# SUPPLEMENTAL MATERIALS – PAP Guideline Meta-Analyses and Summary of Findings Tables

All Literature Search Terms: obstructive sleep apnea, obstructive sleep apnoea, positive airway pressure, continuous positive airway pressure, automated, auto-titrating, auto-CPAP, auto nCPAP, auto-continuous, self-adjusting, APAP, BPAP, bilevel positive airway pressure, BPAP, auto-BPAP, oronasal, interface, nasal pillows, nasal mask, masks, chin-strap, education, educational, behavior, behavioral, desensitization, cognitive behavioral therapy, cognitive, neurobehavioral, supportive therapy, self-efficacy, healthcare provider, nurse clinician, respiratory therapist, sleep physician, sleep specialist, motivation, humidified, humidification, humidifier, heated tubing, monitor, monitoring, telemedicine, telemonitoring, modem, chronometer, microprocessor, A-flex, flexible, airway, pressure, pressure relief, manual titration, in-laboratory, titration, autotitration, portable monitoring, home-based diagnosis, nasal CPAP, nCPAP, dipping, non-dipping, refractory hypertension, hypertension, blood pressure, glucose, hemoglobin A1c, pre-diabetes, diabetes, metabolic syndrome, insulin resistance, coronary artery disease, congestive heart failure, myocardial infarction, revascularization, percutaneous coronary intervention, cardiac catheterization, coronary artery bypass graft, heart failure, ejection fraction, echocardiogram, stroke, cerebral vascular event, transient ischemic attack, arrhythmia, atrial fibrillation, mortality, sudden cardiac death, cardiovascular, hospitalization, 30-day readmission, psychomotor vigilance test, memory, psychomotor function, executive function, learning, driving simulator, motor vehicle crashes, line crossing, quality of life, SF-36, FOSQ, SAQLI, Quebec sleep questionnaire, euroqol, EQ5D, sleepiness, MSLT, MWT, OSLER, PSQI, adherence, compliance, machine run time, side effects, AHI, and RDI

Broad-Based Search Terms: obstructive sleep apnea and positive airway pressure

**Literature Search Limits:** RCTS (all PICOs), observational studies (PICOs 1 MVC, 3, and 8 only), humans, English language, and adults

**Inclusion Criteria:** RCTs (all PICOs), observational studies (PICOs 1 MVC, 3, and 8 only), adult patients with OSA, study sample size ≥10, PAP therapy for at least 1 week (PICOs 8, 9 only), PAP therapy for at least 4 weeks (other PICOs), head-to-head studies of different PAP devices or PAP versus control condition, and reporting of at least one relevant outcome of interest.

**Exclusion Criteria:** observational studies (PICOs 1, 2, 4-7, 9-11), PAP withdrawal studies, patients with central sleep apnea, obesity hypoventilation, hypoventilation syndromes, major comorbidities, children and adolescents, non-PAP treatment, insufficient treatment duration, no outcomes of interest, or lack of appropriate control group.

#### **Abbreviations:**

AHI – apnea hypopnea index

APAP – autotitrating positive airway pressure

BP – blood pressure

BPAP - bilevel positive airway pressure

COWAT - controlled oral word association test

CPAP – continuous positive airway pressure

CV-cardiovascular

DBP - diastolic blood pressure

EQ5D – European quality of life index

ESS – Epworth sleepiness scale

FOSQ – functional outcomes of sleep questionnaire

HADs – health, anxiety, and depression scale

HF - heart failure

LVEF - left ventricle ejection fraction

MPP – modified pressure profile

MSLT - multiple sleep latency test

MVA - motor vehicle accident

MWT - maintenance of wakefulness test

OSLER – Oxford sleep resistance test

PAP -positive airway pressure

PASAT – paced auditory serial addition test

PICO - Patient, intervention, comparator, outcome

PSQI – Pittsburgh sleep quality index

PVT – psychomotor vigilance test

QSQ - Quebec sleepiness questionnaire

RCTs – randomized controlled trials

RDI – respiratory disturbance index

SAQLI – sleep apnea quality of life index

SBP – systolic blood pressure

SF 36 MCS – short form mental component summary score

SF-36 PCS – short form physical component summary score SF-36 VS – short form vitality score

# PAP vs. control conditions for the treatment of obstructive sleep apnea in adults

Figure S1. PAP vs. Control Conditions (AHI, events/hr)

| _                                 |            | PAP   |        | C         | ontrol | •       |                         | Mean Difference         | Mean Difference                              |
|-----------------------------------|------------|-------|--------|-----------|--------|---------|-------------------------|-------------------------|----------------------------------------------|
| Study or Subgroup                 | Mean       | SD    | Total  |           | SD     |         | Weight                  |                         | IV, Random, 95% CI                           |
| Amaro 2012                        | 8          | 6     | 12     | 39        | 15     | 12      | 8.3%                    | -31.00 [-40.14, -21.86] | <u> </u>                                     |
| Barnes 2004                       | 4.8        | 4.7   | 89     | 20.3      | 10.4   | 90      | 11.1%                   | -15.50 [-17.86, -13.14] | •                                            |
| Becker 2003                       | 3.4        | 3.1   | 16     | 33.4      | 29.2   | 16      | 6.0%                    | -30.00 [-44.39, -15.61] | <del></del>                                  |
| Hoyos 2012                        | 3.8        | 12.4  | 28     | 39.6      | 15     | 24      | 9.1%                    | -35.80 [-43.36, -28.24] |                                              |
| lp 2006                           | 1.7        | 1.8   | 14     | 45.9      | 15.5   | 13      | 8.7%                    | -44.20 [-52.68, -35.72] |                                              |
| Lam 2007                          | 2.8        | 6.4   | 34     | 20.5      | 14.6   | 33      | 10.1%                   | -17.70 [-23.13, -12.27] | <del></del>                                  |
| Montasterio 2001                  | 6          | 8     | 66     | 17        | 10     | 59      | 10.9%                   | -11.00 [-14.20, -7.80]  | <del>-</del>                                 |
| Nguyen 2010                       | 2.2        | 1.5   | 10     | 37.4      | 23.3   | 10      | 5.9%                    | -35.20 [-49.67, -20.73] | <del></del>                                  |
| Phillips 2011                     | 6.8        | 14.8  | 16     | 40.7      | 13.3   | 13      | 7.8%                    | -33.90 [-44.14, -23.66] | <del></del>                                  |
| Weaver 2012                       | 0.9        | 1.3   | 113    | 14.6      | 12.3   | 110     | 11.1%                   | -13.70 [-16.01, -11.39] | •                                            |
| Woodson 2003                      | 4.6        | 2.7   | 26     | 13.6      | 6.4    | 28      | 11.0%                   | -9.00 [-11.59, -6.41]   | *                                            |
| Total (95% CI)                    |            |       | 424    |           |        | 408     | 100.0%                  | -23.41 [-28.51, -18.30] | •                                            |
| Heterogeneity: Tau <sup>2</sup> = | : 59.66; ( | Chi²= | 140.17 | . df = 10 | (P < 0 | 0.00001 | ); I <sup>z</sup> = 939 | %                       | <del></del>                                  |
| Test for overall effect:          |            |       |        |           | ,      |         | ,,                      |                         | -50 -25 Ó 25 50<br>Favors PAP Favors Control |

Figure S2. PAP Pre-treatment vs. Post-treatment (AHI, events/hr)

|                                   | Post      | treatm | ent    | Pretreatment |          |        | Mean Difference | Mean Difference         |                                             |
|-----------------------------------|-----------|--------|--------|--------------|----------|--------|-----------------|-------------------------|---------------------------------------------|
| Study or Subgroup                 | Mean      | SD     | Total  | Mean         | SD       | Total  | Weight          | IV, Random, 95% CI      | IV, Random, 95% CI                          |
| Amaro 2012                        | 8         | 6      | 12     | 38           | 14       | 12     | 8.8%            | -30.00 [-38.62, -21.38] |                                             |
| Barnes 2004                       | 4.8       | 4.7    | 89     | 21.3         | 12.3     | 89     | 9.7%            | -16.50 [-19.24, -13.76] | +                                           |
| Becker 2003                       | 3.4       | 3.1    | 16     | 62.5         | 8        | 16     | 9.5%            | -59.10 [-63.30, -54.90] | <del>*</del>                                |
| Hoyos 2012                        | 3.8       | 12.4   | 28     | 38.5         | 14.7     | 34     | 9.2%            | -34.70 [-41.45, -27.95] | <del></del>                                 |
| lp 2006                           | 1.7       | 1.8    | 14     | 47.7         | 15.3     | 14     | 8.9%            | -46.00 [-54.07, -37.93] | <del></del>                                 |
| Lam 2007                          | 2.8       | 6.4    | 34     | 23.8         | 11.1     | 34     | 9.5%            | -21.00 [-25.31, -16.69] | <del>*</del>                                |
| Montasterio 2001                  | 6         | 8      | 66     | 20           | 6        | 66     | 9.7%            | -14.00 [-16.41, -11.59] | <b>+</b>                                    |
| Nguyen 2010                       | 2.2       | 1.5    | 10     | 38.8         | 21.4     | 10     | 7.8%            | -36.60 [-49.90, -23.30] | <del></del>                                 |
| Phillips 2011                     | 6.8       | 14.8   | 16     | 41.2         | 23.9     | 16     | 7.7%            | -34.40 [-48.17, -20.63] | <del></del>                                 |
| Weaver 2012                       | 0.9       | 1.3    | 113    | 12.8         | 6.4      | 121    | 9.7%            | -11.90 [-13.07, -10.73] | •                                           |
| Woodson 2003                      | 4.6       | 2.7    | 26     | 19.8         | 9.9      | 27     | 9.6%            | -15.20 [-19.08, -11.32] | -                                           |
| Total (95% CI)                    |           |        | 424    |              |          | 439    | 100.0%          | -28.59 [-36.78, -20.40] | •                                           |
| Heterogeneity: Tau <sup>2</sup> = | = 178.76; | Chi²=  | 567.08 | 6, df = 11   | 0 (P < I | 0.0000 | 1); I²= 98      | %                       | <del></del>                                 |
| Test for overall effect           | Z = 6.84  | (P < 0 | .00001 | )            | -        |        |                 |                         | -50 -25 0 25 50  Posttreatment Pretreatment |
|                                   |           |        |        |              |          |        |                 |                         | rosureaunent Pretreatment                   |

Figure S3. PAP vs. Control Conditions (ESS)

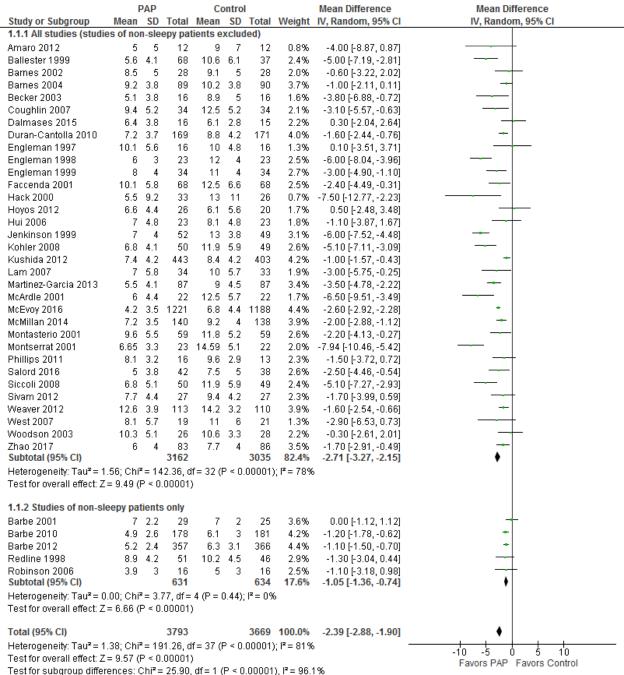



Figure S4. PAP vs. Control Conditions (Osler & MWT, min)

|                                                   |      | PAP  |       | C    | ontrol |           |        | Std. Mean Difference | Std. Mean Difference                  |  |  |
|---------------------------------------------------|------|------|-------|------|--------|-----------|--------|----------------------|---------------------------------------|--|--|
| Study or Subgroup                                 | Mean | SD   | Total | Mean | SD     | Total     | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                    |  |  |
| Barnes 2004                                       | 30   | 8    | 80    | 28   | 8      | 80        | 16.6%  | 0.25 [-0.06, 0.56]   | <del>  • </del>                       |  |  |
| Engleman 1999                                     | 16.2 | 10.6 | 34    | 14.4 | 8.5    | 34        | 13.5%  | 0.19 [-0.29, 0.66]   | <del> -</del>                         |  |  |
| Hack 2000                                         | 33.5 | 6.8  | 26    | 24.2 | 8.1    | 33        | 12.0%  | 1.21 [0.65, 1.78]    | <del></del>                           |  |  |
| Jenkinson 1999                                    | 32.9 | 7.1  | 52    | 23.5 | 8.2    | 49        | 14.5%  | 1.22 [0.79, 1.65]    | <del></del>                           |  |  |
| Kohler 2008                                       | 40   | 5.2  | 50    | 38   | 7.6    | 49        | 15.0%  | 0.31 [-0.09, 0.70]   | <del>  •</del>                        |  |  |
| McMillan 2014                                     | 27.8 | 11.6 | 110   | 23.8 | 13.4   | 115       | 17.5%  | 0.32 [0.05, 0.58]    | <del></del>                           |  |  |
| West 2007                                         | 32.5 | 13   | 19    | 27.3 | 11     | 21        | 10.9%  | 0.43 [-0.20, 1.05]   | <del>  •</del>                        |  |  |
| Total (95% CI)                                    |      |      | 371   |      |        | 381       | 100.0% | 0.54 [0.23, 0.84]    | •                                     |  |  |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |      |       |      | = 0.00 | 06); l² = | 75%    |                      | -2 -1 0 1 2 Favors Control Favors PAP |  |  |

Figure S5. PAP vs. Control Conditions (MSLT, min)

| •                                 |           |        |          |             | •         |       | , ,    |                     |                           |  |
|-----------------------------------|-----------|--------|----------|-------------|-----------|-------|--------|---------------------|---------------------------|--|
|                                   |           | PAP    |          | Control     | l condit  | ions  |        | Mean Difference     | Mean Difference           |  |
| Study or Subgroup                 | Mean      | SD     | Total    | Mean        | SD        | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI        |  |
| Barbe 2001                        | 13        | 5      | 29       | 11          | 5         | 25    | 13.7%  | 2.00 [-0.67, 4.67]  | +-                        |  |
| Barnes 2002                       | 10.7      | 4.8    | 28       | 11.7        | 4.8       | 28    | 15.0%  | -1.00 [-3.51, 1.51] | <del></del>               |  |
| Engleman 1994                     | 7.2       | 8.1    | 17       | 6.1         | 8.1       | 15    | 3.8%   | 1.10 [-4.52, 6.72]  | <del></del>               |  |
| Engleman 1997                     | 10        | 4.8    | 16       | 9.9         | 6         | 16    | 7.8%   | 0.10 [-3.66, 3.86]  | <del></del>               |  |
| Engleman 1998                     | 9.2       | 3.9    | 23       | 6.8         | 4.3       | 23    | 16.3%  | 2.40 [0.03, 4.77]   |                           |  |
| Montasterio 2001                  | 10        | 5      | 66       | 11          | 5         | 59    | 24.0%  | -1.00 [-2.76, 0.76] | <del></del>               |  |
| Redline 1998                      | 10.9      | 5      | 51       | 11.3        | 5.4       | 46    | 19.5%  | -0.40 [-2.48, 1.68] |                           |  |
| Total (95% CI)                    |           |        | 230      |             |           | 212   | 100.0% | 0.25 [-0.89, 1.38]  | •                         |  |
| Heterogeneity: Tau <sup>2</sup> : | = 0.60; C | hi²=   | 8.12, df | f= 6 (P = 1 | 0.23); l² | = 26% |        | -                   | -10 -5 0 5 10             |  |
| Test for overall effect           | Z = 0.42  | ? (P = | 0.67)    |             |           |       |        |                     | Favors Control Favors PAP |  |

Figure S6. PAP vs. Control Conditions (FOSQ & SAQLI)

|                                   |          | PAP           |          | C         | ontrol   |                      |        | Std. Mean Difference | Std. Mean Difference                  |  |  |
|-----------------------------------|----------|---------------|----------|-----------|----------|----------------------|--------|----------------------|---------------------------------------|--|--|
| Study or Subgroup                 | Mean     | SD            | Total    | Mean      | SD       | Total                | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                    |  |  |
| Barbe 2001                        | 108      | 10.8          | 29       | 110       | 10       | 25                   | 6.0%   | -0.19 [-0.73, 0.35]  |                                       |  |  |
| Barnes 2004                       | 3.3      | 0.94          | 89       | 3.3       | 0.95     | 90                   | 9.8%   | 0.00 [-0.29, 0.29]   | +                                     |  |  |
| Craig 2012                        | 4.9      | 1.1           | 167      | 4.8       | 1.2      | 163                  | 11.2%  | 0.09 [-0.13, 0.30]   | +                                     |  |  |
| Faccenda 2001                     | 12.4     | 4.1           | 68       | 11.6      | 5.8      | 68                   | 9.0%   | 0.16 [-0.18, 0.50]   | +-                                    |  |  |
| Lam 2007                          | 5.9      | 0.6           | 34       | 5         | 0.6      | 33                   | 5.9%   | 1.48 [0.94, 2.03]    |                                       |  |  |
| McMillan 2014                     | 5.5      | 1.1           | 121      | 5.1       | 1.1      | 119                  | 10.5%  | 0.36 [0.11, 0.62]    |                                       |  |  |
| Montasterio 2001                  | 106      | 20            | 66       | 102       | 21       | 59                   | 8.8%   | 0.19 [-0.16, 0.55]   | +-                                    |  |  |
| Montserrat 2001                   | 109.4    | 12.5          | 23       | 100.7     | 20.6     | 22                   | 5.4%   | 0.50 [-0.09, 1.10]   | <del>  -</del>                        |  |  |
| Phillips 2011                     | 16       | 2.8           | 16       | 16.7      | 2.8      | 13                   | 4.1%   | -0.24 [-0.98, 0.49]  | <del></del>                           |  |  |
| Siccoli 2008                      | 4.4      | 1.1           | 50       | 3.8       | 1.6      | 49                   | 8.0%   | 0.43 [0.04, 0.83]    | -                                     |  |  |
| Weaver 2012                       | 14.9     | 3             | 113      | 14.3      | 2.7      | 110                  | 10.3%  | 0.21 [-0.05, 0.47]   | <del> -</del>                         |  |  |
| West 2007                         | 5.1      | 1             | 19       | 4.4       | 1        | 21                   | 4.9%   | 0.69 [0.05, 1.33]    | -                                     |  |  |
| Woodson 2003                      | 17.5     | 2.4           | 26       | 17.2      | 2        | 28                   | 6.1%   | 0.13 [-0.40, 0.67]   | <del></del>                           |  |  |
| Total (95% CI)                    |          |               | 821      |           |          | 800                  | 100.0% | 0.27 [0.09, 0.45]    | <b>◆</b>                              |  |  |
| Heterogeneity: Tau <sup>2</sup> = | 0.06; C  | hi <b>=</b> 3 | 3.50, di | f = 12 (F | 9 = 0.01 | 008); <mark>P</mark> | = 64%  | _                    | <del></del>                           |  |  |
| Test for overall effect:          | Z = 2.99 | P = 0         | 0.003)   | •         |          |                      |        |                      | -2 -1 U 1 2 Favors control Favors PAP |  |  |
|                                   |          |               | ,        |           |          |                      |        |                      | ravois control ravois PAP             |  |  |

