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S1. MORE DETAILS ON THE METHODOLODY OF KNOCKOFFS

In § 2·2, we have briefly summarized the knockoff methodology of Candès et al. (2018), which we now
outline with further details. Since we have already precisely stated the variable selection problem in § 2·1 and
defined the concept of knockoff copies in § 2·2, we now assume that X̃ has been created, and describe how
the knockoff methodology proceeds to select relevant variables with provable control of the false discovery 10

rate. As mentioned in § 2·2, the first step is to compute measures of variable importance.

Many options are available for computing the vectors of feature importance statistics T and T̃ . For j =
1, . . . , p, we require Tj and T̃j to be functions of X, X̃ and Y that measure the importance of Xj and X̃j ,
respectively, while treating the original variables and the knockoff copies fairly. That is, if we were to swap 15

any subset S ⊆ {1, . . . , p} of the original variables with their knockoff copies, this operation should have the
only effect of swapping the corresponding elements of T with T̃ . Intuitively, this prevents one from cheating
by discriminating variables based on whether they are originals or knockoff copies. An example of valid
measures of variable importance is

Tj = β̂j

(
[X, X̃], Y ;λcv

)
, T̃j = β̂j+p

(
(X, X̃), Y ;λcv

)
, 20

where term on the left indicates the lasso coefficient for the jth variable obtained by regressing Y on the 2p
variables in (X, X̃), with regularization parameter λcv tuned by cross-validation, while the term on the right is
the corresponding quantity for the jth knockoff copy. However, this is just a simple example from a multitude
of potentially more powerful alternatives. For instance, one could train a random forest and compute Tj and
T̃j from the gini impurity for the corresponding variables, or develop some other custom statistic specifically 25

tailored for the problem at hand.

The estimated importance measures of the original variables are then compared to those of their correspond-
ing knockoff copies by computing statisticsWj = wj(Tj , T̃j), for some anti-symmetric function wj , such that
wj(Tj , T̃j) = −wj(T̃j , Tj). A typical choice is Wj = |Tj | − |T̃j |. Properties (1) and (2) from § 2·2 can then 30

be shown to imply that the Wj for all null variables satisfy the property below.

LEMMA S1 (LEMMA 3·3 IN CANDÈS ET AL. (2018)). Conditional on (|W1|, . . . , |Wp|), the signs of the
null Wj’s, for j ∈ H0, are independent and identically distributed coin flips.

Lemma S1 suggests that the elements ofW can be ordered by magnitude and their signs will still effectively
be one-bit p-values for the null hypothesis of the corresponding original variable being null. In practice, this 35

means that we can apply the knockoff filter of Barber & Candès (2015) to compute an adaptive significance
threshold and select a subset of variables Ŝ ⊆ {1, . . . , p} such that for each j ∈ Ŝ, Wj is positive and large.
The following result from Candès et al. (2018) establishes that this controls the false discovery rate.

THEOREM S1 (THEOREM 3·4 IN CANDÈS ET AL. (2018)). For some α ∈ (0, 1) and c ∈ {0, 1}, let the
threshold τ > 0 of the knockoff filter be defined as 40

τ = min

{
t > 0 :

#{j : Wj ≤ −t}+ c

#{j : Wj ≥ t}
≤ α

}
,

C© 2016 Biometrika Trust
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and τ = +∞ if the set is empty. Then the procedure selecting the variables

Ŝ = {j : Wj > τ}

controls at level α the false discovery rate:

E

(
|Ŝ ∩H0|
|Ŝ| ∨ 1

)
≤ α,45

if the offset constant c = 1, and the modified false discovery rate:

E

(
|Ŝ ∩H0|
|Ŝ|+ 1/α

)
≤ α,

if the offset constant c = 0.

The results of Theorem S1 are non-asymptotic and hold no matter the dependence between the response
and the covariates: the only assumption is that the knockoff copies are constructed for the true population50

distribution FX of the covariates.

S2. KNOCKOFFS FOR DISCRETE MARKOV CHAINS

Proof of Proposition 2. By Proposition 1, it suffices to show that Algorithm 1samples X̃j from the condi-
tional distribution of Xj given the other original variables X−j and all the knockoff copies X̃1:(j−1) that have
already been sampled: X̃j ∼ p(Xj |X−j , X̃1:(j−1)), for all j = 1, . . . , p.55

We proceed by induction, assuming the induction hypothesis that, for some fixed j ∈ {1, . . . , p− 1}, Al-
gorithm 1samples all knockoff copies X̃i, for i ≤ j, from p(Xi|X−i, X̃1:(i−1)), respectively. The main step is
to show that X̃j+1 is sampled from p(Xj+1|X−(j+1), X̃1:j).

Let us defineQp(k | l) = 1 for all k, l ∈ {1, . . . ,K}. From the basic properties of conditional probabilities,

P
(
Xj+1 = x̃j+1 | X−(j+1) = x−(j+1), X̃1:j = x̃1:j

)
60

∝ P
(
Xj+1 = x̃j+1, X−(j+1) = x−(j+1), X̃1:j = x̃1:j

)
∝ P

(
Xj+1 = x̃j+1, X−(j+1) = x−(j+1), X̃1:(j−1) = x̃1:(j−1)

)
× P

(
X̃j = x̃j | Xj+1 = x̃j+1, X−(j+1) = x−(j+1), X̃1:(j−1) = x̃1:(j−1)

)
∝ P

(
Xj+1 = x̃j+1, X−(j+1) = x−(j+1)

)
P
(
X̃1:(j−1) = x̃1:(j−1) | Xj+1 = x̃j+1, X−(j+1) = x−(j+1)

)
× P

(
X̃j = x̃j | Xj+1 = x̃j+1, X−(j+1) = x−(j+1), X̃1:(j−1) = x̃1:(j−1)

)
.65

Since we are only interested in the dependence on x̃j+1, the first term above can be simplified as:

P
(
Xj+1 = x̃j+1, X−(j+1) = x−(j+1)

)
∝ Qj+1(x̃j+1 | xj)Qj+2(xj+2 | x̃j+1).

