to contain shRNA. Stage 6 Day 1 cells were single cell dispersed using TrypLE, and 3 million cells were seeded 

in 4 mL ESFM lentivirus particles at MOI 3-5 on the shaker. Transduced cells were washed with fresh ESFM 16 hr post transduction. 

RNA extraction and static GSIS was performed on stage 6 day 13.  
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