Figure S7. PAP vs. Control Conditions (SF-36 PCS)

|                                   | I       | PAP     |          | C         | ontrol  |                |        | Mean Difference       | Mean Difference                                  |
|-----------------------------------|---------|---------|----------|-----------|---------|----------------|--------|-----------------------|--------------------------------------------------|
| Study or Subgroup                 | Mean    | SD      | Total    | Mean      | SD      | Total          | Weight | IV, Random, 95% CI    | IV, Random, 95% CI                               |
| Barbe 2001                        | 51      | 5.4     | 29       | 50        | 5.4     | 25             | 4.0%   | 1.00 [-1.89, 3.89]    | +                                                |
| Barnes 2002                       | 75.6    | 27.2    | 28       | 77        | 27.2    | 28             | 0.2%   | -1.40 [-15.65, 12.85] | <del></del>                                      |
| Engleman 1999                     | 79      | 22.8    | 34       | 72.2      | 26      | 34             | 0.2%   | 6.80 [-4.82, 18.42]   | <del></del>                                      |
| Jenkinson 1999                    | 49.4    | 10.1    | 52       | 45.5      | 10.4    | 49             | 2.1%   | 3.90 [-0.10, 7.90]    | <del></del>                                      |
| Lam 2007                          | 77.5    | 18.6    | 34       | 67.7      | 25.3    | 33             | 0.3%   | 9.80 [-0.86, 20.46]   | <del>                                     </del> |
| Lewis 2017                        | 44.6    | 10.2    | 99       | 42.9      | 9.3     | 99             | 4.6%   | 1.70 [-1.02, 4.42]    | <del>_</del>                                     |
| McEvoy 2016                       | 46.9    | 8       | 1218     | 45.9      | 8.1     | 1189           | 81.5%  | 1.00 [0.36, 1.64]     | · ·                                              |
| Montserrat 2001                   | 50.7    | 36.9    | 23       | 47.2      | 41.7    | 22             | 0.1%   | 3.50 [-19.54, 26.54]  | <del></del>                                      |
| Siccoli 2008                      | 70.8    | 18.5    | 50       | 70        | 18.8    | 49             | 0.6%   | 0.80 [-6.55, 8.15]    | <del></del>                                      |
| Woodson 2003                      | 50.8    | 7       | 28       | 51.4      | 7.9     | 26             | 2.1%   | -0.60 [-4.59, 3.39]   | <del></del>                                      |
| Zhao 2017                         | 46.2    | 9.6     | 81       | 42.9      | 8.7     | 85             | 4.3%   | 3.30 [0.51, 6.09]     |                                                  |
| Total (95% CI)                    |         |         | 1676     |           |         | 1639           | 100.0% | 1.20 [0.61, 1.78]     | •                                                |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; C | hi² = 8 | .79, df= | = 10 (P : | = 0.55) | $); I^2 = 0^4$ | %      |                       |                                                  |
| Test for overall effect:          |         |         |          |           |         |                |        |                       | -20 -10 0 10 20<br>Favors control Favors PAP     |

Figure S8. PAP vs. Control Conditions (SF-36 MCS)

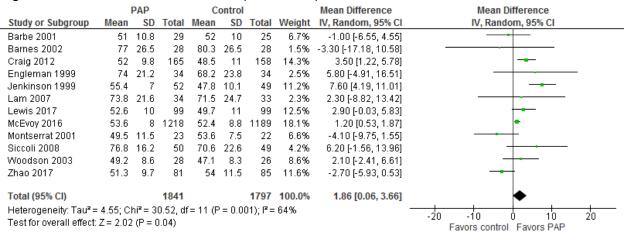



Figure S9. PAP vs. Control Conditions (SF-36 VS)

|                                   |          | PAP    |          | C     | ontrol |                      |        | Mean Difference       | Mean Difference                              |
|-----------------------------------|----------|--------|----------|-------|--------|----------------------|--------|-----------------------|----------------------------------------------|
| Study or Subgroup                 | Mean     | SD     | Total    | Mean  | SD     | Total                | Weight | IV, Random, 95% CI    | IV, Random, 95% CI                           |
| Barnes 2002                       | 61.2     | 21.5   | 28       | 61.4  | 21.5   | 28                   | 4.9%   | -0.20 [-11.46, 11.06] |                                              |
| Craig 2012                        | 60.6     | 20.9   | 171      | 53.9  | 22.5   | 168                  | 20.4%  | 6.70 [2.08, 11.32]    | _ <del>-</del>                               |
| Engleman 1999                     | 58       | 19     | 34       | 46    | 23     | 34                   | 6.0%   | 12.00 [1.97, 22.03]   | <del></del>                                  |
| Lam 2007                          | 62.6     | 16.9   | 34       | 57    | 16.1   | 33                   | 9.1%   | 5.60 [-2.30, 13.50]   | <del>  -</del>                               |
| Lewis 2017                        | 51.8     | 11.1   | 99       | 49.5  | 9.4    | 100                  | 33.9%  | 2.30 [-0.56, 5.16]    | +-                                           |
| Montserrat 2001                   | 69.4     | 27.3   | 23       | 68.4  | 20.6   | 22                   | 3.2%   | 1.00 [-13.09, 15.09]  | <del></del>                                  |
| Siccoli 2008                      | 64.7     | 20.4   | 50       | 52.6  | 26.7   | 49                   | 6.8%   | 12.10 [2.73, 21.47]   |                                              |
| Zhao 2017                         | 63.5     | 18.8   | 81       | 60.9  | 18.1   | 85                   | 15.6%  | 2.60 [-3.02, 8.22]    | <del> </del>                                 |
| Total (95% CI)                    |          |        | 520      |       |        | 519                  | 100.0% | 4.63 [2.03, 7.23]     | •                                            |
| Heterogeneity: Tau <sup>2</sup> = | 3.06; CI | hi²= 9 | .08, df= | 7 (P= | 0.25); | l <sup>2</sup> = 239 | %      |                       | <del></del>                                  |
| Test for overall effect:          |          |        | •        |       | ,,     |                      |        |                       | -20 -10 0 10 20<br>Favors control Favors PAP |

Figure S10. PAP vs. control conditions (change in nighttime SBP) [All patient types]

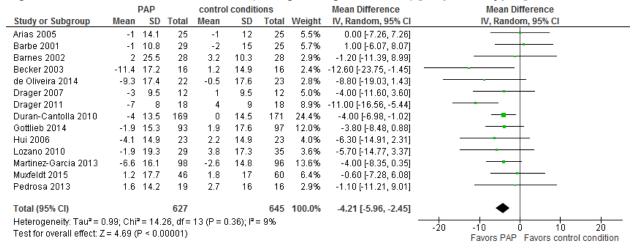



Figure S11. PAP vs. control conditions (change in nighttime DBP) [All patient types]

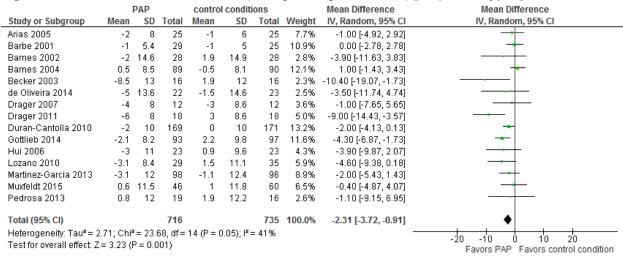



Figure S12. PAP vs. control conditions (change in daytime SBP) [All patient types]

| _       |                                |         |        |         |           | •                   |       | _      |                        | •           | • •                   |                |
|---------|--------------------------------|---------|--------|---------|-----------|---------------------|-------|--------|------------------------|-------------|-----------------------|----------------|
|         |                                |         | PAP    |         | contro    | l conditi           | ions  |        | Mean Difference        |             | Mean Difference       |                |
| Study   | or Subgroup                    | Mean    | SD     | Total   | Mean      | SD                  | Total | Weight | IV, Random, 95% CI     |             | IV, Random, 95% CI    |                |
| Arias 2 | 005                            | 0       | 9      | 25      | 0         | 11                  | 25    | 7.5%   | 0.00 [-5.57, 5.57]     |             |                       |                |
| Barbe   | 2001                           | -3      | 10.8   | 29      | -1        | 10                  | 25    | 7.5%   | -2.00 [-7.55, 3.55]    |             | <del></del>           |                |
| Barnes  | 3 2002                         | -7      | 25.6   | 28      | 2.2       | 9.8                 | 28    | 2.3%   | -9.20 [-19.35, 0.95]   |             | <del></del>           |                |
| Becker  | r 2003                         | -8      | 16     | 16      | 2.2       | 12.6                | 16    | 2.4%   | -10.20 [-20.18, -0.22] |             | <del></del>           |                |
| de Oliv | eira 2014                      | -8.8    | 21.6   | 22      | -1.3      | 19.8                | 23    | 1.6%   | -7.50 [-19.62, 4.62]   |             | · ·                   |                |
| Dragei  | r 2007                         | -3      | 7.3    | 12      | -2        | 10                  | 12    | 4.8%   | -1.00 [-8.01, 6.01]    |             |                       |                |
| Dragei  | r 2011                         | -5      | 6      | 18      | 3         | 11                  | 18    | 6.9%   | -8.00 [-13.79, -2.21]  | -           | <del></del>           |                |
| Duran-  | Cantolla 2010                  | -3      | 13     | 169     | 0         | 12                  | 171   | 28.5%  | -3.00 [-5.66, -0.34]   |             | -                     |                |
| Gottlie | b 2014                         | -1.2    | 13.2   | 93      | 0.8       | 15.3                | 97    | 13.5%  | -2.00 [-6.06, 2.06]    |             | <del></del>           |                |
| Lozano  | 2010                           | -4      | 16     | 29      | 1.2       | 12.1                | 35    | 4.7%   | -5.20 [-12.27, 1.87]   |             | <del></del>           |                |
| Martine | ez-Garcia 2013                 | -3.2    | 13     | 98      | -2.6      | 14.8                | 96    | 14.4%  | -0.60 [-4.52, 3.32]    |             | <del></del>           |                |
| Muxfeli | dt 2015                        | 1       | 16.5   | 46      | 0.4       | 16.6                | 60    | 5.8%   | 0.60 [-5.75, 6.95]     |             | -                     |                |
| Total ( | 95% CI)                        |         |        | 585     |           |                     | 606   | 100.0% | -2.76 [-4.31, -1.20]   |             | •                     |                |
| Hetero  | geneity: Tau <sup>2</sup> = 0. | 36; Chi | ²= 11. | 53, df= | 11 (P = 0 | 0.40); <b>i</b> ² : | = 5%  |        |                        | <del></del> | <del></del>           |                |
|         | r overall effect: Z:           |         |        |         |           | ,,                  |       |        |                        | -20         | -10 0 10              | 20             |
|         |                                |         |        | -7      |           |                     |       |        |                        |             | Favors PAP Favors con | trol condition |

Figure S13. PAP vs. control conditions (change in daytime DBP) [All patient types]

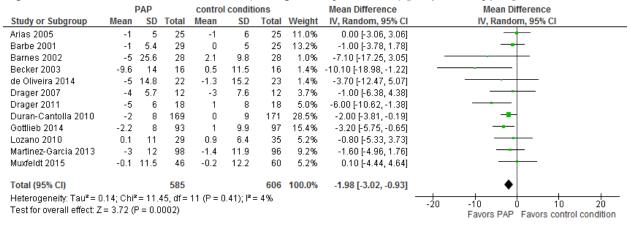



Figure S14. PAP vs. control conditions (change in 24-hr SBP) [All patient types]

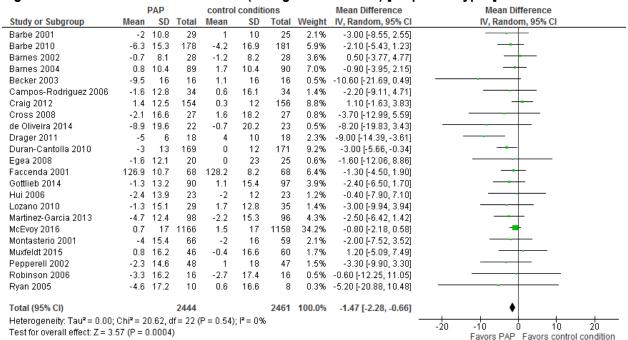
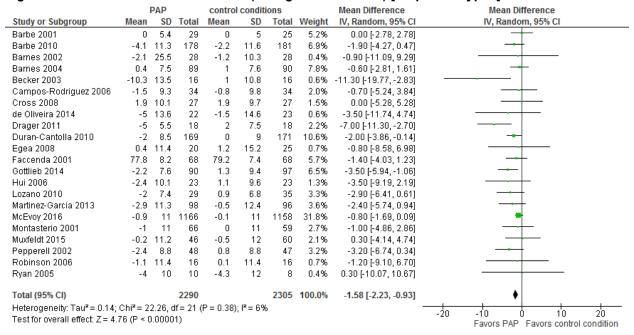




Figure S15. PAP vs. control conditions (change in 24-hr DBP) [All patient types]\*



<sup>\*</sup>Change scores were compared except for Faccenda 2001 in which post-treatment values were compared

Figure S16. PAP vs. control conditions (change in mean 24-hr BP) [All patient types]

|                                    |            | PAP    |       | contro     | l condit         | ions  |        | Mean Difference        | Mean Difference           |
|------------------------------------|------------|--------|-------|------------|------------------|-------|--------|------------------------|---------------------------|
| Study or Subgroup                  | Mean       | SD     | Total | Mean       | SD               | Total | Weight | IV, Random, 95% CI     | IV, Random, 95% CI        |
| Becker 2003                        | -9.8       | 13.4   | 16    | 0.6        | 11               | 16    | 2.1%   | -10.40 [-18.89, -1.91] |                           |
| Campos-Rodriguez 2006              | -1.2       | 10.1   | 34    | -0.3       | 10.4             | 34    | 6.4%   | -0.90 [-5.77, 3.97]    | <del></del>               |
| Duran-Cantolla 2010                | -2         | 8.5    | 169   | 0          | 9                | 171   | 44.0%  | -2.00 [-3.86, -0.14]   | -                         |
| Gottlieb 2014                      | -1.7       | 8.4    | 90    | 1.3        | 10.3             | 97    | 21.1%  | -3.00 [-5.69, -0.31]   |                           |
| Hui 2006                           | -2.4       | 9.8    | 23    | 1.3        | 10.1             | 23    | 4.6%   | -3.70 [-9.45, 2.05]    | <del></del>               |
| Martinez-Garcia 2013               | -4.1       | 12.4   | 98    | -0.8       | 14.5             | 96    | 10.6%  | -3.30 [-7.10, 0.50]    | <del></del>               |
| Pepperell 2002                     | -2.5       | 9.6    | 48    | 0.8        | 10.8             | 47    | 9.0%   | -3.30 [-7.41, 0.81]    | <del></del>               |
| Robinson 2006                      | -2         | 12     | 16    | -1.2       | 12.4             | 16    | 2.1%   | -0.80 [-9.26, 7.66]    |                           |
| Total (95% CI)                     |            |        | 494   |            |                  | 500   | 100.0% | -2.63 [-3.86, -1.39]   | <b>◆</b>                  |
| Heterogeneity: Tau² = 0.00;        |            |        | ,     | = 0.69); P | <sup>2</sup> =0% |       |        | -                      | -20 -10 0 10 20           |
| Test for overall effect: $Z = 4$ . | .17 (P < 0 | 0.0001 | )     |            |                  |       |        |                        | Favors PAP Favors Control |

Figure S17. PAP vs. control conditions (change in nighttime SBP) [Resistant hypertensive patients]

|                                                       |      | PAP  |       | contro   | l conditi  | ons   |        | Mean Difference      | Mean Difference                              |
|-------------------------------------------------------|------|------|-------|----------|------------|-------|--------|----------------------|----------------------------------------------|
| Study or Subgroup                                     | Mean | SD   | Total | Mean     | SD         | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                           |
| de Oliveira 2014                                      | -9.3 | 17.4 | 22    | -0.5     | 17.6       | 23    | 7.8%   | -8.80 [-19.03, 1.43] | <del></del>                                  |
| Lozano 2010                                           | -1.9 | 19.3 | 29    | 3.8      | 17.3       | 35    | 9.9%   | -5.70 [-14.77, 3.37] | <del></del>                                  |
| Martinez-Garcia 2013                                  | -6.6 | 16.1 | 98    | -2.6     | 14.8       | 98    | 43.4%  | -4.00 [-8.33, 0.33]  | <del></del>                                  |
| Muxfeldt 2015                                         | 1.2  | 17.7 | 46    | 1.8      | 1.7        | 60    | 30.9%  | -0.60 [-5.73, 4.53]  | <del></del>                                  |
| Pedrosa 2013                                          | 1.6  | 14.2 | 19    | 2.7      | 16         | 16    | 8.0%   | -1.10 [-11.21, 9.01] | <del></del>                                  |
| Total (95% CI)                                        |      |      | 214   |          |            | 232   | 100.0% | -3.26 [-6.11, -0.41] | •                                            |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z |      |      |       | (P = 0.6 | 0); I² = 0 | %     |        | -                    | -20 -10 0 10 20<br>Favors PAP Favors Control |