From the induction hypothesis it follows that the second term is constant with respect to x̃j+1. This is the
case because, according to (4), the distribution of X̃i only depends on Xi−1, Xi+1 and X̃i−1, for all i ≤ j.
Therefore, the conditional distribution of all X̃1:(j−1) only depends on X1:j .70

At this point, we can focus on the third term:

P
(
X̃j = x̃j | Xj+1 = x̃j+1, X−(j+1) = x−(j+1), X̃1:(j−1) = x̃1:(j−1)

)
=
Qj(x̃j | xj−1)Qj(x̃j | x̃j−1)Qj+1(x̃j+1 | x̃j)

Nj−1(x̃j)Nj(x̃j+1)
∝ Qj+1(x̃j+1 | x̃j)

Nj(x̃j+1)
.
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The equality above follows from the fact that Algorithm 1samples X̃j conditionally independent of Xj , as
clearly visible in (4). Thus we can conclude that 75

P
(
Xj+1 = x̃j+1 | X−(j+1) = x−(j+1), X̃1:j = x̃1:j

)
∝ Qj+1(x̃j+1 | xj)Qj+2(xj+2 | x̃j+1)

Qj+1(x̃j+1 | x̃j)
Nj(x̃j+1)

.

This proves that the induction hypothesis also holds for j + 1. The special case j = 1 remains to be considered.
However, this is straightforward since Algorithm 1samples X̃1, independently of X1, from

P
(
X1 = x̃1 | X−1 = x−1

)
= P

(
X1 = x̃1 | X2 = x2

)
∝ P

(
X1 = x̃1, X2 = x2

)
= q1(x̃1)Q2(x2 | x̃1).

S3. SAMPLING LATENT PATHS FOR A HIDDEN MARKOV MODEL 80

Algorithm 2for generating a knockoff copy of a hidden Markov model requires sampling from the
conditional distribution of the latent variables Z, given all the observable variables X . This task is closely
related to that of finding the most likely a-posteriori sequence of hidden states, i.e. the Viterbi path, and it can
be solved efficiently with forward-backward sampling as in Algorithm 3. Earlier examples of this technique
are found in Zhu et al. (1998), in the context of biological sequence alignment. A similar method is also 85

described in Cawley & Pachter (2003), where instead of proceeding as we suggest, they first compute a
collection of backward probabilities and then sample Z with a forward pass. For completeness, we prove here
the correctness of Algorithm 3.

Proof of Proposition 3. For each variable j ∈ {1, . . . , p}, we define the forward probability 90

αj(k) = P
(
x1:j , Zj = k

)
,

which is the probability of observing the features X1:j = x1:j up to time j and ending up in the hidden state
k. Note that for j = 1 this is simply

α1(k) = q1(k) f1(x1 | k),

where q1(k) is the marginal distribution of Z1. The other forward probabilities can be computed recursively 95

as follows:

αj+1(k) = P
(
x1:(j+1), Zj+1 = k

)
=
∑
l

P
(
xj+1, Zj+1 = k | Zj = l, x1:j

)
αj(l)

=
∑
l

P
(
xj+1 | Zj+1 = k

)
P
(
Zj+1 = k | Zj = l

)
αj(l)

= fj+1(xj+1 | k)
∑
l

Qj+1(k | l)αj(l).

These equations can be written more compactly in matrix notation: 100

αj = (Qjαj−1)� βj , βj(k) = fj(xj | k),

where � indicates component-wise multiplication.

Having computed the forward probabilities in the forward pass, we can now sample from p(Z | X), starting
from Zp and back-tracking along the sequence all the way to Z1. Our approach arises naturally from:

P
(
Z1:p = z1:p | x1:p

)
= P

(
Z1:(p−1) = z1:(p−1) | Zp = zp, x1:p

)
P
(
Zp = zp | x1:p

)
. 105
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This identity suggests that one should start by sampling zp from the discrete distribution

P
(
Zp = zp | x1:p

)
=

αp(zp)∑
k αp(k)

.

Once zp is chosen, we can think of it as a fixed parameter and turn on to sampling the random variable Zp−1.
To this end, note that

P
(
Z1:(p−1) = z1:(p−1) | zp, x1:p

)
= P

(
Z1:(p−1) = z1:(p−1) | zp, x1:p−1

)
110

= P
(
Z1:(p−2) = z1:(p−2) | Zp−1 = zp−1, x1:p

)
P
(
Zp−1 = zp−1 | zp, x1:(p−1)

)︸ ︷︷ ︸
∝Qp(zp|zp−1)αp−1(zp−1)

.

Hence, we sample zp−1 from

P
(
Zp−1 = zp−1 | zp, x1:(p−1)

)
=
Qp(zp | zp−1)αp−1(zp−1)∑

kQp(zp | k)αp−1(k)
.

We continue in this fashion and, at step p− j + 1, we sample zj from

P
(
Zj = zj | zj+1, x1:j

)
=

Qj+1(zj+1 | zj)αj(zj)∑
kQj+1(zj+1 | k)αj(k)

.115

This completes the proof.

To summarize, in the first phase of Algorithm 3the forward variables are computed with the forward pass.
Then, sampling is done with a backward pass. This process allows one to sample a complete path of latent
variables from their conditional law given the corresponding emitted variables X . Since this algorithm only
involves matrix multiplications and other trivial operations, its computation time is O(pK2), where K is the120

size of the state space of the latent Markov chain. This complexity is the same as that of Algorithm 1for
generating knockoff copies of a Markov chain.