Figure S18. PAP vs. control conditions (change in nighttime DBP) [Resistant hypertensive patients]

|                            |          | PAP      |           | contro  | l conditi     | ons   |        | Mean Difference      | Mean Difference           |  |  |
|----------------------------|----------|----------|-----------|---------|---------------|-------|--------|----------------------|---------------------------|--|--|
| Study or Subgroup          | Mean     | SD       | Total     | Mean    | SD            | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI        |  |  |
| de Oliveira 2014           | -5       | 13.6     | 22        | -1.5    | 14.6          | 23    | 7.1%   | -3.50 [-11.74, 4.74] | <del></del>               |  |  |
| Lozano 2010                | -3.1     | 8.4      | 29        | 1.5     | 11.1          | 35    | 20.9%  | -4.60 [-9.38, 0.18]  | <del></del>               |  |  |
| Martinez-Garcia 2013       | -3.1     | 12       | 98        | -1.1    | 12.4          | 96    | 40.6%  | -2.00 [-5.43, 1.43]  | <del></del>               |  |  |
| Muxfeldt 2015              | 0.6      | 11.5     | 46        | 1       | 11.8          | 60    | 24.0%  | -0.40 [-4.87, 4.07]  | <del></del>               |  |  |
| Pedrosa 2013               | 0.8      | 12       | 19        | 1.9     | 12.2          | 16    | 7.4%   | -1.10 [-9.15, 6.95]  |                           |  |  |
| Total (95% CI)             |          |          | 214       |         |               | 230   | 100.0% | -2.20 [-4.39, -0.01] | •                         |  |  |
| Heterogeneity: Tau² = 0    | .00; Chi | e = 1.7° | 7, df = 4 | P = 0.7 | 8); $I^2 = 0$ | %     |        |                      | -20 -10 0 10 20           |  |  |
| Test for overall effect: Z | = 1.97 ( | P = 0.0  | 15)       |         |               |       |        |                      | Favors PAP Favors Control |  |  |

## Figure S19. PAP vs. control conditions (change in daytime SBP) [Resistant hypertensive patients]

| _                          |           |         |           |             | -          | _     |        |                      |                           |
|----------------------------|-----------|---------|-----------|-------------|------------|-------|--------|----------------------|---------------------------|
|                            |           | PAP     |           | contro      | l conditi  | ions  |        | Mean Difference      | Mean Difference           |
| Study or Subgroup          | Mean      | SD      | Total     | Mean        | SD         | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI        |
| de Oliveira 2014           | -8.8      | 21.6    | 22        | -1.3        | 19.8       | 23    | 5.8%   | -7.50 [-19.62, 4.62] |                           |
| Lozano 2010                | -4        | 16      | 29        | 1.2         | 12.1       | 35    | 17.2%  | -5.20 [-12.27, 1.87] | <del></del>               |
| Martinez-Garcia 2013       | -3.2      | 13      | 98        | -2.6        | 14.8       | 96    | 55.7%  | -0.60 [-4.52, 3.32]  | <del>-</del>              |
| Muxfeldt 2015              | 1         | 16.5    | 46        | 0.4         | 16.6       | 60    | 21.2%  | 0.60 [-5.75, 6.95]   | <del>-</del>              |
| Total (95% CI)             |           |         | 195       |             |            | 214   | 100.0% | -1.54 [-4.47, 1.39]  | •                         |
| Heterogeneity: Tau² = 0    | 0.00; Chř | = 2.6   | 1, df = 3 | 8 (P = 0.4) | 5); l² = 0 | 1%    |        |                      | -20 -10 0 10 20           |
| Test for overall effect: Z | = 1.03 (  | P = 0.3 | 30)       |             |            |       |        |                      | Favors PAP Favors Control |

# Figure S20. PAP vs. control conditions (change in daytime DBP) [Resistant hypertensive patients]

|                                                       |      |      |       |            | control conditions Mean Difference |       |                                      |                      |  | Mean Difference    |  |  |  |
|-------------------------------------------------------|------|------|-------|------------|------------------------------------|-------|--------------------------------------|----------------------|--|--------------------|--|--|--|
| Study or Subgroup                                     | Mean | SD   | Total | Mean       | SD                                 | Total | Weight                               | IV, Random, 95% CI   |  | IV, Random, 95% CI |  |  |  |
| de Oliveira 2014                                      | -5   | 14.8 | 22    | -1.3       | 15.2                               | 23    | 6.5%                                 | -3.70 [-12.47, 5.07] |  | <del></del>        |  |  |  |
| Lozano 2010                                           | 0.1  | 11   | 29    | 0.9        | 6.4                                | 35    | 24.5%                                | -0.80 [-5.33, 3.73]  |  | <del></del>        |  |  |  |
| Martinez-Garcia 2013                                  | -3   | 12   | 98    | -1.4       | 11.9                               | 96    | 44.5%                                | -1.60 [-4.96, 1.76]  |  | <del></del>        |  |  |  |
| Muxfeldt 2015                                         | -0.1 | 11.5 | 46    | -0.2       | 12.2                               | 60    | 24.5%                                | 0.10 [-4.44, 4.64]   |  | <del>-</del>       |  |  |  |
| Total (95% CI)                                        |      |      | 195   |            |                                    | 214   | 100.0%                               | -1.13 [-3.37, 1.12]  |  | •                  |  |  |  |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z |      |      |       | B (P = 0.8 |                                    | -20   | -10 0 10 2 Favors PAP Favors Control | <del>  -</del><br>:0 |  |                    |  |  |  |

# Figure S21. PAP vs. control conditions (change in 24-hr SBP) [Resistant hypertensive patients]

|                                                       |      | PAP control conditions |       |      |      |                                    | Mean Difference Mean Difference |                      |  | Mean Difference    |  |
|-------------------------------------------------------|------|------------------------|-------|------|------|------------------------------------|---------------------------------|----------------------|--|--------------------|--|
| Study or Subgroup                                     | Mean | SD                     | Total | Mean | SD   | Total                              | Weight                          | IV, Random, 95% CI   |  | IV, Random, 95% CI |  |
| de Oliveira 2014                                      | -8.9 | 19.6                   | 22    | -0.7 | 20.2 | 23                                 | 6.2%                            | -8.20 [-19.83, 3.43] |  | <del></del>        |  |
| Lozano 2010                                           | -1.3 | 15.1                   | 29    | 1.7  | 12.8 | 35                                 | 17.5%                           | -3.00 [-9.94, 3.94]  |  | <del></del>        |  |
| Martinez-Garcia 2013                                  | -4.7 | 12.4                   | 98    | -2.2 | 15.3 | 96                                 | 54.8%                           | -2.50 [-6.42, 1.42]  |  | <del></del>        |  |
| Muxfeldt 2015                                         | 0.8  | 16.2                   | 46    | -0.4 | 16.5 | 60                                 | 21.4%                           | 1.20 [-5.07, 7.47]   |  | <del></del>        |  |
| Total (95% CI)                                        |      |                        | 195   |      |      | 214                                | 100.0%                          | -2.15 [-5.05, 0.75]  |  | •                  |  |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z |      |                        |       |      | -20  | -10 0 10 Favors PAP Favors Control | 20                              |                      |  |                    |  |

# Figure S22. PAP vs. control conditions (change in 24-hr DBP) [Resistant hypertensive patients]

|                                                       |      | PAP  |       | contro                                    | l conditi | ons   |        | Mean Difference      | Mean Difference    |  |  |
|-------------------------------------------------------|------|------|-------|-------------------------------------------|-----------|-------|--------|----------------------|--------------------|--|--|
| Study or Subgroup                                     | Mean | SD   | Total | Mean                                      | SD        | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI |  |  |
| de Oliveira 2014                                      | -5   | 13.6 | 22    | -1.5                                      | 14.6      | 23    | 6.2%   | -3.50 [-11.74, 4.74] |                    |  |  |
| Lozano 2010                                           | -2   | 7.4  | 29    | 0.9                                       | 6.8       | 35    | 34.3%  | -2.90 [-6.41, 0.61]  | <del></del>        |  |  |
| Martinez-Garcia 2013                                  | -2.9 | 11.3 | 98    | -0.5                                      | 12.4      | 96    | 37.9%  | -2.40 [-5.74, 0.94]  | <del></del>        |  |  |
| Muxfeldt 2015                                         | -0.2 | 11.2 | 46    | -0.5                                      | 12        | 60    | 21.5%  | 0.30 [-4.14, 4.74]   | <del>-</del>       |  |  |
| Total (95% CI)                                        |      |      | 195   |                                           |           | 214   | 100.0% | -2.06 [-4.12, -0.00] | •                  |  |  |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z |      |      |       | -20 -10 0 10<br>Favors PAP Favors Control | 20        |       |        |                      |                    |  |  |

## Figure S23. PAP vs. control conditions (change in nighttime SBP) [Hypertensive patients]

|                                                       |      | PAP  |       | contro   | condit     | ions  |                         | Mean Difference      |  | Mean Difference   |   |  |  |
|-------------------------------------------------------|------|------|-------|----------|------------|-------|-------------------------|----------------------|--|-------------------|---|--|--|
| Study or Subgroup                                     | Mean | SD   | Total | Mean     | SD         | Total | Weight                  | IV, Random, 95% CI   |  | IV, Random, 95% ( | 1 |  |  |
| Duran-Cantolla 2010                                   | -4   | 13.5 | 169   | 0        | 14.5       | 171   | 71.2%                   | -4.00 [-6.98, -1.02] |  |                   |   |  |  |
| Gottlieb 2014                                         | -1.9 | 15.3 | 93    | 1.9      | 17.6       | 97    | 28.8%                   | -3.80 [-8.48, 0.88]  |  |                   |   |  |  |
| Total (95% CI)                                        |      |      | 262   |          |            | 268   | 100.0%                  | -3.94 [-6.46, -1.43] |  | •                 |   |  |  |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z |      |      | •     | (P = 0.9 | 4); l² = 0 | -20   | -10 0 Favors PAP Favors | 10 20<br>Control     |  |                   |   |  |  |

# Figure S24. PAP vs. control conditions (change in nighttime DBP) [Hypertensive patients]

|                                                       |      | PAP control conditions |       |                  |             |       |        | Mean Difference      | Mean Difference |           |           |  |
|-------------------------------------------------------|------|------------------------|-------|------------------|-------------|-------|--------|----------------------|-----------------|-----------|-----------|--|
| Study or Subgroup                                     | Mean | SD                     | Total | Mean             | SD          | Total | Weight | IV, Random, 95% CI   |                 | IV, Rando | m, 95% CI |  |
| Duran-Cantolla 2010                                   | -2   | 10                     | 169   | 0                | 10          | 171   | 55.1%  | -2.00 [-4.13, 0.13]  |                 | -         |           |  |
| Gottlieb 2014                                         | -2.1 | 8.2                    | 93    | 2.2              | 9.8         | 97    | 44.9%  | -4.30 [-6.87, -1.73] |                 | -         |           |  |
| Total (95% CI)                                        |      |                        | 262   |                  |             | 268   | 100.0% | -3.03 [-5.28, -0.79] |                 | •         |           |  |
| Heterogeneity: Tau² = 1<br>Test for overall effect: Z |      | -20                    | -10 C | 10<br>Favors Cor | 20<br>ntrol |       |        |                      |                 |           |           |  |

# Figure S25. PAP vs. control conditions (change in daytime SBP) [Hypertensive patients]

|                                                       |      | PAP control conditions |              |                  |         |       |        | Mean Difference      | Mean Difference |          |          |      |  |
|-------------------------------------------------------|------|------------------------|--------------|------------------|---------|-------|--------|----------------------|-----------------|----------|----------|------|--|
| Study or Subgroup                                     | Mean | SD                     | Total        | Mean             | SD      | Total | Weight | IV, Random, 95% CI   |                 | IV, Rand | lom, 959 | % CI |  |
| Duran-Cantolla 2010                                   | -3   | 13                     | 169          | 0                | 12      | 171   | 69.9%  | -3.00 [-5.66, -0.34] |                 | -        | -        |      |  |
| Gottlieb 2014                                         | -1.2 | 13.2                   | 93           | 0.8              | 15.3    | 97    | 30.1%  | -2.00 [-6.06, 2.06]  |                 | _        | +        |      |  |
| Total (95% CI)                                        |      |                        | 262          |                  |         | 268   | 100.0% | -2.70 [-4.92, -0.47] |                 | •        | •        |      |  |
| Heterogeneity: Tau² = 0<br>Test for overall effect: Z | -20  | -10<br>Favors PAF      | 0<br>P Favoi | 10<br>rs Control | 20<br>I |       |        |                      |                 |          |          |      |  |

## Figure S26. PAP vs. control conditions (change in daytime DBP) [Hypertensive patients]

|                                                                                                                                              | F    | PAP control conditions |       |      |     |       |        | Mean Difference Mean Differer |  |                 |              | nce               |    |
|----------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|-------|------|-----|-------|--------|-------------------------------|--|-----------------|--------------|-------------------|----|
| Study or Subgroup                                                                                                                            | Mean | SD                     | Total | Mean | SD  | Total | Weight | IV, Random, 95% CI            |  | IV, Ra          | ndom, 95     | 5% CI             |    |
| Duran-Cantolla 2010                                                                                                                          | -2   | 8                      | 169   | 0    | 9   | 171   | 66.6%  | -2.00 [-3.81, -0.19]          |  |                 | -            |                   |    |
| Gottlieb 2014                                                                                                                                | -2.2 | 8                      | 93    | 1    | 9.9 | 97    | 33.4%  | -3.20 [-5.75, -0.65]          |  | _               |              |                   |    |
| Total (95% CI)                                                                                                                               |      |                        | 262   |      |     | 268   | 100.0% | -2.40 [-3.88, -0.92]          |  |                 | <b>•</b>     |                   |    |
| Heterogeneity: $Tau^2 = 0.00$ ; $Chi^2 = 0.56$ , $df = 1$ ( $P = 0.45$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 3.19$ ( $P = 0.001$ ) |      |                        |       |      |     |       |        |                               |  | -10<br>Favors F | 0<br>AP Favo | 10<br>ors Control | 20 |

## Figure S27. PAP vs. control conditions (change in 24-hr SBP) [Hypertensive patients]

|                                                                |      | PAP  |          | contro      | l conditi | ions  |        | Mean Difference       |     | Mean Difference                          |   |
|----------------------------------------------------------------|------|------|----------|-------------|-----------|-------|--------|-----------------------|-----|------------------------------------------|---|
| Study or Subgroup                                              | Mean | SD   | Total    | Mean        | SD        | Total | Weight | IV, Random, 95% CI    |     | IV, Random, 95% CI                       |   |
| Barbe 2010                                                     | -6.3 | 15.3 | 178      | -4.2        | 16.9      | 181   | 28.2%  | -2.10 [-5.43, 1.23]   |     |                                          |   |
| Campos-Rodriguez 2006                                          | -1.6 | 12.8 | 34       | 0.6         | 16.1      | 34    | 6.6%   | -2.20 [-9.11, 4.71]   |     | <del></del>                              |   |
| Duran-Cantolla 2010                                            | -3   | 13   | 169      | 0           | 12        | 171   | 44.3%  | -3.00 [-5.66, -0.34]  |     |                                          |   |
| Gottlieb 2014                                                  | -1.3 | 13.2 | 90       | 1.1         | 15.4      | 97    | 18.6%  | -2.40 [-6.50, 1.70]   |     | <del></del>                              |   |
| Robinson 2006                                                  | -3.3 | 16.2 | 16       | -2.7        | 17.4      | 16    | 2.3%   | -0.60 [-12.25, 11.05] |     |                                          |   |
| Total (95% CI)                                                 |      |      | 487      |             |           | 499   | 100.0% | -2.53 [-4.30, -0.76]  |     | •                                        |   |
| Heterogeneity: Tau² = 0.00;<br>Test for overall effect: Z = 2. |      |      | = 4 (P = | = 0.99); l² | '= 0%     |       |        |                       | -20 | -10 0 10 20<br>Favors PAP Favors Control | _ |

# Figure S28. PAP vs. control conditions (change in 24-hr DBP) [Hypertensive patients]

|                                                                            |      | PAP  |       | contro                                       | control conditions |       |        | Mean Difference      | Mean Difference           |
|----------------------------------------------------------------------------|------|------|-------|----------------------------------------------|--------------------|-------|--------|----------------------|---------------------------|
| Study or Subgroup                                                          | Mean | SD   | Total | Mean                                         | SD                 | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI        |
| Barbe 2010                                                                 | -4.1 | 11.3 | 178   | -2.2                                         | 11.6               | 181   | 25.5%  | -1.90 [-4.27, 0.47]  |                           |
| Campos-Rodriguez 2006                                                      | -1.5 | 9.3  | 34    | -0.8                                         | 9.8                | 34    | 6.9%   | -0.70 [-5.24, 3.84]  | <del></del>               |
| Duran-Cantolla 2010                                                        | -2   | 8.5  | 169   | 0                                            | 9                  | 171   | 41.3%  | -2.00 [-3.86, -0.14] |                           |
| Gottlieb 2014                                                              | -2.2 | 7.6  | 90    | 1.3                                          | 9.4                | 97    | 24.0%  | -3.50 [-5.94, -1.06] |                           |
| Robinson 2006                                                              | -1.1 | 11.4 | 16    | 0.1                                          | 11.4               | 16    | 2.3%   | -1.20 [-9.10, 6.70]  |                           |
| Total (95% CI)                                                             |      |      | 487   |                                              |                    | 499   | 100.0% | -2.23 [-3.42, -1.03] | <b>◆</b>                  |
| Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 3. |      |      |       | -20 -10 0 10 20<br>Favors PAP Favors Control |                    |       |        |                      |                           |
|                                                                            | ,    |      | •     |                                              |                    |       |        |                      | Favors PAP Favors Control |

# Figure S29. PAP vs. control conditions (change in mean 24-hr BP) [Hypertensive patients]

|                                         |            | PAP     |       | contro          | l conditi | ions  |        | Mean Difference      | Mean Difference           |  |  |
|-----------------------------------------|------------|---------|-------|-----------------|-----------|-------|--------|----------------------|---------------------------|--|--|
| Study or Subgroup                       | Mean       | SD      | Total | Mean            | SD        | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI        |  |  |
| Campos-Rodriguez 2006                   | -1.2       | 10.1    | 34    | -0.3            | 10.4      | 34    | 8.7%   | -0.90 [-5.77, 3.97]  | <del></del>               |  |  |
| Duran-Cantolla 2010                     | -2         | 8.5     | 169   | 0               | 9         | 171   | 59.7%  | -2.00 [-3.86, -0.14] | <del></del>               |  |  |
| Gottlieb 2014                           | -1.7       | 8.4     | 90    | 1.3             | 10.3      | 97    | 28.7%  | -3.00 [-5.69, -0.31] | <del></del>               |  |  |
| Robinson 2006                           | -2         | 12      | 16    | -1.2            | 12.4      | 16    | 2.9%   | -0.80 [-9.26, 7.66]  |                           |  |  |
| Total (95% CI)                          |            |         | 309   |                 |           | 318   | 100.0% | -2.16 [-3.59, -0.72] | •                         |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; | Chi²=0     | .76, df |       | -20 -10 0 10 20 |           |       |        |                      |                           |  |  |
| Test for overall effect: $Z = 2$ .      | 94 (P = 0) | 0.003)  |       |                 |           |       |        |                      | Favors PAP Favors Control |  |  |

# Figure S30. PAP vs. control conditions (change in nighttime SBP) [Normotensive patients]

| _                                               |      |      |                                              |         | •       | •     | _      | •                    |                    |
|-------------------------------------------------|------|------|----------------------------------------------|---------|---------|-------|--------|----------------------|--------------------|
|                                                 |      | PAP  |                                              | control | conditi | ions  |        | Mean Difference      | Mean Difference    |
| Study or Subgroup                               | Mean | SD   | Total                                        | Mean    | SD      | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI |
| Arias 2005                                      | -1   | 14.1 | 25                                           | -1      | 12      | 25    | 52.3%  | 0.00 [-7.26, 7.26]   | <del>-</del>       |
| Drager 2007                                     | -3   | 9.5  | 12                                           | 1       | 9.5     | 12    | 47.7%  | -4.00 [-11.60, 3.60] | <del></del>        |
| Total (95% CI)                                  |      |      | 37                                           |         |         | 37    | 100.0% | -1.91 [-7.16, 3.34]  | •                  |
| Heterogeneity: Tau²:<br>Test for overall effect |      |      | -20 -10 0 10 20<br>Favors PAP Favors Control |         |         |       |        |                      |                    |

# Figure S31. PAP vs. control conditions (change in nighttime DBP) [Normotensive patients]

|                                                  | F    | PAP control conditions |       |                                              |     |       |        | Mean Difference     | Mean Difference    |
|--------------------------------------------------|------|------------------------|-------|----------------------------------------------|-----|-------|--------|---------------------|--------------------|
| Study or Subgroup                                | Mean | SD                     | Total | Mean                                         | SD  | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI |
| Arias 2005                                       | -2   | 8                      | 25    | -1                                           | 6   | 25    | 74.2%  | -1.00 [-4.92, 2.92] | -                  |
| Drager 2007                                      | -4   | 8                      | 12    | -3                                           | 8.6 | 12    | 25.8%  | -1.00 [-7.65, 5.65] | <del></del>        |
| Total (95% CI)                                   |      |                        | 37    |                                              |     | 37    | 100.0% | -1.00 [-4.38, 2.38] | •                  |
| Heterogeneity: Tau² =<br>Test for overall effect |      |                        |       | -20 -10 0 10 20<br>Favors PAP Favors Control |     |       |        |                     |                    |

# Figure S32. PAP vs. control conditions (change in daytime SBP) [Normotensive patients]

|                                                                                                                                |      | contro | l conditi | ions |    | Mean Difference | Mean Difference |                                              |                    |
|--------------------------------------------------------------------------------------------------------------------------------|------|--------|-----------|------|----|-----------------|-----------------|----------------------------------------------|--------------------|
| Study or Subgroup                                                                                                              | Mean | SD     | Total     | Mean | SD | Total           | Weight          | IV, Random, 95% CI                           | IV, Random, 95% CI |
| Arias 2005                                                                                                                     | 0    | 9      | 25        | 0    | 11 | 25              | 61.3%           | 0.00 [-5.57, 5.57]                           | <b></b>            |
| Drager 2007                                                                                                                    | -3   | 7.3    | 12        | -2   | 10 | 12              | 38.7%           | -1.00 [-8.01, 6.01]                          |                    |
| Total (95% CI)                                                                                                                 |      |        | 37        |      |    | 37              | 100.0%          | -0.39 [-4.75, 3.97]                          | •                  |
| Heterogeneity: Tau $^2$ = 0.00; Chi $^2$ = 0.05, df = 1 (P = 0.83); $I^2$ = 0%<br>Test for overall effect: Z = 0.17 (P = 0.86) |      |        |           |      |    |                 |                 | -20 -10 0 10 20<br>Favors PAP Favors Control |                    |

### Figure S33. PAP vs. control conditions (change in daytime DBP) [Normotensive patients]

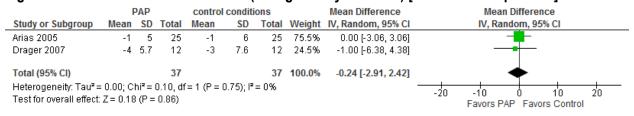



Figure S34. PAP vs. control conditions (CV events) [RCTs]

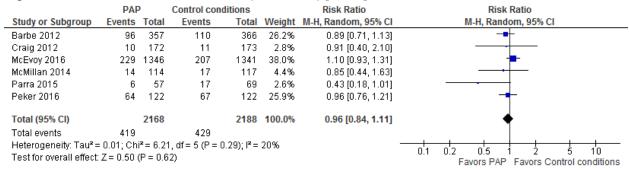



Figure S35. PAP vs. control conditions (CV events) [non-RCTs]

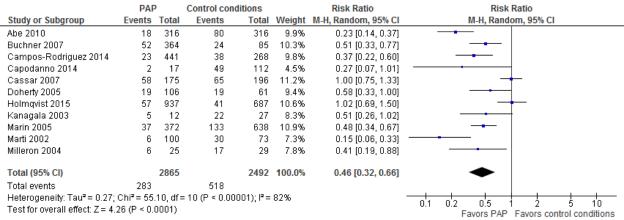



Figure S36. PAP vs. control conditions (All-cause mortality) [RCTs]

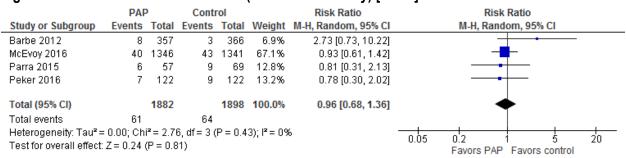



Figure S37. PAP vs. control conditions (All-cause mortality) [non-RCTs, all patients]

| J                                       |                        |          |                 | - 1                     |        | · · · · · · · · · · · · · · · · · · · | , -                                                         |
|-----------------------------------------|------------------------|----------|-----------------|-------------------------|--------|---------------------------------------|-------------------------------------------------------------|
|                                         | PAF                    | )        | Control cond    | ditions                 |        | Risk Ratio                            | Risk Ratio                                                  |
| Study or Subgroup                       | Events                 | Total    | Events          | Total                   | Weight | M-H, Random, 95% CI                   | M-H, Random, 95% CI                                         |
| Campos-Rodriguez 2012                   | 9                      | 576      | 5               | 278                     | 10.7%  | 0.87 [0.29, 2.57]                     | -                                                           |
| Capodanno 2014                          | 0                      | 17       | 13              | 112                     | 3.1%   | 0.23 [0.01, 3.74]                     |                                                             |
| Cassar 2007                             | 4                      | 175      | 14              | 196                     | 10.7%  | 0.32 [0.11, 0.95]                     |                                                             |
| Doherty 2005                            | 8                      | 114      | 9               | 60                      | 12.5%  | 0.47 [0.19, 1.15]                     | <del></del>                                                 |
| Holmqvist 2015                          | 68                     | 937      | 54              | 687                     | 18.0%  | 0.92 [0.65, 1.30]                     | +                                                           |
| Kasai 2008                              | 7                      | 65       | 10              | 23                      | 13.1%  | 0.25 [0.11, 0.57]                     |                                                             |
| Marin 2005                              | 13                     | 372      | 47              | 638                     | 15.6%  | 0.47 [0.26, 0.87]                     | -                                                           |
| Marti 2002                              | 6                      | 100      | 30              | 73                      | 13.3%  | 0.15 [0.06, 0.33]                     |                                                             |
| Wang 2007                               | 0                      | 14       | 9               | 37                      | 3.1%   | 0.13 [0.01, 2.15]                     |                                                             |
| Total (95% CI)                          |                        | 2370     |                 | 2104                    | 100.0% | 0.40 [0.24, 0.69]                     | •                                                           |
| Total events                            | 115                    |          | 191             |                         |        |                                       |                                                             |
| Heterogeneity: Tau <sup>2</sup> = 0.37; | Chi <sup>2</sup> = 25. | .67, df= | = 8 (P = 0.001) | ); I <sup>z</sup> = 699 | Х      |                                       |                                                             |
| Test for overall effect: $Z = 3$ .      |                        |          | • •             | •                       |        |                                       | 0.001 0.1 1 10 1000<br>Favors PAP Favors Control conditions |
|                                         | •                      |          |                 |                         |        |                                       | FAVOIS FAF FAVOIS CONTION CONDITIONS                        |

Figure S38. PAP vs. control conditions (All-cause mortality) [non-RCTs, patients with HF]

|                                                   | PAF    | )     | Conti  | Control Risk Ratio |             |                     |       | Risk Ratio            |                     |      |  |
|---------------------------------------------------|--------|-------|--------|--------------------|-------------|---------------------|-------|-----------------------|---------------------|------|--|
| Study or Subgroup                                 | Events | Total | Events | Total              | Weight      | M-H, Random, 95% CI |       | M-H, Randon           | n, 95% CI           |      |  |
| Kasai 2008                                        | 7      | 65    | 10     | 23                 | 91.6%       | 0.25 [0.11, 0.57]   |       | -                     |                     |      |  |
| Wang 2007                                         | 0      | 14    | 9      | 37                 | 8.4%        | 0.13 [0.01, 2.15]   | _     | •                     | -                   |      |  |
| Total (95% CI)                                    |        | 79    |        | 60                 | 100.0%      | 0.24 [0.11, 0.53]   |       | •                     |                     |      |  |
| Total events                                      | 7      |       | 19     |                    |             |                     |       |                       |                     |      |  |
| Heterogeneity: Tau² =<br>Test for overall effect: |        |       |        | P = 0.6            | 5); I² = 09 | 6                   | 0.001 | 0.1 1<br>Favors PAP F | 10<br>avors Control | 1000 |  |

Figure S39. PAP vs. control conditions (All-cause mortality) [non-RCTs, patients without HF]

|                                    | PAP           |              |            |                   |        | Risk Ratio                 |      | Risk Ratio           |    |     |  |
|------------------------------------|---------------|--------------|------------|-------------------|--------|----------------------------|------|----------------------|----|-----|--|
| Study or Subgroup                  | Events        | ents Total E |            | Events Total W    |        | Veight M-H, Random, 95% CI |      | M-H, Random, 95% CI  |    |     |  |
| Campos-Rodriguez 2012              | 9             | 576          | 5          | 278               | 18.6%  | 0.87 [0.29, 2.57]          |      |                      |    |     |  |
| Capodanno 2014                     | 0             | 17           | 13         | 112               | 4.5%   | 0.23 [0.01, 3.74]          |      | -                    |    |     |  |
| Doherty 2005                       | 8             | 114          | 9          | 60                | 22.4%  | 0.47 [0.19, 1.15]          |      | <del></del>          |    |     |  |
| Marin 2005                         | 13            | 372          | 47         | 638               | 30.2%  | 0.47 [0.26, 0.87]          |      |                      |    |     |  |
| Marti 2002                         | 6             | 100          | 30         | 73                | 24.3%  | 0.15 [0.06, 0.33]          |      | -                    |    |     |  |
| Total (95% CI)                     |               | 1179         |            | 1161              | 100.0% | 0.38 [0.21, 0.72]          |      | •                    |    |     |  |
| Total events                       | 36            |              | 104        |                   |        |                            |      |                      |    |     |  |
| Heterogeneity: Tau² = 0.25;        | $Chi^2 = 8.3$ | 32, df=      | 4 (P = 0.0 | 08); <b>I</b> ² = | 52%    |                            | 0.01 | 0.1 1                | 10 | 100 |  |
| Test for overall effect: $Z = 2$ . |               |              |            |                   |        |                            | 0.01 | Favors PAP Favors Co |    | 100 |  |

Figure S40. PAP vs. Control Conditions (change in Executive Function, Shifting)

| •                                                |       |      |                                           |       | •      | ,     |        |                      |                                                  |
|--------------------------------------------------|-------|------|-------------------------------------------|-------|--------|-------|--------|----------------------|--------------------------------------------------|
|                                                  |       | PAP  |                                           | C     | ontrol |       |        | Std. Mean Difference | Std. Mean Difference                             |
| Study or Subgroup                                | Mean  | SD   | Total                                     | Mean  | SD     | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                               |
| Barbe 2001                                       | 27    | 75.4 | 29                                        | -2    | 55     | 25    | 8.4%   | 0.43 [-0.11, 0.97]   | <del>                                     </del> |
| Barnes 2004                                      | 12.6  | 36.8 | 89                                        | 11.7  | 37.9   | 90    | 23.4%  | 0.02 [-0.27, 0.32]   | <del>-</del>                                     |
| Dalmases 2015                                    | 148.9 | 71.1 | 16                                        | 200.5 | 80.8   | 15    | 4.9%   | -0.66 [-1.39, 0.06]  |                                                  |
| Engleman 1998                                    | 15    | 36.8 | 23                                        | 16    | 36.8   | 23    | 7.5%   | -0.03 [-0.60, 0.55]  | <del></del> -                                    |
| Engleman 1999                                    | 13    | 34.5 | 34                                        | 11    | 31.8   | 34    | 10.6%  | 0.06 [-0.42, 0.54]   | <del></del>                                      |
| McMillan 2014                                    | 3.3   | 56.4 | 111                                       | 6.4   | 51.7   | 115   | 27.5%  | -0.06 [-0.32, 0.20]  | <del></del>                                      |
| Montasterio 2001                                 | 15    | 43.2 | 66                                        | 25    | 43     | 59    | 17.6%  | -0.23 [-0.58, 0.12]  | <del></del>                                      |
| Total (95% CI)                                   |       |      | 368                                       |       |        | 361   | 100.0% | -0.04 [-0.21, 0.12]  | •                                                |
| Heterogeneity: Tau² :<br>Test for overall effect |       |      | -1 -0.5 0 0.5 1 Favors PAP Favors control |       |        |       |        |                      |                                                  |

Figure S41. PAP vs. Control Conditions (change in Executive Function, Updating)

|                                                                                                           | PAP   |      |       |       | ontrol |       |        | Std. Mean Difference | Std. Mean Difference                         |  |  |
|-----------------------------------------------------------------------------------------------------------|-------|------|-------|-------|--------|-------|--------|----------------------|----------------------------------------------|--|--|
| Study or Subgroup                                                                                         | Mean  | SD   | Total | Mean  | SD     | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                           |  |  |
| Barbe 2001                                                                                                | 1     | 4    | 29    | 0.4   | 4.3    | 25    | 9.9%   | 0.14 [-0.39, 0.68]   | <del></del>                                  |  |  |
| Barnes 2004                                                                                               | -0.1  | 1.2  | 80    | 0.3   | 1.2    | 80    | 18.5%  | -0.33 [-0.64, -0.02] |                                              |  |  |
| Dalmases 2015                                                                                             | 5.2   | 1.9  | 16    | 3.8   | 1.5    | 15    | 6.1%   | 0.79 [0.06, 1.53]    | <del></del>                                  |  |  |
| Engleman 1998                                                                                             | 6     | 9.6  | 23    | 4     | 9.6    | 23    | 8.9%   | 0.20 [-0.37, 0.78]   | <del>-   •</del>                             |  |  |
| Engleman 1999                                                                                             | 9     | 11.5 | 34    | 5     | 13     | 34    | 11.5%  | 0.32 [-0.16, 0.80]   | <del>  •</del>                               |  |  |
| Kushida 2012                                                                                              | 0.072 | 0.6  | 426   | 0.018 | 0.63   | 374   | 28.6%  | 0.09 [-0.05, 0.23]   | <del> -</del>                                |  |  |
| Montasterio 2001                                                                                          | 1.3   | 4.1  | 66    | 1.5   | 4      | 59    | 16.5%  | -0.05 [-0.40, 0.30]  | <del></del>                                  |  |  |
| Total (95% CI)                                                                                            |       |      | 674   |       |        | 610   | 100.0% | 0.07 [-0.13, 0.28]   | •                                            |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.03; Chi <sup>2</sup> = 11.88, df = 6 (P = 0.06); I <sup>2</sup> = 49% |       |      |       |       |        |       |        | _                    | 1 15 1 15                                    |  |  |
| Test for overall effect: Z = 0.72 (P = 0.47)                                                              |       |      |       |       |        |       |        |                      | -1 -0.5 0 0.5 1<br>Favors Control Favors PAP |  |  |