S4. ADDITIONAL DETAILS FOR THE NUMERICAL SIMULATION WITH REAL GENETIC COVARIATES

The setup for our numerical simulation with real genetic covariates follows the footsteps of Candès et al.
(2018), but we repeat the details here for completeness.125

As covariates, we use 29,258 polymorphisms on chromosome one, from 14,708 individuals genotyped by
the Wellcome Trust Case Control Consortium (WTCCC, 2007). These were obtained by combining the genetic
information from the healthy subjects and the Crohn’s disease patients with that from 5 other diseases from the
same data set: coronary artery disease, hypertension, rheumatoid arthritis, type-1 diabetes and type-2 diabetes.130

Conditional on X = (X1, . . . , Xp), the response Y is sampled from a binomial generalized linear model with
a logit link function. The coefficient vector β has 60 non-zero elements, chosen uniformly at random, which
correspond to the set S of relevant features. The signs the non-zero coefficients in β are independent coin
flips. In summary,

Y | X ∼ Bernoulli
(
logit

(
XTβ

))
, where βj =

{
a sj√
n
, j ∈ S,

0, otherwise.
135

Above, the signal amplitude a is a parameter that we can vary in the simulations, while sj indicates the sign
of βj . The signs are chosen independently such that sj = +1 with probability 0·5 and sj = −1 otherwise.
Furthermore, since variables corresponding to different polymorphisms have very different marginal distri-
butions, we standardize the covariates X so that they have mean 0 and variance 1, before sampling from the
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conditional logistic model described above. This allows us to reduce the variability of our experiments due to 140

the random choice of the model.

Once the response vector Y is sampled, we prune the variables to remove extremely high correlations, as
motivated in §S7·2. First, we hold out a random subset of 1000 observations. Then, we split the remaining
samples, i.e. the rows of X , into 10 subsets with approximately 1400 observations each. For each subset, we 145

separately apply hierarchical clustering of the empirical covariance matrix, as described in § S7·2, and use
the common 1000 hold-out observations for choosing the cluster representatives, instead of further splitting
the data. This somewhat involved procedure, inspired by Candès et al. (2018), allows us to obtain 10 datasets
with real covariates and a simulated response, such that in each of them the number of samples is comparable
to the data analysis in § 7. 150

Once pruning is performed, for each of the 10 splits we separately fit the model of § 5 with fastPHASE,
sample the knockoff copies and perform variable selection with our procedure on each of the 10 data subsets,
as described in § 6. As mentioned in §S7·2, the observations used for selecting the cluster representatives can
be partially re-used to fit FX and compute the feature importance measures each time, making sure that their 155

corresponding knockoff copies are set identical to the originals in order to avoid any selection bias. Since at
this point we only have 10 point estimates for the power and the false discovery rate, we repeat the entire
procedure 10 times, starting from the choice of the logistic model and re-sampling the response Y . Thus,
in the end we obtain 100 point estimates in the unconditional model, with 10 random samples of X and 10
samples of Y | X for each one of them. 160

S5. NUMERICAL SIMULATION WITH MARKOV CHAINS

S5·1. A toy model
We consider a vector X of p = 1000 covariates distributed as a discrete Markov chain taking values in

a state space X = {−2,−1, 0,+1,+2} of size K = |X | = 5. In the notation of (3), this can be written as
X ∼ MC(q1, Q), with an initial distribution q1 assumed to be uniform on X . For each j ∈ {1, . . . , p− 1}, we 165

set:

Qj(k | l) =

{
1
K + γj

(
1− 1

K

)
, k = l,[

1− 1
K − γj

(
1− 1

K

)]
1

K−1 , k =| l,

where the hyper-parameters γj are once randomly sampled γj independently from the uniform distribution on
[0, 0·5] and then held constant.
Conditional on X = (X1, . . . , Xp), the response Y is sampled from a binomial generalized linear model with 170

a logit link function. The coefficient vector β has 60 non-zero elements, which correspond to the set S of
relevant features. In summary,

Y | X ∼ Bernoulli
(
logit

(
XTβ

))
, where βj =

{
a√
n
, j ∈ S,

0, otherwise.

Above, the signal amplitude a is a parameter that we can vary in the simulations.

S5·2. Effect of signal amplitude 175

We draw 1000 independent observations of (X,Y ) from the model described above. For different values of
the signal amplitude a, we apply the knockoff construction procedure for Markov chains, using the true model
parameters (q1, Q). It is interesting to note that, since p = n, the observations are perfectly separable, i.e. there
exists a hyperplane in the feature space that perfectly separates the two classes of Y , and the maximum
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Fig. S1: Power (a) and false discovery proportion (b) of our procedure in a simulation with n = 1000 and
p = 1000, over 100 independent experiments. Variables are distributed as a discrete Markov chain. The knock-
off copies are constructed using the true model parameters. The response Y | X is sampled from a logistic
regression model. The dashed black line in (b) indicates the target level α = 0·1.

likelihood estimate of β, therefore, does not exist. This is the reason why it is useful to leverage some sparsity180

in order to identify the relevant variables. As variable importance measures, we compute Wj = |β̂j(λcv)| −
|β̂j+p(λcv)|, where β̂j(λcv) and β̂j+p(λcv) are the logistic regression coefficients for the jth variable and its
knockoff copy, respectively, regularized with an `1-norm penalty chosen by 10-fold cross-validation. Finally,
we estimate the set of relevant variables using the knockoff filter with offset c = 1 and target level α = 0·1.
The results shown in Figure S1 and Table S1 correspond to 100 independent replications of this experiment.185

Empirically, our method is confirmed to control the false discovery rate for all values of the signal amplitude.
As it should be expected, the actual false discovery proportion is not always below the target value, but is quite
concentrated around its mean.