Figure S42. PAP vs. Control Conditions (change in Executive Function, Fluid Reasoning)

|                                                   | PAP  |     |       | Co      | ontro | I                 |        | Std. Mean Difference | Std. Mean Difference                      |
|---------------------------------------------------|------|-----|-------|---------|-------|-------------------|--------|----------------------|-------------------------------------------|
| Study or Subgroup                                 | Mean | SD  | Total | Mean    | SD    | Total             | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                        |
| Barbe 2001                                        | 1    | 5.4 | 29    | 0       | 1.5   | 25                | 18.3%  | 0.24 [-0.30, 0.78]   |                                           |
| Engleman 1998                                     | 2    | 9.6 | 23    | 4       | 10    | 23                | 15.7%  | -0.20 [-0.78, 0.38]  |                                           |
| Engleman 1999                                     | 3    | 10  | 34    | 2       | 11    | 34                | 23.3%  | 0.09 [-0.38, 0.57]   | <del>-  •</del> -                         |
| Montasterio 2001                                  | 1    | 3   | 66    | 1       | 3     | 59                | 42.7%  | 0.00 [-0.35, 0.35]   | <del></del>                               |
| Total (95% CI)                                    |      |     | 152   |         |       | 141               | 100.0% | 0.03 [-0.20, 0.26]   | •                                         |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |     |       | f=3 (P: | = 0.7 | 3); <b>I²</b> = I | 0%     | _                    | -1 -0.5 0 0.5 1 Favors control Favors PAP |

# Figure S43. PAP vs. Control Conditions (change in Processing Speed)

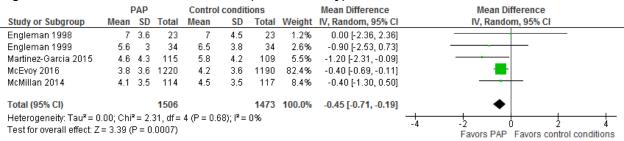
|                                                                                                                                                | PAP Control |      |       |       |      |       |        | Std. Mean Difference | Std. Mean Difference                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|-------|-------|------|-------|--------|----------------------|---------------------------------------------------|--|--|--|
| Study or Subgroup                                                                                                                              | Mean        | SD   | Total | Mean  | SD   | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                                |  |  |  |
| Barbe 2001                                                                                                                                     | 1.5         | 8.1  | 29    | 2     | 12.5 | 25    | 3.5%   | -0.05 [-0.58, 0.49]  | <del></del>                                       |  |  |  |
| Barnes 2004                                                                                                                                    | 0.9         | 3.6  | 80    | 0.4   | 3.6  | 80    | 10.3%  | 0.14 [-0.17, 0.45]   | <del>  •                                   </del> |  |  |  |
| Dalmases 2015                                                                                                                                  | 6.7         | 20   | 16    | 4.8   | 21   | 15    | 2.0%   | 0.09 [-0.61, 0.80]   | <del></del>                                       |  |  |  |
| Engleman 1998                                                                                                                                  | 11.5        | 32.2 | 23    | 12.5  | 30.7 | 23    | 3.0%   | -0.03 [-0.61, 0.55]  | <del></del>                                       |  |  |  |
| Engleman 1999                                                                                                                                  | 6.5         | 11.8 | 34    | 4     | 12.2 | 34    | 4.4%   | 0.21 [-0.27, 0.68]   | <del></del>                                       |  |  |  |
| Kushida 2012                                                                                                                                   | 0.16        | 4.5  | 442   | -0.07 | 5    | 401   | 54.2%  | 0.05 [-0.09, 0.18]   | <del>-</del>                                      |  |  |  |
| McMillan 2014                                                                                                                                  | 2.8         | 11.2 | 113   | 1.2   | 10.5 | 116   | 14.7%  | 0.15 [-0.11, 0.41]   | <del> •</del> -                                   |  |  |  |
| Montasterio 2001                                                                                                                               | 2.5         | 10.8 | 66    | 2.5   | 10.8 | 59    | 8.0%   | 0.00 [-0.35, 0.35]   | <del></del>                                       |  |  |  |
| Total (95% CI)                                                                                                                                 |             |      | 803   |       |      | 753   | 100.0% | 0.07 [-0.03, 0.17]   | •                                                 |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 1.39, df = 7 (P = 0.99); $I^2$ = 0%<br>Test for overall effect: Z = 1.38 (P = 0.17) |             |      |       |       |      |       |        |                      | -1 -0.5 0 0.5 1<br>Favors control Favors PAP      |  |  |  |

# Figure S44. PAP vs. Control Conditions (change in Attention/Vigilance)

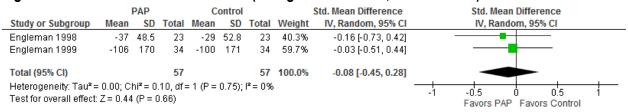
|                                                   |      | PAP  |                                           | C    | ontrol |       |        | Std. Mean Difference | Std. Mean Difference |
|---------------------------------------------------|------|------|-------------------------------------------|------|--------|-------|--------|----------------------|----------------------|
| Study or Subgroup                                 | Mean | SD   | Total                                     | Mean | ean SD | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI   |
| Barbe 2001                                        | -1   | 5.4  | 29                                        | -1   | 5      | 25    | 15.8%  | 0.00 [-0.53, 0.53]   |                      |
| Engleman 1998                                     | 15.5 | 29.8 | 23                                        | 11   | 31.9   | 23    | 13.5%  | 0.14 [-0.44, 0.72]   | <del></del>          |
| Engleman 1999                                     | -116 | 170  | 34                                        | -100 | 171    | 34    | 19.9%  | -0.09 [-0.57, 0.38]  | <del></del>          |
| Montasterio 2001                                  | -2   | 8.5  | 66                                        | -2   | 7.4    | 59    | 36.6%  | 0.00 [-0.35, 0.35]   | <del></del> -        |
| Woodson 2003                                      | -3.1 | 27.6 | 22                                        | -4.4 | 22.6   | 27    | 14.2%  | 0.05 [-0.51, 0.61]   | -                    |
| Total (95% CI)                                    |      |      | 174                                       |      |        | 168   | 100.0% | 0.01 [-0.20, 0.22]   | •                    |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |      | -1 -0.5 0 0.5 1 Favors Control Favors PAP |      |        |       |        |                      |                      |

# Figure S45. PAP vs. Control Conditions (change in Memory)

|                                                              | ı    | PAP |                                              | Co                                               | ontro | ı . |                    | Std. Mean Difference | Std. Mean Difference |
|--------------------------------------------------------------|------|-----|----------------------------------------------|--------------------------------------------------|-------|-----|--------------------|----------------------|----------------------|
| Study or Subgroup                                            | Mean | SD  | Total                                        | otal Mean SD Total Weight IV, Random, 95% CI IV, |       |     | IV, Random, 95% CI |                      |                      |
| Barbe 2001                                                   | 0.5  | 3.5 | 29                                           | 0.5                                              | 3.2   | 25  | 5.0%               | 0.00 [-0.53, 0.53]   |                      |
| Engleman 1998                                                | 1.2  | - 7 | 23                                           | 1.7                                              | 6.8   | 23  | 4.3%               | -0.07 [-0.65, 0.51]  | <del></del>          |
| Kushida 2012                                                 | 4.4  | 8   | 442                                          | 4.4                                              | 8.4   | 402 | 79.0%              | 0.00 [-0.14, 0.14]   | - <del></del>        |
| Montasterio 2001                                             | 11   | 27  | 66                                           | 8.5                                              | 27    | 59  | 11.7%              | 0.09 [-0.26, 0.44]   | <del></del>          |
| Total (95% CI)                                               |      |     | 560                                          |                                                  |       | 509 | 100.0%             | 0.01 [-0.11, 0.13]   | <b>•</b>             |
| Heterogeneity: Tau <sup>2</sup> :<br>Test for overall effect |      |     | -1 -0.5 0 0.5 1<br>Favors Control Favors PAP |                                                  |       |     |                    |                      |                      |


# Figure S46. PAP vs. Control Conditions (change in Intelligence)

|                                                   | PAP Control |      |       |                 |        |         |        | Std. Mean Difference | Std. Mean Difference                         |  |  |
|---------------------------------------------------|-------------|------|-------|-----------------|--------|---------|--------|----------------------|----------------------------------------------|--|--|
| Study or Subgroup                                 | Mean        | SD   | Total | l Mean SD Total |        |         | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                           |  |  |
| Engleman 1998                                     | 3           | 12   | 23    | 2               | 12     | 23      | 40.3%  | 0.08 [-0.50, 0.66]   | <del></del>                                  |  |  |
| Engleman 1999                                     | 7           | 16.6 | 34    | 6               | 17.1   | 34      | 59.7%  | 0.06 [-0.42, 0.53]   | <del></del>                                  |  |  |
| Total (95% CI)                                    |             |      | 57    |                 |        | 57      | 100.0% | 0.07 [-0.30, 0.44]   | <b>*</b>                                     |  |  |
| Heterogeneity: Tau² =<br>Test for overall effect: |             |      |       | = 1 (P =        | 0.95); | I² = 0% | 1      | -                    | -1 -0.5 0 0.5 1<br>Favors Control Favors PAP |  |  |


Figure S47. PAP vs. Control Conditions (HADS Depression)

|                                                 | F    | РΑР |       | Control        | l condit | ions  |        | Mean Difference      | M      |                  |                 |
|-------------------------------------------------|------|-----|-------|----------------|----------|-------|--------|----------------------|--------|------------------|-----------------|
| Study or Subgroup                               | Mean | SD  | Total | Mean           | SD       | Total | Weight | IV, Random, 95% CI   | IV,    | Random, 95% CI   |                 |
| Engleman 1998                                   | 3.9  | 3.4 | 23    | 4.3            | 3.8      | 23    | 1.6%   | -0.40 [-2.48, 1.68]  |        |                  |                 |
| Engleman 1999                                   | 4    | 3   | 34    | 5.7            | 3.9      | 34    | 2.6%   | -1.70 [-3.35, -0.05] |        |                  |                 |
| Martinez-Garcia 2015                            | 5.6  | 4.6 | 115   | 6.8            | 4.3      | 109   | 5.1%   | -1.20 [-2.37, -0.03] |        | <del></del>      |                 |
| McEvoy 2016                                     | 4.3  | 3.6 | 1190  | 5.1            | 3.8      | 1220  | 80.1%  | -0.80 [-1.10, -0.50] |        | <b>-</b>         |                 |
| McMillan 2014                                   | 3.9  | 3.1 | 114   | 4.2            | 3.2      | 116   | 10.6%  | -0.30 [-1.11, 0.51]  |        | <del></del>      |                 |
| Total (95% CI)                                  |      |     | 1476  |                |          | 1502  | 100.0% | -0.78 [-1.05, -0.52] |        | •                |                 |
| Heterogeneity: Tau <sup>2</sup> = 0             |      |     | -4 -2 | - <del> </del> | 2 4      |       |        |                      |        |                  |                 |
| Test for overall effect: Z = 5.81 (P < 0.00001) |      |     |       |                |          |       |        |                      | Favors | s PAP Favors Cor | trol conditions |

### Figure S48. PAP vs. Control Conditions (HADS Anxiety)



### Figure S49. PAP vs. Control Conditions (change in SteerClear, Obstacles hit)



### Figure S50. PAP vs. Control Conditions (change in SteerClear, % Obstacles hit)

|                                                                                                                                             | 1    | PAP |       | Co   | ontro | I     |        | Std. Mean Difference | Std. Mean Difference                         |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|------|-------|-------|--------|----------------------|----------------------------------------------|
| Study or Subgroup                                                                                                                           | Mean | SD  | Total | Mean | SD    | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                           |
| Barbe 2001                                                                                                                                  | -1   | 5.4 | 29    | -1   | 5     | 25    | 30.1%  | 0.00 [-0.53, 0.53]   | <del></del>                                  |
| Montasterio 2001                                                                                                                            | -2   | 8.5 | 66    | -2   | 6.5   | 59    | 69.9%  | 0.00 [-0.35, 0.35]   | <del></del>                                  |
| Total (95% CI)                                                                                                                              |      |     | 95    |      |       | 84    | 100.0% | 0.00 [-0.29, 0.29]   | -                                            |
| Heterogeneity: $Tau^2 = 0.00$ ; $Chi^2 = 0.00$ , $df = 1$ ( $P = 1.00$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 0.00$ ( $P = 1.00$ ) |      |     |       |      |       |       |        |                      | -1 -0.5 0 0.5 1<br>Favors PAP Favors Control |

### Figure S51. PAP pre-treatment vs. PAP post-treatment (MVC Risk Ratio)[non-RCTs]

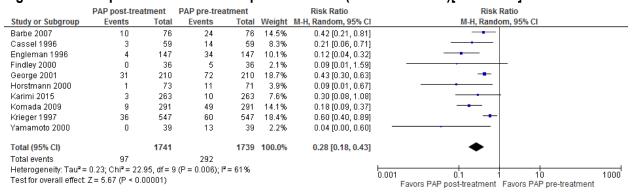



Figure S52. PAP vs. control conditions (Fasting glucose, mmol/I)

|                                     | F         | PAP               |         | control   | l conditi | ons   |        | Mean Difference     | Mean Difference                     |
|-------------------------------------|-----------|-------------------|---------|-----------|-----------|-------|--------|---------------------|-------------------------------------|
| Study or Subgroup                   | Mean      | SD                | Total   | Mean      | SD        | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                  |
| Coughlin 2007                       | 4.7       | 0.6               | 34      | 4.8       | 0.6       | 34    | 39.7%  | -0.10 [-0.39, 0.19] | -                                   |
| Hoyos 2012                          | 5.2       | 0.8               | 26      | 5         | 0.6       | 20    | 19.7%  | 0.20 [-0.20, 0.60]  | +•                                  |
| Martinez-Ceron 2016                 | 8.8       | 2.1               | 26      | 9         | 3.4       | 24    | 1.3%   | -0.20 [-1.78, 1.38] | <del></del>                         |
| Nguyen 2010                         | 10.2      | 1.9               | 10      | 9.2       | 1.9       | 9     | 1.1%   | 1.00 [-0.71, 2.71]  | <del></del>                         |
| Salord 2016                         | 5.6       | 0.7               | 42      | 5.9       | 2.3       | 38    | 5.6%   | -0.30 [-1.06, 0.46] | <del></del>                         |
| Shaw 2016                           | 7.4       | 1.8               | 151     | 7.6       | 1.6       | 147   | 21.6%  | -0.20 [-0.59, 0.19] | <del></del>                         |
| Sivam 2012                          | 5.5       | 1.1               | 27      | 5.6       | 1         | 27    | 10.3%  | -0.10 [-0.66, 0.46] | <del></del>                         |
| West 2007                           | 10.4      | 2.9               | 19      | 9.8       | 3.5       | 21    | 0.8%   | 0.60 [-1.39, 2.59]  |                                     |
| Total (95% CI)                      |           |                   | 335     |           |           | 320   | 100.0% | -0.06 [-0.24, 0.12] | <b>*</b>                            |
| Heterogeneity: Tau <sup>2</sup> = 0 | 0.00; Chi | <sup>2</sup> = 4. | 50, df= | 7 (P = 0. | 72); l² = | 0%    |        |                     | -5 -1 1 3                           |
| Test for overall effect: Z          | = 0.62 (  | P = 0             | 1.53)   |           |           |       |        |                     | Favors PAP Favors Control condition |

Figure S53. PAP vs. control conditions (Hemoglobin A1C, %)

|                                                       | F                 | PAP             |           | control       | conditi | ons   |        | Mean Difference     | Mea    | n Difference | •  |  |
|-------------------------------------------------------|-------------------|-----------------|-----------|---------------|---------|-------|--------|---------------------|--------|--------------|----|--|
| Study or Subgroup                                     | Mean              | SD              | Total     | Mean          | SD      | Total | Weight | IV, Random, 95% CI  | IV, Ra | ndom, 95%    | CI |  |
| Martinez-Ceron 2016                                   | 7.3               | 1.1             | 26        | 7.6           | 0.7     | 24    | 7.0%   | -0.30 [-0.81, 0.21] |        | -            |    |  |
| 3alord 2016                                           | 5.8               | 0.5             | 42        | 5.7           | 0.5     | 38    | 37.4%  | 0.10 [-0.12, 0.32]  |        | <del>-</del> |    |  |
| 3haw 2016                                             | 7.2               | 0.8             | 151       | 7.1           | 0.8     | 147   | 54.6%  | 0.10 [-0.08, 0.28]  |        | -            |    |  |
| West 2007                                             | 8.5               | 2.3             | 19        | 8.5           | 2       | 21    | 1.0%   | 0.00 [-1.34, 1.34]  |        |              |    |  |
| otal (95% CI)                                         |                   |                 | 238       |               |         | 230   | 100.0% | 0.07 [-0.06, 0.21]  |        | •            |    |  |
| Heterogeneity: Tau² = (<br>Fest for overall effect: 2 | -2 -1<br>Favors F | 0<br>PAP Favors | control ( | 2<br>conditio |         |       |        |                     |        |              |    |  |

Figure S54. PAP vs. control conditions (change in LVEF, %) [All patients]

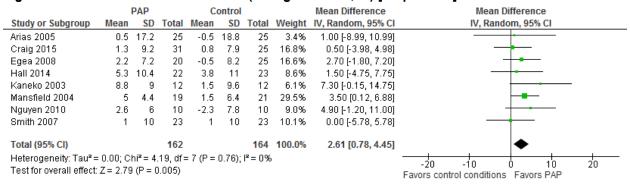



Figure S55. PAP vs. control conditions (change in LVEF, %) [Patients with HF]

|                                                   |      | PAP  |                                              | Co   | ntro | I     |        | Mean Difference     | Mean Difference    |
|---------------------------------------------------|------|------|----------------------------------------------|------|------|-------|--------|---------------------|--------------------|
| Study or Subgroup                                 | Mean | SD   | Total                                        | Mean | SD   | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI |
| Egea 2008                                         | 2.2  | 7.2  | 20                                           | -0.5 | 8.2  | 25    | 23.4%  | 2.70 [-1.80, 7.20]  | +-                 |
| Hall 2014                                         | 5.3  | 10.4 | 22                                           | 3.8  | 11   | 23    | 12.2%  | 1.50 [-4.75, 7.75]  | <del>-  -</del>    |
| Kaneko 2003                                       | 8.8  | 9    | 12                                           | 1.5  | 9.6  | 12    | 8.6%   | 7.30 [-0.15, 14.75] | <del></del>        |
| Mansfield 2004                                    | 5    | 4.4  | 19                                           | 1.5  | 6.4  | 21    | 41.6%  | 3.50 [0.12, 6.88]   | <del>  •</del>     |
| Smith 2007                                        | 1    | 10   | 23                                           | 1    | 10   | 23    | 14.2%  | 0.00 [-5.78, 5.78]  | <del></del>        |
| Total (95% CI)                                    |      |      | 96                                           |      |      | 104   | 100.0% | 2.90 [0.72, 5.08]   | •                  |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |      | -20 -10 0 10 20<br>Favors Control Favors PAP |      |      |       |        |                     |                    |