S5·3. Robustness to overfitting
In the previous example, we generated the knockoff variables using the real distribution of X . However,190

in most practical applications this is not known exactly and it must be estimated from the available data.
In a more realistic situation one may have some prior knowledge that a Markov chain is a good model
for the covariates, but ignore the exact form of the transition matrices. Therefore, we repeat the previous
experiment, generating instead the knockoff copies X̃ from the fitted values of the Markov chain parameters.
The estimates (q̂1, Q̂) are obtained by maximum-likelihood with Laplace smoothing on all the available195

observations of X . This is a well-known technique that can be used to improve the estimation of the transition
matrices. In order to avoid estimating any transition probabilities as zero, we simply add one to all transition
counts. The results shown in Figure S2 and Table S1 are very similar to those of Figure S1. This shows that
the false discovery rate is still controlled, and it also suggests that our procedure is robust to fitting the feature
distribution.200
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Fig. S2: Power (a) and false discovery proportion (b) of our procedure with simulated Markov chain covariates,
with knockoffs sampled using estimates of the transition matrices obtained from the same dataset. The setup
is otherwise the same as that in Figure S1.

Signal True FX Estimated FX
amplitude FDR (95% c.i.) Power (95% c.i.) FDR (95% c.i.) Power (95% c.i.)

4 0·050 ± 0·020 0·051 ± 0·018 0·054 ± 0·020 0·064 ± 0·020
5 0·057 ± 0·017 0·154 ± 0·031 0·062 ± 0·019 0·155 ± 0·031
6 0·083 ± 0·014 0·329 ± 0·034 0·078 ± 0·015 0·312 ± 0·035
7 0·084 ± 0·014 0·446 ± 0·031 0·091 ± 0·015 0·449 ± 0·031
8 0·086 ± 0·012 0·566 ± 0·025 0·089 ± 0·013 0·560 ± 0·029
9 0·092 ± 0·013 0·658 ± 0·024 0·088 ± 0·013 0·653 ± 0·023
10 0·093 ± 0·011 0·730 ± 0·020 0·096 ± 0·011 0·741 ± 0·017
15 0·096 ± 0·011 0·874 ± 0·016 0·092 ± 0·012 0·878 ± 0·014
20 0·094 ± 0·011 0·930 ± 0·009 0·098 ± 0·011 0·933 ± 0·009

Table S1: False discovery rate and average power in the numerical experiments of Figure S1 and S2. We com-
pare the results obtained with knockoff variables created using the exact (left) and estimated (right) Markov
chain model parameters.

Alternatively, if additional unsupervised samples are available, one can use them to improve the estimation
of the covariate distribution. We illustrate this idea by generating unlabeled datasets of varying size nu, from
the same population. In principle, one could use both the supervised and the unsupervised observations of
X to estimate the parameters of FX . However, we choose to fit the parameters only on the latter, in order to 205

better observe the effect of overfitting. For a range of values of nu, we compute (q̂1, Q̂) and proceed as in the
previous examples, repeating the experiment 100 times. The results are shown in Figure S3. We observe that
our procedure is robust to overfitting. Even in the extreme cases in which nu is very small, i.e. nu ≤ 50, the
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Fig. S3: Power (a) and false discovery proportion (b) of our procedure with simulated Markov chain covariates.
Knockoffs are sampled using estimates of the transition matrices obtained from an independent dataset of nu
unsupervised observations of X , for different values of nu. The signal amplitude is a = 10. The setup is
otherwise the same as that in Figure S1.

empirical false discovery rate is below the nominal value, while for larger values of nu the validity of the false
discovery rate control is clear.210

S6. NUMERICAL SIMULATION WITH HIDDEN MARKOV MODELS

S6·1. A toy model
We consider a vector X of 1000 covariates distributed as the hidden Markov model defined below. The

parametrization that we adopt is loosely inspired by the left-right models used for speech recognition (Juang
& Rabiner, 1991), but we do not aim to realistically simulate any specific application. Instead, we prefer to215

keep the model extremely simple for the sake of exposition. Here, the latent Markov chain Z ∼ MC(q1, Q)
takes on values in {0, 1, . . . ,K − 1}p and its states evolve clockwise according to

q1(k) =

{
1, k = 1,

0, otherwise,
Qj(k | l) =


0·9, k = l,

0·1, k = l + 1 mod K,

0, otherwise,
j ∈ {2, . . . , p},

for k, l ∈ {0, 1, . . . ,K − 1}. Concretely, we let K = 9 and we assume for simplicity that all observed vari-
ables Xj take on values in a set X = {−4,−3, . . . ,+3,+4}, also of size K. The emission probabilities220

fj(x | z) are defined, for some γ ∈ (0, 1), as

fj(x | z) =


γ
2 , (x+ 4) = z or (x+ 4) = z + 1,
γ
2 , (x+ 4) = 0 and z = K − 1,
1−γ
K−2 , otherwise.
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Fig. S4: Power (a) and false discovery proportion (b) of our procedure in a simulation with n = 1000 and
p = 1000, over 100 independent experiments. Variables are distributed as a discrete hidden Markov model.
The knockoff copies are constructed using the true model parameters. The response Y | X is sampled from a
logistic regression model. The dashed black line in (b) indicates the target level α = 0·1.

In this example, we set γ = 0·35 because we have observed empirically that it yields an interesting structure
with moderately strong correlations.

225

Conditional on X = (X1, . . . , Xp), the response Y is sampled from the same binomial generalized linear
model of §S5. Again, we vary the signal amplitude in the simulations.

S6·2. Effect of signal amplitude
We simulate 1000 independent observations of (X,Y ) from the model described above. For different values

of the signal amplitude a, we apply our method to construct knockoff copies of the hidden Markov model, 230

using the exact model parameters. We select relevant variables after computing the same importance measures
as in §S5, and applying the knockoff filter with offset c = 1 and target level α = 0·1. The power and false
discovery proportion shown in Figure S4 and Table S2 correspond to 100 independent replications of this
experiment. The results confirms that our procedure accurately controls the false discovery rate for all values
of the signal amplitude. 235

S6·3. Robustness to overfitting
In the previous example, we have sampled the knockoff variables by exploiting our knowledge of the true

distribution of X . Now, we continue as in §S5 to verify the robustness of our procedure to the estimation of
FX . Instead of using the exact values of (q1, Q, f), we fit them on the available data using the Baum-Welch
algorithm (Rabiner, 1989). The power and false discovery rate shown in Figure S5 and Table S2 are estimated 240

over 100 replications, for different values of the signal amplitude. Similarly to the earlier example with
Markov chain covariates, our technique behaves robustly and maintains control as expected.
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Signal True FX Estimated FX
amplitude FDR (95% c.i.) Power (95% c.i.) FDR (95% c.i.) Power (95% c.i.)

2 0·037 ± 0·019 0·030 ± 0·014 0·049 ± 0·025 0·029 ± 0·013
3 0·091 ± 0·019 0·196 ± 0·028 0·078 ± 0·019 0·189 ± 0·033
4 0·082 ± 0·013 0·414 ± 0·030 0·094 ± 0·014 0·432 ± 0·040
5 0·102 ± 0·013 0·610 ± 0·023 0·094 ± 0·013 0·592 ± 0·026
6 0·105 ± 0·012 0·726 ± 0·020 0·093 ± 0·011 0·708 ± 0·022
7 0·090 ± 0·012 0·781 ± 0·017 0·093 ± 0·011 0·790 ± 0·018
8 0·093 ± 0·012 0·830 ± 0·015 0·086 ± 0·011 0·839 ± 0·020
9 0·093 ± 0·011 0·865 ± 0·013 0·099 ± 0·010 0·877 ± 0·012
10 0·097 ± 0·009 0·896 ± 0·011 0·099 ± 0·011 0·898 ± 0·012
15 0·083 ± 0·009 0·945 ± 0·007 0·093 ± 0·010 0·950 ± 0·007
20 0·086 ± 0·009 0·965 ± 0·006 0·092 ± 0·010 0·954 ± 0·007

Table S2: False discovery rate and average power in the numerical experiments of Figure S4 and S5. We
compare the results obtained with knockoff variables created using the exact (left) and estimated (right) pa-
rameters.

Finally, we repeat the experiment by fitting the parameters on an independent and unsupervised dataset of
size nu, for different values of nu. The results are shown in Figure S6 and they correspond to a range of values245

for nu and fixed signal amplitude a = 6. Again, the false discovery rate is consistently controlled. It should
not be suprising that this works even when nu is as small as 10. Unlike the numerical experiments with the
Markov chain variables considered earlier, the transition matrices and emission probabilities for this hidden
Markov model are homogeneous for all covariates, i.e. Qj = Qj+1, for all j. This simple model results in
fewer parameters to be estimated, thus contributing to the overall robustness.250
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Fig. S5: Power (a) and false discovery proportion (b) of our procedure with simulated hidden Markov model
covariates, with knockoffs sampled using the parameters fitted with the expectation-maximization algorithm
on the same dataset. The setup is otherwise the same as that in Figure S4.
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Fig. S6: Power (a) and false discovery proportion (b) of our procedure with simulated hidden Markov model
covariates. Knockoffs are sampled using parameter estimates obtained with the expectation-maximization
algorithm from an independent dataset of nu unlabeled observations of X , for different values of nu. The
signal amplitude is a = 6. The setup is otherwise the same as in Figure S4.
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S7. ADDITIONAL DETAILS FOR THE DATA ANALYSIS

S7·1. Data pre-processing
We follow the pre-processing steps of Sabatti et al. (2009) and Barber & Candès (2016) for the metabolic

syndrome data. This reduces the total number of polymorphisms to 328, 934. Cholesterol and triglycerides
levels are log-transformed prior to analysis, and all response variables are regressed on the top five principal255

components of the genotype matrix to correct for population stratification (Price et al., 2006). The residuals
from these regressions define the phenotypes we actually analyze. Following the footsteps of earlier literature,
we concluded that the Crohn’s disease data does not require additional pre-processing (WTCCC, 2007). A
summary of both datasets is shown in Table S3.

S7·2. Variable pruning260

The presence of extremely high correlations between neighboring polymorphisms is a well-known issue in
genotype association studies. The traditional approach for dealing with this is to perform marginal tests for
each site individually and then group those findings that occurr within the same small physical region. In the
end, studies often report regions that contain interesting variants, rather than individual polymorphisms. This
approach can be justified within the framework of marginal testing with family-wise error rate control, but it265

is dangerous when trying to control the false discovery rate. Indeed, a-posteriori aggregation can inflate the
false discovery rate because the number of discoveries is artificially increased by the presence of multiple
sites belonging to the same highly correlated region, which will be later reported as a whole. This issue has
been addressed before in special cases (Pacifico et al., 2004; Siegmund et al., 2011), but the problem remains
that a-posteriori aggregation is intrinsically ill-suited for high-dimensional problems. With a limited number270

of samples, one cannot test hypotheses at very high resolution: in a typical association study we simply do
not have enough observations to distinguish between near-identical variables.

In the formulation of the variable selection problem that we adopt, a-priori aggregation of the hypotheses
is a natural solution. By pruning the variables and applying the method of knockoff to the representatives275

identified from each highly-correlated region, we obtain easily intepretable findings and maintain control of
the false discovery rate. Our pruning procedure follows along the steps of Candès et al. (2018) and proceeds
as follows. First, we apply single-linkage hierarchical clustering to the complete set of variables, using the
empirical correlation matrix as a similarity measure, and obtaining a clustering dendrogram. Then, we identify
groups by cutting the dendrogram at the lowest possible height such that the highest correlation between any280

two distinct groups does not exceed a certain threshold. In this paper, we use a threshold equal to 0·5, chosen
before looking at the response Y and before selecting any variables. This value was heuristically determined
as to obtain clusters that are not too large and that span a range of physical positions that is comparable in size
with those typically reported in the literature on genome-wide association studies. Once the groups are found,
we choose their representatives. For each group, we choose as its representative the single polymorphism285

within it that is the most closely associated to the response, based on a marginal t-test performed using a
hold-out subset of 20% of the original n samples. Finally, we remark that by pruning we are only reducing
the largest correlations among our predictors to 0·5, which is still very high compared to the typical em-
pirical correlations of order n−1/2 ≈ 0·015 that we would expect to observe if the variables were independent.