Figure S56. PAP vs. control conditions (change in LVEF, %) [Patients without HF]

|                                                   |      | PAP  |                                              | C    | ontrol |       |        | Mean Difference     | Mean Difference                                  |
|---------------------------------------------------|------|------|----------------------------------------------|------|--------|-------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                                 | Mean | SD   | Total                                        | Mean | SD     | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                               |
| Arias 2005                                        | 0.5  | 17.2 | 25                                           | -0.5 | 18.8   | 25    | 11.6%  | 1.00 [-8.99, 10.99] |                                                  |
| Craig 2015                                        | 1.3  | 9.2  | 31                                           | 0.8  | 7.9    | 25    | 57.4%  | 0.50 [-3.98, 4.98]  | <del></del>                                      |
| Nguyen 2010                                       | 2.6  | 6    | 10                                           | -2.3 | 7.8    | 10    | 31.0%  | 4.90 [-1.20, 11.00] | <del>                                     </del> |
| Total (95% CI)                                    |      |      | 66                                           |      |        | 60    | 100.0% | 1.92 [-1.47, 5.32]  | •                                                |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |      | -20 -10 0 10 20<br>Favors Control Favors PAP |      |        |       |        |                     |                                                  |

Figure S57. PAP vs. control conditions (Hospitalization risk ratio) [non-RCTs, all patients]

|                                                   | PAI    | P     | Control con | ditions             |                      | Risk Ratio          |  | Risk R     | Ratio     |  |
|---------------------------------------------------|--------|-------|-------------|---------------------|----------------------|---------------------|--|------------|-----------|--|
| Study or Subgroup                                 | Events | Total | Events      | Total               | Weight               | M-H, Random, 95% CI |  | M-H, Rando | m, 95% CI |  |
| Cai 2012                                          | 1619   | 13983 | 193         | 1441                | 47.0%                | 0.86 [0.75, 0.99]   |  |            |           |  |
| Holmqvist 2015                                    | 471    | 937   | 329         | 687                 | 53.0%                | 1.05 [0.95, 1.16]   |  | +          | -         |  |
| Total (95% CI)                                    |        | 14920 |             | 2128                | 100.0%               | 0.96 [0.79, 1.16]   |  | •          | -         |  |
| Total events                                      | 2090   |       | 522         |                     |                      |                     |  |            |           |  |
| Heterogeneity: Tau² =<br>Test for overall effect: |        |       | 0.5         | 0.7 1<br>Favors PAP | 1.5<br>Favors Contro | 2<br>ol condition   |  |            |           |  |

Table S1. Summary of Findings Table for PAP vs. control conditions for the treatment of obstructive sleep apnea in adults: severity, sleepiness, quality of life, neurocognitive outcomes, mood, and motor vehicle crashes

References: Amaro 2012 (A); Ballester 1999 (B); Barbe 2001 (C); Barbe 2010 (D); Barbe 2012 (E); Barnes 2002 (F); Barnes 2004 (G); Becker 2003 (H); Coughlin 2007 (I); Dalmases 2015 (J); Duran-Cantolla 2010 (K); Engleman 1997 (L); Engleman 1998 (M); Engleman 1999 (N); Faccenda 2001 (O); Hack 2000 (P); Hoyos 2012 (Q); Hui 2006 (R); Jenkinson 1999 (S); Kohler 2008 (T); Kushida 2012 (U); Lam 2007 (V); Martinez-Garcia 2013 (W); McArdle 2001 (X); McEvoy 2016 (Y); McMillan 2014 (Z); Montasterio 2001 (AA); Montserrat 2001 (BB); Phillips 2011 (CC); Redline 1998 (DD); Robinson 2006 (EE); Siccoli 2008 (FF); Weaver 2012 (GG); West 2007 (HH); Woodson 2003 (II); Sivam 2012 (JJ); Ip 2006 (KK); Nguyen 2010 (LL); Craig 2012 (MM); Engleman 1994 (NN); George 2001 (OO); Barbe 2007 (PP); Findley 2000 (QQ); Martinez-Garcia 2015 (RR); Komada 2009 (SS); Cassel 1996 (TT); Engleman 1996 (UU); Horstmann 2000 (VV); Krieger 1997 (WW); Yamamoto 2000 (XX); Karimi 2015 (YY); Zhao 2017 (ZZ); Lewis 2017 (AAA); Salord 2016 (BBB)

| Outcomes                                                   | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between PAP and control conditions                                                                                                                                           | № of participants<br>(studies)                      |
|------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| AHI (PAP vs Control)                                       | ⊕⊕⊕⊕<br>HIGH                    | The mean AHI of the PAP group was 4.1 (5.7). The mean AHI of the control group was 27.5 (13.9). The mean AHI in the PAP group was 23.4 events/hr lower (28.5 lower to 18.3 lower)                                      | 832<br>(11 RCTs) A.G.H.Q.V.AA.CC,HH.,II,KK          |
| AHI (Pre- vs. Post-PAP)                                    | ⊕⊕⊕⊕<br>HIGH                    | The mean AHI of the pretreatment group was 32.7 (12.6). The mean AHI in the postreatment group was 4.1 (5.6). The mean difference in AHI before and after treatment was 28.6 events/hr lower 36.8 lower to 20.4 lower) | 863<br>(11 RCTs) A.G.H.Q.V.AACC.HH.,II,KK           |
| Self-reported Sleepiness* (ESS) [all patients]             | ⊕⊕⊕○<br>MODERATE ¹              | The mean ESS score in the PAP group was 2.39 lower (2.88 lower to 1.90 lower)                                                                                                                                          | 7462<br>(38 RCTs)A-JJ,ZZ,BBB                        |
| Self-reported Sleepiness* (ESS) [sleepy patients]          | ⊕⊕⊕⊕<br>HIGH                    | The mean ESS score in the PAP group was 2.71 lower (3.27 lower to 2.15 lower)                                                                                                                                          | 6197 (33 RCTs)A,B, F-CC, FF-JJ,ZZ,BBB               |
| Self-reported Sleepiness* (ESS) [non-sleepy patients only] | ⊕⊕⊕○<br>MODERATE ¹              | The mean sleepiness (ESS) in the PAP group was 1.05 lower (1.36 lower to 0.74 lower)                                                                                                                                   | 1265 (5 RCTs) <sup>C-E, DD, EE</sup>                |
| Objective Sleepiness* (Osler, MWT)                         | ⊕⊕⊕⊕<br>HIGH                    | The mean Osler/MWT sleep latency in the PAP group was 0.54 standard deviations lower (0.23 lower to 0.84 lower)                                                                                                        | 752 (7 RCTs)G,N,P,S,T,Z,HH                          |
| Objective Sleepiness*<br>(MSLT)                            | ⊕⊕⊕○<br>MODERATE¹               | The mean MSLT sleep latency in the PAP group was 0.25 minutes lower (1.38 lower to 0.89 lhigher)                                                                                                                       | 442 (7 RCTs) <sup>D,F,L,M,AA,DD,NN</sup>            |
| Sleep-related QOL*<br>(FOSQ, SAQLI)                        | ⊕⊕⊕○<br>MODERATE ¹              | The mean FOSQ/SAQLI in the PAP group was 0.27 standard deviations higher (0.09 higher to 0.45 higher)                                                                                                                  | 1621 (13 RCTs) <sup>C,G,O,V,Z,AA-CC,FF-</sup> II,MM |

| QOL*<br>(SF-12/SF-36 Physical<br>Component Summary)                        | ⊕⊕⊕⊕<br>HIGH      | The mean SF-36 Physical Summary Score in the PAP group was 1.20 higher (0.61 higher to 1.78 higher)                            | 3315<br>(11 RCTs) <sup>C,F,N,S,V,Y,BB,FF,II,ZZ,AAA</sup> |
|----------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| QOL*<br>(SF-12/SF-36 Mental<br>Component Summary)                          | ⊕⊕⊕○<br>MODERATE¹ | The mean SF-36 Mental Summary Score in the PAP group was 1.86 higher (0.06 higher to 3.66 higher)                              | 3638<br>(12 RCTs) C.F.M.N.S.V.Y.BB,FF,MM,ZZ.AAA          |
| QOL*<br>(SF-36 Vitality Score)                                             | ⊕⊕⊕⊕<br>HIGH      | The mean SF-36 Vitality Score in the PAP group was 4.63 higher (2.03 higher to 7.23 higher)                                    | 674<br>(8 RCTs)F,N,V,BB,FF,MM,ZZ,AAA                     |
| Execution Function (Shifting)                                              | ⊕⊕⊕○<br>MODERATE¹ | The mean Shifting Score in the PAP group was 0.04 standard deviations lower (0.21 fewer to 0.12 greater)                       | 729<br>(7 RCTs) <sup>C,G,J,M,N,Z,AA</sup>                |
| Executive Function (Updating)                                              | ⊕⊕⊕○<br>MODERATE¹ | The mean Updating Score in the PAP group was 0.07 standard deviations higher (0.13 lower to 0.28 higher)                       | 1284<br>(7 RCTs) <sup>C,G,J,M,N,U,AA</sup>               |
| Executive Function (Fluid Reasoning)                                       | ⊕⊕⊕○<br>MODERATE¹ | The mean Fluid Reasoning Score in the PAP group was 0.03 standard deviations greater (0.20 fewer to 0.26 greater)              | 293<br>(4 RCTs) <sup>C,M,N,AA</sup>                      |
| Processing Speed                                                           | ⊕⊕⊕⊕<br>HIGH      | The mean processing speed in the PAP group was 0.07 standard deviations greater (0.03 lower to 0.17 greater)                   | 1556<br>(8 RCTs)C,G,J,M,U,Z,AA                           |
| Attention/Vigilance                                                        | ⊕⊕⊕⊕<br>HIGH      | The mean attention/vigilance in the PAP group was 0.01 standard deviations higher (0.20 fewer to 0.22 greater)                 | 342<br>(5 RCTs) <sup>C,M,N,,AA,II</sup>                  |
| Memory                                                                     | ⊕⊕⊕⊕<br>HIGH      | The mean memory in the PAP group was 0.01 standard deviations higher (0.13 higher to 0.11 lower)                               | 1069<br>(4 RCTs) <sup>C,M,U,AA</sup>                     |
| Intelligence                                                               | ⊕⊕○○<br>LOW¹      | The mean intelligence in the PAP group was 0.07 standard deviations greater (0.3 fewer to 0.44 greater)                        | 114<br>(2 RCTs) <sup>M,N</sup>                           |
| Depression<br>(HADS)                                                       | ⊕⊕⊕⊕<br>HIGH      | The mean HADS Depression Score in the PAP group was 0.78 lower (1.05 lower to 0.52 lower)                                      | 2978<br>(5 RCTs) <sup>M,N,Y,Z,RR</sup>                   |
| Anxiety<br>(HADS)                                                          | ⊕⊕⊕⊕<br>HIGH      | The mean HADS Anxiety Score in the PAP group was 0.45 lower (0.71 lower to 0.19 lower)                                         | 2979<br>(5 RCTs) <sup>M,N,Y,Z,RR</sup>                   |
| Driving Proficiency<br>(SteerClear, Obstacles hit)                         | ⊕⊕⊕○<br>MODERATE¹ | The mean SteerClear Obstacles Hit score in the PAP group was 0.08 standard deviations higher (0.45 higher to 0.28 lower)       | 114<br>(2 RCTs) <sup>M,N</sup>                           |
| Driving Proficiency<br>(SteerClear, % Obstacles hit)                       | ⊕⊕⊕○<br>MODERATE¹ | The mean SteerClear % Obstacles Hit score in the PAP group was 0.00 standard deviations different (0.29 greater to 0.29 lower) | 179<br>(2 RCTs) <sup>C,AA</sup>                          |
| Motor vehicle crash rate risk ratio (PAP pre-treatment vs. post-treatment) | ⊕⊕○○<br>LOW       | The mean crash rate risk ratio in the PAP group was 0.28 (0.18 to 0.43)                                                        | 3480 (10 observational studies) <sup>OO-QQ,SS-YY</sup>   |

<sup>\*</sup>Critical Outcomes

# Table S2. Summary of Findings Table for PAP vs. control conditions for the treatment of obstructive sleep apnea in adults: blood pressure and glycemia

References: Arias 2005 (A); Barbe 2001 (B); Barnes 2002 (C); Becker 2003 (D); Drager 2007 (E); Drager 2011 (F); Duran-Cantolla 2010 (G); Hui 2006 (H); Lozano 2010 (I); Martinez-Garcia 2013 (J); Muxfeldt 2015 (K); Pedrosa (L); Barnes 2004 (M); Barbe 2010 (N); Campos-Rodriguez 2006 (O); Craig 2012 (P); Cross 2008 (Q); Egea 2008 (R); McEvoy 2016 (S); Montasterio 2001 (T); Pepperell 2002 (U); Robinson 2006 (V); Ryan 2005 (W); Coughlin 2007 (X); Hoyos 2012 (Y); Nguyen 2010 (Z); Sivam 2012 (AA); West 2007 (BB); Faccenda 2001 (CC); Martinez-Ceron 2016 (DD); Shaw 2016 (EE); de Oliveira 2014 (FF); Gottlieb 2014 (GG); Salord 2016 (HH)

| Outcomes                              | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between PAP and control conditions                   | № of participants<br>(studies)         |
|---------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------|
| Nighttime systolic BP* (all patients) | ⊕⊕⊕○<br>MODERATE ¹              | The mean nighttime systolic BP in the PAP group was 4.21mm Hg lower (5.96 lower to 2.45 lower) | 1272<br>(14 RCTs) <sup>A-L,FF,GG</sup> |

Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

| Nighttime diastolic BP* (all patients)                    | ⊕⊕⊕○<br>MODERATE 1   | The mean nighttime diastolic BP in the PAP group was 2.31 mm Hg lower (3.72 lower to 0.91 lower) | 1451<br>(15 RCTs) <sup>A-L,M,FF,GG</sup>    |
|-----------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|
| Daytime systolic BP* (all patients)                       | ⊕⊕⊕○<br>MODERATE 1   | The mean daytime systolic BP in the PAP group was 2.76 mm Hg lower (4.31 lower to 1.20 lower)    | 1191<br>(12 RCTs) <sup>A-G,I-K,FF,GG</sup>  |
| Daytime diastolic BP* (all patients)                      | ⊕⊕⊕○<br>MODERATE 1   | The mean daytime diastolic BP in the PAP group was 1.98 mm Hg lower (2.88 lower to 0.92 lower)   | 1191<br>(12 RCTs) A-G,I-K,FF,GG             |
| 24-hr systolic BP* (all patients)                         | ⊕⊕⊕○<br>MODERATE 1   | The mean 24-hr systolic BP in the PAP group was 1.47 mm Hg lower (2.28 lower to 0.66 lower)      | 4905<br>(23 RCTs)B-D,F-K,M-O,T-W,CC,FF,GG   |
| 24-hr diastolic BP* (all patients)                        | ⊕⊕⊕○<br>MODERATE ¹   | The mean 24-hr diastolic BP in the PAP group was 1.58 mm Hg lower (2.23 lower to 0.93 lower)     | 4595<br>(22 RCTs)B-D,F,G-K,M-O,Q-X,CC,FF,GG |
| 24-hr mean BP* (all patients)                             | ⊕⊕⊕⊕<br>HIGH         | The mean 24-hr mean BP is the PAP group was 2.63 mm Hg lower (3.86 lower to 1.39 lower)          | 994 (8 RCTs)D,G,H,J,O,U,V, ,FF              |
| Nighttime systolic BP* (resistant hypertensive patients)  | ⊕⊕⊕○<br>MODERATE 1   | The mean nighttime systolic BP in the PAP group was 3.26 mm Hg lower (6.11 lower to 0.41 lower)  | 446 (5 RCTs) <sup>HL,FF</sup>               |
| Nighttime diastolic BP* (resistant hypertensive patients) | ⊕⊕⊕⊖<br>MODERATE 1   | The mean nighttime diastolic BP in the PAP group was 2.20 mm Hg lower (4.39 lower to 0.01 lower) | 444 (5 RCTs) <sup>HL,FF</sup>               |
| Daytime systolic BP* (resistant hypertensive patients)    | ⊕⊕⊕○<br>MODERATE 1   | The mean daytime systolic BP in the PAP group was 1.54 mm Hg lower (4.47 lower to 1.39 higher)   | 409 (4 RCTs) <sup>I-K,FF</sup>              |
| Daytime diastolic BP* (resistant hypertensive patients)   | ⊕⊕⊕○<br>MODERATE 1   | The mean daytime diastolic BP in the PAP group was 1.13 mm Hg lower (3.37 lower to 1.12 higher)  | 409 (4 RCTs) <sup>I-K,FF</sup>              |
| 24-hr systolic BP* (resistant hypertensive patients)      | ⊕⊕⊕○<br>MODERATE 1   | The mean 24-hr systolic BP in the PAP group was 2.15 mm Hg lower (5.05 lower to 0.75 higher)     | 409 (4 RCTs) <sup>I-K,FF</sup>              |
| 24-hr diastolic BP* (resistant hypertensive patients)     | ⊕⊕⊕○<br>MODERATE 1   | The mean 24-hr diastolic BP in the PAP group was 2.06 mm Hg lower (4.12 lower to 0.00 lower)     | 409 (4 RCTs) <sup>I-K,FF</sup>              |
| 24-hr mean BP* (resistant hypertensive patients)          | ⊕⊕○○<br>LOW ¹        | The mean 24-hr mean BP is the PAP group was 3.30 mm Hg lower (7.10 lower to 0.50 higher)         | 194 (1 RCT) <sup>J</sup>                    |
| Nighttime systolic BP* (hypertensive patients)            | ⊕⊕⊕○<br>MODERATE 1   | The mean nighttime systolic BP in the PAP group was 3.94 mm Hg lower (6.46 lower to 1.43 lower)  | 530 (2 RCTs) <sup>G,GG</sup>                |
| Nighttime diastolic BP* (hypertensive patients)           | ⊕⊕⊕○<br>MODERATE 1   | The mean nighttime diastolic BP in the PAP group was 3.03 mm Hg lower (5.28 lower to 0.79 lower) | 530 (2 RCTs) <sup>G,GG</sup>                |
| Daytime systolic BP* (hypertensive patients)              | ⊕⊕⊕○<br>MODERATE 1   | The mean daytime systolic BP in the PAP group was 2.70 mm Hg lower (4.92 lower to 0.47 lower)    | 530 (2 RCTs) <sup>G,GG</sup>                |
| Daytime diastolic BP* (hypertensive patients)             | ⊕⊕⊕○<br>MODERATE 1   | The mean daytime diastolic BP in the PAP group was 2.40 mm Hg lower (3.88 lower to 0.92 lower)   | 530 (2 RCTs) <sup>G,GG</sup>                |
| 24-hr systolic BP* (hypertensive patients)                | ⊕⊕⊕○<br>MODERATE ¹   | The mean 24-hr diastolic BP in the PAP group was 2.53 mm Hg lower (4.30 lower to 0.76 lower)     | 986 (5 RCTs)G,N,O,V,GG                      |
| 24-hr diastolic BP* (hypertensive patients)               | ⊕⊕⊕○<br>MODERATE 1   | The mean 24-hr diastolic BP in the PAP group was 2.23 mm Hg lower (3.42 lower to 1.03 lower)     | 986 (5 RCTs) <sup>G,N,O,V,GG</sup>          |
| 24-hr mean BP* (hypertensive patients)                    | ⊕⊕⊕○<br>MODERATE 1   | The mean 24-hr mean BP is the PAP group was 2.16 mm Hg lower (3.59 lower to 0.72 lower)          | 627 (4 RCTs) <sup>G,O,W,GG</sup>            |
| Nighttime systolic BP* (normotensive patients)            | ⊕⊕○○<br>LOW <u>1</u> | The mean nighttime systolic BP in the PAP group was 1.91 mm Hg lower (7.16 lower to 3.34 higher) | 74 (2 RCTs) <sup>A,E</sup>                  |