290

Our method for variable selection with knockoffs is then applied on the cluster representatives, using the
remaining 80% of the observations. The samples used to identify the representatives can also be partially
recycled without compromising the rigorous guarantees of false discovery rate control. As shown in Barber &
Candès (2016) and Candès et al. (2018), they can be exploited without violating the exchangeability property
(2), provided that the corresponding knockoff copies are set equal to the original variables. Alone, these295

identical knockoffs would not provide any information to distinguish the relevant variables from the nulls.
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However, they are useful in improving the accuracy of the feature importance statistics and they can thus
increase the power.

Data source Response n p (pre-clustering) p (post-clustering)
NFBC HDL (quantitative) 4700 328934 59005
NFBC LDL (quantitative) 4682 328934 59005
NFBC TG (quantitative) 4644 328934 59005
NFBC HT (quantitative) 5302 328934 59005

WTCCC CD (binary) 4913 377749 71145

Table S3: Summary of the datasets considered in our analysis. The value of n indicates the number of samples
for each response, while the last two columns show the corresponding number of variables before and after
clustering. Since clustering was performed on the same empirical correlation matrix for all traits in the study
of metabolic syndrome, the same number of clusters are found. However, the cluster representatives may be
different because they are selected based on the response.

300

S8. RESULTS OF DATA ANALYSIS

S8·1. Discussion
The results for the two types of cholesterol are shown in Tables S4 and S5, respectively. In addition to

the results in Consortium (2013), we compare our findings to those in Sabatti et al. (2009), an analysis of
our same data based on marginal tests with a level of 5× 10−7. The latter is different from the canonical 305

5 · 10−8 and it was chosen a-posteriori to approximate the threshold obtained with the Benjamini-Hochberg
procedure for false discovery rate control at level α = 0·05. On average, our method makes 8 and 9·8
discoveries for the two types of cholesterol, respectively. These numbers can be compared to the 5 and 6
discoveries reported in Sabatti et al. (2009). For this comparison it should be noted that in Sabatti et al.
(2009) several polymorphisms belonging to the same highly correlated region are reported as significant. 310

For the purpose of this comparison, we consider them as one since in our analysis they all belong to the
same cluster. In contrast, our procedure rarely selects clusters with overlapping physical positions and
we do not further aggregate our findings, because we have already pruned the variables so that variables
in different clusters have correlation smaller than 0·5. In Sabatti et al. (2009) an additional association is
found within the X chromosome, which we have not analyzed. Among our new findings, some have been 315

confirmed by the meta-analysis in Consortium (2013), while others can be found in the works of different au-
thors. However, we prefer to avoid an extensive search over the entire existing literature to avoid selection bias.

We discover on average 2·8 clusters of polymorphisms associated to triglycerides, as shown in Table S6.
This is less than the 4 variants identified in Sabatti et al. (2009), but some of our findings are different and 320

one of the additional ones is confirmed by the meta-analysis.

Height is the last trait from the study of metabolic syndrome that we consider. This is known to be a
highly polygenic phenotype, with over 700 known variants. However, the effect of each of these variants is
very weak and one should not expect to make many discoveries with a dataset as small as ours. We obtain 325

some validation by comparing our findings to the meta-analyses in Wood et al. (2014); Marouli et al. (2017),
as shown in Table S7. Our method discovers 2 relevant clusters, on average. Since this may appear low at
first sight, it should be remarked that to the best of our knowledge no other study has found associations for
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height using only the data at our disposal. While the longitudinal study in Sovio et al. (2009) has looked for
genetic variants associated with height using exclusively this data, none of their reported findings achieves330

the standard significance threshold.

Our findings on the Crohn’s disease data are summarized in Table S8, where we compare them to the
meta-analysis in Franke et al. (2010) and the original work of WTCCC (2007). Moreover, we also consider
the results of Candès et al. (2018), whose work is the most similar to ours because it uses the same data,335

pre-processing and clustering method, as well as the overall knockoff methodology. The important distinction
is that they construct their knockoff variables differently. Instead of fitting a hidden Markov model to the
genetic sequences, they assume a multivariate normal distribution. Their nominal false discovery rate target
α = 0·1 is the same as ours, and WTCCC (2007) also aims at controlling the Bayesian false discovery rate
at approximately the same level. Our method makes 22·8 discoveries on average, versus 18 in Candès et al.340

(2018) and the 9 of WTCCC (2007). In addition to an apparently higher power in this case, our procedure can
in general be expected to enjoy a more principled and safer guarantee. Nowhere have we made the unrealistic
assumptions of WTCCC (2007) on the conditional model for the response nor those of Candès et al. (2018) on
the model for the covariates. Several of the additional findings that we make have been confirmed in Franke
et al. (2010), as shown in Table S8.345

S8·2. Tables
We report below the findings of our data analysis performed on the five phenotypes considered in this

paper. An asterisk indicates the presence of a confirmed association within 0·5 mega base pairs of our dis-
covered cluster. We also compute marginal p-values with the standard univariate analysis for all selected
polymorphisms and show the smallest one in each cluster. It must be remarked that our p-values are not350

identical to those in the original studies, since we have made slightly different methodological choices in
the pre-processing and pruning phases, as detailed in § 7·1. It interesting to look at these p-values because
they highlight that many of the marginal signals are weak and could not have been detected by a traditional
procedure.

S8·3. HDL cholesterol355

Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed in
Consortium

(2013)

Found in
Sabatti et al.

(2009)

Marginal
p-value

100% rs1532085 (4) 15 58·68–58·7 rs1532085 rs1532085 1·33 · 10−12

100% rs7499892 (1) 16 57·01–57·01 rs3764261 rs3764261 9·55 · 10−17

100% rs1800961 (1) 20 43·04–43·04 rs1800961 2·84 · 10−8

99% rs1532624 (2) 16 56·99–57·01 rs3764261 rs3764261 3·08 · 10−34

95% rs255049 (142) 16 66·41–69·41 rs16942887 rs255049 1·76 · 10−08

57% rs10096633 (19) 8 19·73–19·94 5·33 · 10−06

55% rs9898058 (1) 17 47·82–47·82 1·43 · 10−06

51% rs17075255 (59) 5 164·28–164·92 1·38 · 10−05

43% rs3761373 (1) 21 42·87–42·87 5·96 · 10−06

28% rs2575875 (10) 9 107·63–107·68 rs3905000 1·04 · 10−06

23% rs12139970 (11) 1 230·35–230·42 rs4846914 1·21 · 10−05

12% rs173738 (3) 5 16·71–16·73 4·77 · 10−06

Table S4: Clusters of polymorphisms found to be associated with HDL cholesterol over 100 repetitions of
our procedure. Positions follow the convention of the Human Genome Build 37, as in the original data. The
marginal p-values are obtained from standard univariate linear regression.
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S8·4. LDL cholesterol

Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed in
Consortium

(2013)

Found in
Sabatti et al.

(2009)

Marginal
p-value

99% rs4844614 (34) 1 207·3–207·88 rs4844614 2·00 · 10−9

97% rs646776 (5) 1 109·8–109·82 rs629301 rs646776 2·49 · 10−9

97% rs2228671 (2) 19 11·2–11·21 rs6511720 rs11668477 2·28 · 10−9

94% rs157580 (4) 19 45·4–45·41 rs4420638∗ rs157580 3·62 · 10−8

92% rs557435 (21) 1 55·52–55·72 rs2479409 1·17 · 10−7

80% rs10198175 (1) 2 21·13–21·13 rs1367117∗ rs693∗ 5·05 · 10−7

76% rs10953541 (58) 7 106·48–107·3 3·75 · 10−6

62% rs6575501 (1) 14 95·64–95·64 2·32 · 10−6

41% rs1713222 (45) 2 21·11–21·53 rs1367117 rs693 4·99 · 10−11

40% rs2802955 (1) 1 235·02–235·02 rs514230∗ 2·27 · 10−1

37% rs17129799 (23) 11 96·85–97 4·84 · 10−6

36% rs174450 (16) 11 61·55–61·68 rs174546 rs1535 9·96 · 10−7

26% rs905502 (1) 8 3·13–3·13 1·30 · 10−4

25% rs9696070 (6) 9 89·21–89·24 1·26 · 10−5

23% rs166152 (19) 16 29·04–29·33 4·29 · 10−5

19% rs12427378 (43) 12 50·43–51·31 3·69 · 10−6

Table S5: Clusters of polymorphisms found to be associated with LDL cholesterol. Other details as in caption
of Table S4.

S8·5. Triglycerides

Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed in
Consortium

(2013)

Found in
Sabatti et al.

(2009)

Marginal
p-value

94% rs10096633 (19) 8 19·73–19·94 rs12678919 rs10096633 7·47 · 10−8

91% rs676210 (45) 2 21·11–21·53 rs673548 2·00 · 10−7

62% rs2304130 (37) 19 19·28–19·87 rs10401969 3·91 · 10−6

25% rs2907632 (13) 17 52·86–52·95 5·69 · 10−6

Table S6: Clusters of polymorphisms found to be associated with triglycerides. Other details as in caption of
Table S4.

360

S8·6. Height

Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed in
Wood et al.

(2014)

Confirmed in
Marouli et al.

(2017)

Marginal
p-value

68% rs2814982 (120) 6 34·17–35·45 rs12214804 rs2814982 1·33 · 10−7

46% rs2882676 (5) 15 89·39–89·4 rs2882676 2·73 · 10−6
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31% rs6763931 (14) 3 141·04–141·34 rs724016 rs724016∗ 4·00 · 10−6

12% rs10769671 (17) 11 6·19–6·28 6·37 · 10−6

Table S7: Clusters of polymorphisms found to be associated with height. Other details as in caption of Table
S4.

S8·7. Crohn’s disease

Selection
frequency

SNP
(cluster size) Chr.

Position range
(Mb)

Confirmed
in Franke

et al. (2010)

Found in
WTCCC
(2007)

Found in
Candès

et al. (2018)