| Nighttime diastolic BP* (normotensive patients) | ⊕⊕⊖⊖<br>LOW <u>1</u> | The mean nighttime diastolic BP in the PAP group was 1.00 lower (4.38 lower to 2.38 higher)     | 74 (2 RCTs) <sup>A,E</sup>                    |
|-------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Daytime systolic BP* (normotensive patients)    | ⊕⊕○○<br>LOW ¹        | The mean daytime systolic BP in the PAP group was 0.39 mm Hg lower (4.75 lower to 3.97 higher)  | 74 (2 RCTs) <sup>A,E</sup>                    |
| Daytime diastolic BP* (normotensive patients)   | ⊕⊕○○<br>LOW ¹        | The mean daytime diastolic BP in the PAP group was 0.24 mm Hg lower (2.91 lower to 2.42 higher) | 74 (2 RCTs) <sup>A,E</sup>                    |
| 24-hr systolic BP* (normotensive patients)      | ⊕⊕○○<br>LOW ¹        | The mean 24-hr systolic BP in the PAP group was 1.30 mm Hg lower (3.76 lower to 1.16 higher)    | 68 (1 RCT) <sup>cc</sup>                      |
| 24-hr diastolic BP* (normotensive patients)     | ⊕⊕○○<br>LOW ¹        | The mean 24-hr diastolic BP in the PAP group was 1.40 mm Hg lower (3.25 lower to 0.45 higher)   | 68 (1 RCT) <sup>CC</sup>                      |
| Fasting glucose*                                | ⊕⊕⊕⊕<br>HIGH         | The mean fasting glucose in the PAP group was 0.06 mmol/l lower (0.24 lower to 0.12 higher)     | 655<br>(8 RCTs) <sup>X-Z,AA,BB,DD,EE,HH</sup> |
| Hemoglobin A1C                                  | ⊕⊕⊕⊕<br>HIGH         | The mean hemoglobin A1C in the PAP group was 0.07% higher (0.06 lower to 0.21 higher)           | 468<br>(4 RCT) <sup>AA,BB,DD,HH</sup>         |

<sup>\*</sup>Critical Outcomes

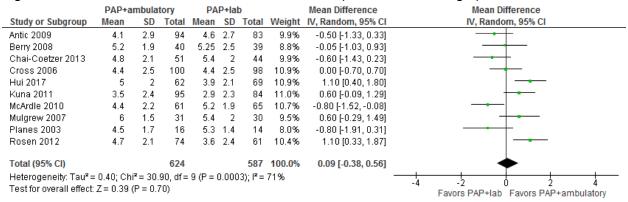
# Table S3. Summary of Findings Table for PAP vs. control conditions for the treatment of obstructive sleep apnea in adults: cardiovascular events, hospitalization, and mortality

References: Arias 2005 (A); Craig 2015 (B); Egea 2008 (C); Kaneko 2003 (D); Mansfield 2004 (E), Nguyen 2010 (F); Smith 2007 (G); Usui 2005 (H); Barbe 2012 (I); McEvoy 2016 (J); Peker 2016 (K); Abe 2010 (L); Buchner 2007 (M); Campos-Rodriguez 2014 (N); Capodanno 2014 (O); Cassar 2007 (P); Doherty 2005 (Q), Holmqvist 2015 (R); Kanagala 2003 (S); Kasai 2008 (T); Marin 2005 (U), Marti 2002 (V); Milleron 2004 (W); Wang 2007 (X); Cai 2012 (Y); Hall 2014 (Z); Craig 2012 (AA); McMillan 2014 (BB); Parra 2015 (CC)

| Outcomes                   | Quality of the<br>Outcomes evidence<br>(GRADE) |                         | solute effects (95% CI)<br>AP and control conditions           | № of participants<br>(studies)                        |
|----------------------------|------------------------------------------------|-------------------------|----------------------------------------------------------------|-------------------------------------------------------|
| LVEF                       | ⊕⊕⊕○<br>MODERATE ¹                             |                         | ge in LVEF in the PAP group was<br>78 more to 4.45 more)       | 326<br>(8 RCTs) <sup>A-G,AA</sup>                     |
| LVEF (patients with HF)    | ⊕⊕⊕○<br>MODERATE ¹                             |                         | ge in LVEF in the PAP group was<br>72 more to 5.08 more)       | 200<br>(5 RCTs) <sup>C-E,G,AA</sup>                   |
| LVEF (patients without HF) |                                                |                         | ge in LVEF in the PAP group was<br>47 fewer to 5.32 more)      | 126<br>(3 RCTs) <sup>A.B.F</sup>                      |
|                            |                                                | Relati<br>Baseline Risk | ve Effect<br>Comparative risk                                  |                                                       |
|                            | ⊕⊕⊕○<br>MODERATE ¹                             | 210 per 1000            | <b>201 per 1000</b> (177 to 229) <b>RR 0.96</b> (0.84 to 1.11) | 4356<br>(6 RCTs)IJLAACC                               |
|                            | ⊕⊕○○<br>LOW                                    | 208 per 1000            | 96 per 1000<br>(65 to 128)<br>RR 0.46<br>(0.32 to 0.66)        | 5357<br>(11 observational studies) <sup>L-S,U-W</sup> |
| •                          | ⊕⊕⊕○<br>MODERATE ¹                             | 34 per 1000             | 32 per 1000<br>(23 to 46)<br>RR 0.96 (0.68 to 1.36)            | 3780 (4 RCTs) <sup>I-K,CC</sup>                       |

Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

| All-cause mortality* (non-RCTs)                            | ⊕⊕○○<br>LOW                   | 91 per 1000  | <b>36 per 1000</b> (22 to 63) RR <b>0.40</b> (0.24 to 0.69)     | 4474<br>(9 observational studies) <sup>N-R,T-V,X</sup> |
|------------------------------------------------------------|-------------------------------|--------------|-----------------------------------------------------------------|--------------------------------------------------------|
| All-cause mortality*<br>(non-RCTs, patients with<br>HF)    | ⊕○○○<br>VERY LOW <sup>1</sup> | 317 per 1000 | <b>76 per 1000</b> (35 to 168)<br><b>RR 0.24</b> (0.11 to 0.53) | 139 (2 observational studies) <sup>T,X</sup>           |
| All-cause mortality*<br>(non-RCTs, patients<br>without HF) | ⊕⊕○○<br>LOW                   | 90 per 1000  | 34 per 1000<br>(19 to 64)<br>RR 0.38 (0.21 to 0.72)             | 2340<br>(5 observational studies) <sup>N,O,Q,U,V</sup> |
| Hospitalizations (non-RCTs)                                | ⊕○○○<br>VERY LOW <sup>1</sup> | 245 per 1000 | 235 per 1000<br>(194 to 285)<br>RR 0.96 (0.79 to 1.16)          | 17048 (2 observational studies) <sup>R,Y</sup>         |


<sup>\*</sup>Critical Outcomes

# APAP-initiated PAP vs. in-lab-initiated PAP for the treatment of obstructive sleep apnea in adults

Figure S58. APAP-intiated PAP vs. In-lab-intiated PAP (AHI, events/hr)

|                                                   | PAP+a | mbula | tory  | P/       | \P+lab   | )     |        | Mean Difference      | Mean Difference                                         |
|---------------------------------------------------|-------|-------|-------|----------|----------|-------|--------|----------------------|---------------------------------------------------------|
| Study or Subgroup                                 | Mean  | SD    | Total | Mean     | SD       | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                                      |
| Berry 2008                                        | 3.5   | 1.9   | 40    | 5.3      | 4.4      | 39    | 77.3%  | -1.80 [-3.30, -0.30] | <b></b>                                                 |
| Mulgrew 2007                                      | 2.5   | 6.8   | 31    | 3.2      | 5        | 30    | 19.5%  | -0.70 [-3.69, 2.29]  | <del></del>                                             |
| Planes 2003                                       | 7.6   | 6.9   | 16    | 10.4     | 12.5     | 14    | 3.2%   | -2.80 [-10.17, 4.57] |                                                         |
| Total (95% CI)                                    |       |       | 87    |          |          | 83    | 100.0% | -1.62 [-2.94, -0.30] | <b>•</b>                                                |
| Heterogeneity: Tau² =<br>Test for overall effect: | •     |       |       | 2 (P = 0 | .77); l² | = 0%  |        |                      | -20 -10 0 10 20<br>Favors PAP+ambulatory Favors PAP+lab |

### Figure S59. APAP-intiated PAP vs. In-lab-intiated PAP (Adherence, hrs/night)



<sup>1</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

Figure S60. APAP-intiated PAP vs. In-lab-intiated PAP (ESS)

|                          | PAP+a        | mbula   | tory  | PA        | P+la | b     |        | Mean Difference     | Mean Difference                      |
|--------------------------|--------------|---------|-------|-----------|------|-------|--------|---------------------|--------------------------------------|
| Study or Subgroup        | Mean         | SD      | Total | Mean      | SD   | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                   |
| Antic 2009               | 9.7          | 4.4     | 90    | 9.2       | 3.8  | 84    | 17.1%  | 0.50 [-0.72, 1.72]  | <del></del>                          |
| Berry 2008               | 9.9          | 6.3     | 40    | 9.6       | 5.6  | 39    | 3.7%   | 0.30 [-2.33, 2.93]  |                                      |
| Cross 2006               | 8.5          | 5       | 100   | 9.5       | 4.9  | 98    | 13.4%  | -1.00 [-2.38, 0.38] | <del></del>                          |
| Hui 2017                 | 8.5          | 5.5     | 86    | 7.7       | 5    | 86    | 10.3%  | 0.80 [-0.77, 2.37]  | <del>-   •</del>                     |
| Kuna 2011                | 9.4          | 2.2     | 95    | 10        | 4.8  | 84    | 20.3%  | -0.60 [-1.72, 0.52] | <del></del>                          |
| McArdle 2010             | 8.3          | 4.5     | 62    | 7.4       | 3.7  | 63    | 12.2%  | 0.90 [-0.55, 2.35]  | <del>  •</del>                       |
| Mulgrew 2007             | 5            | 4.4     | 31    | 5         | 4.4  | 30    | 5.2%   | 0.00 [-2.21, 2.21]  | <del></del>                          |
| Planes 2003              | 7.5          | 3.4     | 16    | 7.6       | 3.4  | 14    | 4.3%   | -0.10 [-2.54, 2.34] | <del></del>                          |
| Rosen 2012               | 7.2          | 4.2     | 77    | 7.1       | 4.1  | 65    | 13.6%  | 0.10 [-1.27, 1.47]  | <del></del>                          |
| Total (95% CI)           |              |         | 597   |           |      | 563   | 100.0% | 0.04 [-0.46, 0.55]  | <b>+</b>                             |
| Heterogeneity: Tau² =    |              |         |       | 8 (P = 0. | 61); | r= 0% |        |                     | -4 -2 0 2 4                          |
| Test for overall effect: | Z = 0.16 		( | P = 0.8 | 37)   |           |      |       |        |                     | Favors PAP+ambulatory Favors PAP+lab |

Figure S61. APAP-intiated PAP vs. In-lab-intiated PAP (FOSQ & SAQLI)

|                                                   | PAP+a | mbula | tory                                                | PA   | P+lal | b     | 9      | Std. Mean Difference | Std. Mean Difference |
|---------------------------------------------------|-------|-------|-----------------------------------------------------|------|-------|-------|--------|----------------------|----------------------|
| Study or Subgroup                                 | Mean  | SD    | Total                                               | Mean | SD    | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI   |
| Cross 2006                                        | 13.8  | 2     | 100                                                 | 13.4 | 3     | 98    | 25.6%  | 0.16 [-0.12, 0.44]   | <del></del>          |
| Hui 2017                                          | 4.7   | 1     | 86                                                  | 4.6  | 1     | 86    | 22.3%  | 0.10 [-0.20, 0.40]   | <del></del>          |
| Kuna 2011                                         | 16.7  | 2.8   | 105                                                 | 16.6 | 2.7   | 96    | 26.1%  | 0.04 [-0.24, 0.31]   | <del>-</del>         |
| Mulgrew 2007                                      | 5.8   | 1.4   | 31                                                  | 5.5  | 1.4   | 30    | 7.9%   | 0.21 [-0.29, 0.72]   | <del>-   •</del>     |
| Rosen 2012                                        | 11.2  | 1.8   | 77                                                  | 11.5 | 1.5   | 64    | 18.1%  | -0.18 [-0.51, 0.15]  |                      |
| Total (95% CI)                                    |       |       | 399                                                 |      |       | 374   | 100.0% | 0.06 [-0.09, 0.20]   | •                    |
| Heterogeneity: Tau² =<br>Test for overall effect: |       |       | -1 -0.5 0 0.5 1 Favors PAP+lab Favors PAP+ambulaton |      |       |       |        |                      |                      |

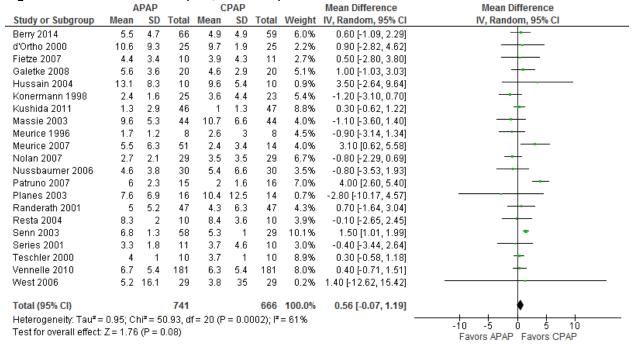
Table S4. Summary of Findings Table for APAP-intiated PAP vs. In-lab-intiated PAP for the treatment of obstructive sleep apnea in adults

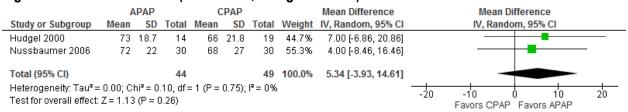
References: Antic 2009 (A); Berry 2008 (B); Cross 2006 (C); Kuna 2011 (D); McArdle 2010 (E); Mulgrew 2007 (F); Planes 2003 (G); Rosen 2012 (H); Chai-Coetzer 2013 (I); Hui 2017 (J)

| Outcomes                           | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between APAP initiated PAP and in-lab initiated PAP                                                                                                          | № of participants<br>(studies)       |
|------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| AHI                                | ⊕⊕⊕⊕<br>HIGH                    | he mean AHI in the ambulatory PAP group was 3.3 (3.0). The mean AHI in the in-lab PAP group was 5.0 (4.8). The mean AHI in the APAP initiated group was 1.62 events/hr lower (2.94 lower to 0.3 lower) | 170<br>(3 RCTs) <sup>B,F,G</sup>     |
| Adherence (hrs/night)*             | ⊕⊕⊕<br>HIGH                     | The mean adherence in the APAP initiated group was 0.09 hrs/night less (0.38 more to 0.56 less)                                                                                                        | 1211<br>(10 RCTs) <sup>A-J</sup>     |
| Self-reported Sleepiness<br>(ESS)* | ⊕⊕⊕⊕<br>HIGH                    | The mean ESS score in the APAP initiated group was 0.04 points higher (0.46 lower to 0.55 higher)                                                                                                      | 1160<br>(9 RCTs) <sup>A-H,J</sup>    |
| Sleep-related QOL* (FOSQ, SAQLI)   | ⊕⊕⊕○<br>MODERATE 1              | The mean FOSQ/SAQLI score in the APAP initiated group was 0.06 standard deviations higher (0.09 lower to 0.20 higher)                                                                                  | 773<br>(5 RCTs) <sup>C,D,F,H,J</sup> |
| QOL* (SF-36 PCS)                   | ⊕⊕○○<br>LOW ¹                   | The mean (SF-36 PCS in the APAP initiated group was 2.50 higher (1.65 lower to 6.65 higher)                                                                                                            | 198<br>(1 RCTs) <sup>c</sup>         |
| QOL* (SF-36 MCS)                   | ⊕⊕○○<br>LOW ¹                   | The mean SF-36 MCS in the APAP initiated group was 1.00 higher (2.19 lower to 4.19 higher)                                                                                                             | 198<br>(1 RCT) <sup>C</sup>          |
| QOL* (SF-36 VS)                    | ⊕⊕⊕⊕<br>HIGH                    | The mean SF-36 Vitality score in the APAP initiated group was 1.2 higher (4.44 higher to 2.04 lower)                                                                                                   | 296<br>(1RCT) <sup>H</sup>           |