Marginal
p-value

100% rs11209026 (2) 1 67·31–67·42 rs11209026 rs11805303 100% 2·57 · 10−21

99% rs6431654 (20) 2 233·94–234·11 rs3792109 rs10210302 100% 1·44 · 10−14

98% rs6688532 (33) 1 169·4–169·65 rs12037606 90% 3·48 · 10−8

97% rs17234657 (1) 5 40·44–40·44 rs11742570 rs17234657 90% 8·06 · 10−13

95% rs11805303 (16) 1 67·31–67·46 rs11209026 rs11805303 100% 5·22 · 10−14

91% rs7095491 (18) 10 101·26–101·32 rs4409764 rs10883365 100% 2·81 · 10−7

91% rs3135503 (16) 16 49·28–49·36 rs2076756 rs17221417 90% 9·55 · 10−11

81% rs7768538 (1145) 6 25·19–32·91 rs1799964 rs9469220 60% 5·83 · 10−9

80% rs6601764 (1) 10 3·85–3·85 rs6601764 100% 1·83 · 10−8

75% rs7655059 (5) 4 89·5–89·53 40% 2·14 · 10−7

73% rs6500315 (4) 16 49·03–49·07 rs2076756 rs17221417 60% 5·73 · 10−7

72% rs2738758 (5) 20 61·71–61·82 rs4809330 60% 2·64 · 10−6

70% rs7726744 (46) 5 40·35–40·71 rs11742570 rs17234657 50% 7·24 · 10−13

68% rs11627513 (7) 14 96·61–96·63 80% 6·70 · 10−6

66% rs4246045 (46) 5 150·07–150·41 rs7714584 rs1000113 50% 2·00 · 10−8

62% rs9783122 (234) 10 106·43–107·61 80% 1·69 · 10−4

61% rs6825958 (3) 4 55·73–55·77 30% 3·54 · 10−5

56% rs4692386 (1) 4 25·81–25·81 40% 1·31 · 10−6

56% rs4263839 (23) 9 114·58–114·78 30% 3·16 · 10−5

54% rs2390248 (13) 7 19·8–19·89 50% 4·53 · 10−7

51% rs10916631 (14) 1 220·87–221·08 40% 5·41 · 10−5

49% rs4437159 (4) 3 84·8–84·81 60% 5·42 · 10−5

48% rs9469615 (2) 6 33·91–33·92 30% 1·13 · 10−5

45% rs10761659 (53) 10 64·06–64·41 rs10761659 rs10761659 10% 2·55 · 10−6

42% rs2836753 (5) 21 39·21–39·23 30% 1·43 · 10−6

39% rs6743984 (23) 2 230·91–231·05 rs7423615 10% 3·79 · 10−6

38% rs2279980 (20) 5 57·95–58·07 10% 1·08 · 10−6

35% rs7186163 (6) 16 49·2–49·25 rs2076756 rs17221417 50% 7·29 · 10−8

32% rs16857006 (1) 2 11·1–11·1 2·30 · 10−3

30% rs7807268 (5) 7 147·65–147·7 10% 2·57 · 10−5

27% rs4807569 (2) 19 1·07–1·08 rs740495 2·06 · 10−5

24% rs3779585 (2) 7 90·36–90·38 7·40 · 10−6

23% rs12529198 (31) 6 5·01–5·1 1·08 · 10−6

22% rs7497036 (19) 15 72·49–72·73 2·04 · 10−4

20% rs4959830 (11) 6 3·36–3·41 rs17309827 10% 9·47 · 10−7

15% rs13282050 (8) 8 69·3–69·31 3·64 · 10−5

15% rs1451890 (26) 15 30·92–31·01 1·23 · 10−5

14% rs2814036 (5) 1 163·94–164·07 9·31 · 10−7

14% rs7759649 (2) 6 21·57–21·58 rs6908425∗ 40% 1·01 · 10−4

14% rs4870943 (10) 8 126·59–126·62 rs4871611 1·46 · 10−6

11% rs10923347 (1) 1 117·83–117·83 9·54 · 10−4

10% rs4438299 (30) 16 60·01–60·32 7·07 · 10−5
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Table S8: Clusters of polymorphisms found to be associated with Crohn’s disease over 100 repetitions of
our procedure. Positions follow the convention of the Human Genome Build 35, as in the original data. The
marginal p-values are obtained from the Cochran-Armitage test for trend (Armitage, 1955).

S9. GLOSSARY OF GENETIC TERMS 365

For those readers who may not be familiar with some of the genetic terms used in this paper, we provide a
short glossary. The definitions below refer to the use of the terms within this paper and may not correspond
exactly with the most general definition of the terms outside our context.

Allele: one of two nucleotides at a precise position on the DNA, inherited from one parent. 370

Chromosome: in general, a sequence of DNA forming a single molecule. The complete DNA of an
individual is divided into 23 pairs of chromosomes. Here, we refer to a chromosome as one such pair, thus
representing a sequence of genotypes inherited by both parents.

375

Gene: a sequence of loci that code a specific function, i.e. control one or more phenotypes.

Genome-wide association study: an observational study of a set of single-nucleotide polymorphism in
different individuals aimed at identifying variant that are associated with a specific phenotype.

380

Genotype: a pair of alleles at a precise position on the DNA, each belonging to a different haplotype and
inherited from one parent.

Haplotype: a sequence of alleles on different loci, inherited from a single parent.
385

Hardy-Weinberg equilibrium: a basic principle of population genetics, stating that the amount of genetic
variation in a population will remain constant across generations in the absence of disturbing factors such as
mutation, selection or mate choice based on desired phenotypes. In genome-wide association studies, it is
customary to verify that the genotype frequences are consistent with this principle in order to detect possible
genotyping errors, batch effects or population stratification. 390

Locus: a fixed position on a chromosome, indicating a single-nucleotide polymorphism.

Marker: in general, a short DNA sequence at a known locus, used to study the relationship between an
inherited disease and its genetic cause. Here, it refers to a single-nucleotide polymorphism and it is used 395

interchangeably.

Phase: the original combination of alleles that an individual inherited from its parents. Typically, in
genome-wide association studies the genotypes are observed as unordered pairs of alleles and the individual
haplotypes not directly accessible. 400

Phenotype: an observable characteristics of an individual, resulting from the expression of the genetic code
as well as the influence of environmental factors.



18 M. SESIA, C. SABATTI AND E. J. CANDÈS

Nucleotide: an organic molecule serving as the basic structural unit of the DNA, either adenine, thymine,405

cytosine, or guanine.

Recombination rate: the frequency of recombination events, in which a portion of the DNA of the offspring
differs from those of both parents as a result of an error during cell division.

410

Single-nucleotide polymorphism: a precise position on the DNA where a single nucleotide can differ
between people. Two alleles are found at each such position. It is the marker of choice in genome-wide
association studies. It is sometimes referred to in short as a polymorphism or abbreviated as SNP.

Variant: a genetic feature that varies between different individuals, here understood to be a single-nucleotide415

polymorphism.
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BARBER, R. F. & CANDÈS, E. J. (2015). Controlling the false discovery rate via knockoffs. Ann. Statist. 43, 2055–2085.
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