## APAP vs. CPAP for the treatment of obstructive sleep apnea in adults

Figure S62. APAP vs. CPAP (AHI, events/hr)

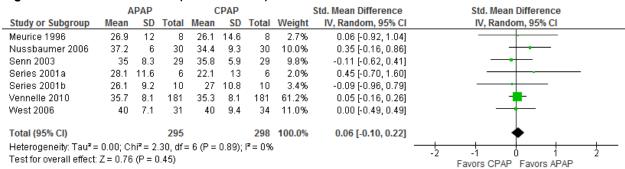




Figure S63. APAP vs. CPAP (Adherence; hrs/night)

| Α        | PAP                                                                            |                                                                                                                                                      | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mean Difference                                                     |
|----------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Mean     | SD                                                                             | Total                                                                                                                                                | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IV, Random, 95% CI                                                  |
| 4.45     | 2.3                                                                            | 66                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.45 [-0.36, 1.26]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 4.1      | 1.8                                                                            | 25                                                                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.60 [-1.60, 0.40]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                                         |
| 5        | 1.6                                                                            | 10                                                                                                                                                   | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.80 [-0.84, 2.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 6.4      | 1.8                                                                            | 20                                                                                                                                                   | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 [-1.15, 1.15]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 6        | 1.8                                                                            | 14                                                                                                                                                   | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50 [-0.74, 1.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 5.1      | 2.4                                                                            | 27                                                                                                                                                   | 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40 [-1.11, 1.91]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 4.3      | 1.9                                                                            | 10                                                                                                                                                   | 3.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60 [-1.40, 2.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 5.9      | 1.6                                                                            | 25                                                                                                                                                   | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30 [-0.90, 1.50]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 4.4      | 2                                                                              | 54                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 [-0.74, 0.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 4.9      | 1.7                                                                            | 22                                                                                                                                                   | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.50 [-0.57, 1.57]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 5.1      | 1.9                                                                            | 44                                                                                                                                                   | 4.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60 [-0.19, 1.39]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del> </del>                                                        |
| 5.9      | 1.6                                                                            | 51                                                                                                                                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.60 [-1.64, 0.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                                         |
| 4.9      | 2.1                                                                            | 29                                                                                                                                                   | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 [-1.03, 1.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 5.3      | 1.9                                                                            | 24                                                                                                                                                   | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.20 [-1.17, 0.77]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                                         |
| 5.1      | 1.6                                                                            | 30                                                                                                                                                   | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.30 [-0.51, 1.11]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 6.2      | 0.8                                                                            | 15                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20 [-0.44, 0.84]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 4.5      | 1.7                                                                            | 16                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.80 [-1.91, 0.31]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                                         |
| 5.3      | 1.6                                                                            | 47                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 [-0.65, 0.65]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |
| 5.2      | 1.4                                                                            | 10                                                                                                                                                   | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.10 [-1.51, 1.31]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                                         |
| 5.5      | 1.5                                                                            | 58                                                                                                                                                   | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.10 [-0.66, 0.46]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <del></del>                                                         |
| 6.3      | 1.3                                                                            | 10                                                                                                                                                   | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.20 [-1.08, 1.48]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 4.4      | 2.3                                                                            | 41                                                                                                                                                   | 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.60 [-0.33, 1.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                         |
| 4.2      | 2.7                                                                            | 181                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20 [-0.36, 0.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>-   •</del>                                                    |
|          |                                                                                |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                   |
|          |                                                                                | 829                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 754                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.11 [-0.07, 0.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                   |
| 0.00; CI | hi²= '                                                                         | 13.27, (                                                                                                                                             | df= 22 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.93); l²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -2 -1 0 1 2                                                         |
| Z = 1.19 | (P=                                                                            | 0.23)                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Favors CPAP Favors APAP                                             |
|          | Mean  4.45 4.1 5 6.4 6 5.1 4.3 5.9 4.4 4.9 5.1 6.2 4.5 5.3 5.2 5.5 6.3 4.4 4.2 | 4.45 2.3 4.1 1.8 5 1.6 6.4 1.8 6 1.8 5.1 2.4 4.3 1.9 5.9 1.6 4.4 2.7 5.1 1.9 5.1 1.6 6.2 0.8 4.5 1.7 5.3 1.6 5.2 1.4 5.5 1.5 6.3 1.3 4.4 2.3 4.2 2.7 | Mean         SD         Total           4.45         2.3         66           4.1         1.8         25           5         1.6         10           6.4         1.8         20           6         1.8         14           5.1         2.4         27           4.3         1.9         10           5.9         1.6         25           4.4         2         54           4.9         1.7         22           5.1         1.9         44           5.9         1.6         51           4.9         2.1         29           5.3         1.9         24           5.1         1.6         30           6.2         0.8         15           4.5         1.7         16           5.3         1.6         47           5.2         1.4         10           5.5         1.5         58           6.3         1.3         10           4.4         2.3         41           4.2         2.7         181 | Mean         SD         Total         Mean           4.45         2.3         66         4           4.1         1.8         25         4.7           5         1.6         10         4.2           6.4         1.8         20         6.4           6         1.8         14         5.5           5.1         2.4         27         4.7           4.3         1.9         10         3.7           5.9         1.6         25         5.6           4.4         2         54         4.4           4.9         1.7         22         4.4           5.1         1.9         44         4.5           5.9         1.6         51         6.5           4.9         2.1         29         4.9           5.3         1.9         24         5.5           5.1         1.6         30         4.8           6.2         0.8         15         6           4.5         1.7         16         5.3           5.3         1.6         47         5.3           5.2         1.4         10         5.3 | Mean         SD         Total         Mean         SD           4.45         2.3         66         4         2.3           4.1         1.8         25         4.7         1.8           5         1.6         10         4.2         2.2           6.4         1.8         20         6.4         1.9           6         1.8         14         5.5         1.8           5.1         2.4         27         4.7         2.7           4.3         1.9         10         3.7         2.6           5.9         1.6         25         5.6         2.5           4.4         2         4.4         1.9           5.9         1.6         51         6.5         1.8           6.9         1.7         22         4.4         1.9           5.9         1.6         51         6.5         1.8           4.9         2.1         29         4.9         1.9           5.3         1.9         24         5.5         1.5           5.1         1.6         30         4.8         1.6           6.2         0.8         15         6 <t< td=""><td>Mean         SD         Total         Mean         SD         Total           4.45         2.3         66         4         2.3         59           4.1         1.8         25         4.7         1.8         25           5         1.6         10         4.2         2.2         11           6.4         1.8         20         6.4         1.9         20           6         1.8         14         5.5         1.8         19           5.1         2.4         27         4.7         2.7         19           4.3         1.9         10         3.7         2.6         10           5.9         1.6         25         5.6         2.5         23           4.4         2         25         5.6         2.5         23           4.4         2         24         4.4         2         57           4.9         1.7         22         4.4         1.9         22           5.1         1.9         44         4.5         1.9         44           4.9         1.7         29         4.9         1.9         29           5.3         1.9<!--</td--><td>Mean         SD         Total         Mean         SD         Total         Weight           4.45         2.3         66         4         2.3         59         5.3%           4.1         1.8         25         4.7         1.8         25         3.5%           5         1.6         10         4.2         2.2         11         1.3%           6.4         1.8         20         6.4         1.9         20         2.6%           6         1.8         14         5.5         1.8         19         2.2%           5.1         2.4         27         4.7         2.7         19         1.5%           4.3         1.9         10         3.7         2.6         10         0.9%           5.9         1.6         25         5.6         2.5         23         2.4%           4.4         2         57         6.3%         4.9         1.7         22         4.4         1.9         22         3.3%           5.9         1.6         51         6.5         1.8         14         3.2%           5.3         1.9         24         5.5         1.5         24         <td< td=""><td>  Mean   SD   Total   Mean   SD   Total   Weight   IV, Random, 95% Cl    </td></td<></td></td></t<> | Mean         SD         Total         Mean         SD         Total           4.45         2.3         66         4         2.3         59           4.1         1.8         25         4.7         1.8         25           5         1.6         10         4.2         2.2         11           6.4         1.8         20         6.4         1.9         20           6         1.8         14         5.5         1.8         19           5.1         2.4         27         4.7         2.7         19           4.3         1.9         10         3.7         2.6         10           5.9         1.6         25         5.6         2.5         23           4.4         2         25         5.6         2.5         23           4.4         2         24         4.4         2         57           4.9         1.7         22         4.4         1.9         22           5.1         1.9         44         4.5         1.9         44           4.9         1.7         29         4.9         1.9         29           5.3         1.9 </td <td>Mean         SD         Total         Mean         SD         Total         Weight           4.45         2.3         66         4         2.3         59         5.3%           4.1         1.8         25         4.7         1.8         25         3.5%           5         1.6         10         4.2         2.2         11         1.3%           6.4         1.8         20         6.4         1.9         20         2.6%           6         1.8         14         5.5         1.8         19         2.2%           5.1         2.4         27         4.7         2.7         19         1.5%           4.3         1.9         10         3.7         2.6         10         0.9%           5.9         1.6         25         5.6         2.5         23         2.4%           4.4         2         57         6.3%         4.9         1.7         22         4.4         1.9         22         3.3%           5.9         1.6         51         6.5         1.8         14         3.2%           5.3         1.9         24         5.5         1.5         24         <td< td=""><td>  Mean   SD   Total   Mean   SD   Total   Weight   IV, Random, 95% Cl    </td></td<></td> | Mean         SD         Total         Mean         SD         Total         Weight           4.45         2.3         66         4         2.3         59         5.3%           4.1         1.8         25         4.7         1.8         25         3.5%           5         1.6         10         4.2         2.2         11         1.3%           6.4         1.8         20         6.4         1.9         20         2.6%           6         1.8         14         5.5         1.8         19         2.2%           5.1         2.4         27         4.7         2.7         19         1.5%           4.3         1.9         10         3.7         2.6         10         0.9%           5.9         1.6         25         5.6         2.5         23         2.4%           4.4         2         57         6.3%         4.9         1.7         22         4.4         1.9         22         3.3%           5.9         1.6         51         6.5         1.8         14         3.2%           5.3         1.9         24         5.5         1.5         24 <td< td=""><td>  Mean   SD   Total   Mean   SD   Total   Weight   IV, Random, 95% Cl    </td></td<> | Mean   SD   Total   Mean   SD   Total   Weight   IV, Random, 95% Cl |

# Figure S64. APAP vs. CPAP (Adherence; % nights used)

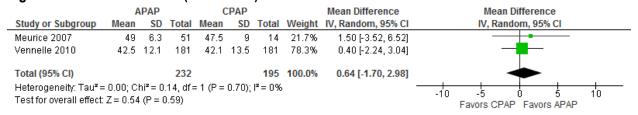
| •                               |          |          | •     |          |        | •       | _      | ,                     |                         |  |  |  |
|---------------------------------|----------|----------|-------|----------|--------|---------|--------|-----------------------|-------------------------|--|--|--|
|                                 | APAP     |          |       | (        | CPAP   |         |        | Mean Difference       | Mean Difference         |  |  |  |
| Study or Subgroup               | Mean     | SD       | Total | Mean     | SD     | Total   | Weight | IV, Random, 95% CI    | IV, Random, 95% CI      |  |  |  |
| Hukins 2004                     | 83.3     | 23.3     | 27    | 78       | 32.6   | 19      | 4.1%   | 5.30 [-11.79, 22.39]  | -                       |  |  |  |
| Marrone 2004                    | 88.8     | 15.2     | 22    | 83.9     | 18.6   | 22      | 11.8%  | 4.90 [-5.14, 14.94]   | <del></del>             |  |  |  |
| Massie 2003                     | 92       | 11       | 44    | 88       | 15     | 44      | 39.2%  | 4.00 [-1.50, 9.50]    | <del>  •</del>          |  |  |  |
| Nolan 2007                      | 79       | 29       | 29    | 81       | 25     | 29      | 6.1%   | -2.00 [-15.94, 11.94] |                         |  |  |  |
| Noseda 2004                     | 96.5     | 15       | 24    | 95.5     | 13.8   | 24      | 17.8%  | 1.00 [-7.15, 9.15]    | <del></del>             |  |  |  |
| Teschler 2000                   | 98       | 4.1      | 10    | 96       | 11.4   | 10      | 21.0%  | 2.00 [-5.51, 9.51]    | <del>-   •</del>        |  |  |  |
| Total (95% CI)                  |          |          | 156   |          |        | 148     | 100.0% | 2.84 [-0.61, 6.28]    | •                       |  |  |  |
| Heterogeneity: Tau <sup>2</sup> | •        |          | •     | = 5 (P = | 0.95); | l² = 0% |        |                       | -20 -10 0 10 20         |  |  |  |
| Test for overall effect         | Z = 1.62 | ! (P = ( | J.11) |          |        |         |        |                       | Favors CPAP Favors APAP |  |  |  |


## Figure S65. APAP vs. CPAP (Adherence; % nights >4 hrs)



### Figure S66. APAP vs. CPAP (ESS)

|                                   | Α       | PAP     |          | C        | PAP     |           |        | Mean Difference     | Mean Difference         |
|-----------------------------------|---------|---------|----------|----------|---------|-----------|--------|---------------------|-------------------------|
| Study or Subgroup                 | Mean    | SD      | Total    | Mean     | SD      | Total     | Weight | IV, Random, 95% CI  | IV, Random, 95% CI      |
| Berry 2014                        | 11      | 5.1     | 66       | 10.8     | 3.5     | 59        | 9.1%   | 0.20 [-1.32, 1.72]  | +                       |
| d'Ortho 2000                      | 9.3     | 4.8     | 25       | 9.2      | 5.5     | 25        | 2.6%   | 0.10 [-2.76, 2.96]  | <del></del>             |
| Galetke 2008                      | 4.9     | 4.6     | 20       | 6.6      | 4.8     | 20        | 2.5%   | -1.70 [-4.61, 1.21] | <del></del>             |
| Hudgel 2000                       | 8       | 5.7     | 14       | 9        | 5.7     | 19        | 1.4%   | -1.00 [-4.93, 2.93] | <del></del>             |
| Hukins 2004                       | 7.9     | 4.8     | 27       | 8.4      | 5.2     | 19        | 2.4%   | -0.50 [-3.46, 2.46] | <del></del>             |
| Hussain 2004                      | 8       | 5.7     | 10       | 6.6      | 5.9     | 10        | 0.8%   | 1.40 [-3.68, 6.48]  | <del></del>             |
| Kushida 2011                      | 6.9     | 4.3     | 46       | 7.9      | 5.4     | 47        | 5.3%   | -1.00 [-2.98, 0.98] | <del></del>             |
| Marrone 2004                      | 3.9     | 2.8     | 22       | 4.9      | 3.7     | 22        | 5.6%   | -1.00 [-2.94, 0.94] | <del></del>             |
| Meurice 2007                      | 6.5     | 4.4     | 51       | 5.9      | 5.1     | 14        | 2.4%   | 0.60 [-2.33, 3.53]  | <del></del>             |
| Nolan 2007                        | 8.6     | 4       | 29       | 7.7      | 4.6     | 29        | 4.3%   | 0.90 [-1.32, 3.12]  | <del> -</del>           |
| Noseda 2004                       | 5.1     | 2.8     | 24       | 6.1      | 2.8     | 24        | 8.3%   | -1.00 [-2.58, 0.58] | <del></del>             |
| Nussbaumer 2006                   | 6.6     | 3.3     | 30       | 6.6      | 3.3     | 30        | 7.5%   | 0.00 [-1.67, 1.67]  | +                       |
| Planes 2003                       | 7.5     | 3.4     | 16       | 7.6      | 3.4     | 14        | 3.5%   | -0.10 [-2.54, 2.34] | <del></del>             |
| Randerath 2001                    | 7.8     | 4.7     | 47       | 8.8      | 4.6     | 47        | 5.9%   | -1.00 [-2.88, 0.88] | <del></del>             |
| Resta 2004                        | 4.1     | 1.4     | 10       | 5.2      | 2.9     | 10        | 5.3%   | -1.10 [-3.10, 0.90] | <del>+</del>            |
| Senn 2003                         | 8.5     | 5.3     | 58       | 8.2      | 3.8     | 29        | 5.5%   | 0.30 [-1.64, 2.24]  | <del>+</del>            |
| Series 2001                       | 6.9     | 3.4     | 17       | 8.3      | 4.9     | 16        | 2.5%   | -1.40 [-4.29, 1.49] | <del></del>             |
| To 2008                           | 8.4     | 5.8     | 41       | 8.4      | 5.8     | 41        | 3.3%   | 0.00 [-2.51, 2.51]  | <del></del>             |
| Vennelle 2010                     | 9.5     | 5.4     | 181      | 10       | 4       | 181       | 21.8%  | -0.50 [-1.48, 0.48] | *                       |
| Total (95% CI)                    |         |         | 734      |          |         | 656       | 100.0% | -0.42 [-0.88, 0.03] | •                       |
| Heterogeneity: Tau <sup>z</sup> = | 0.00; C | hi² = i | 7.32, di | f= 18 (F | r = 0.9 | 99); l² = | 0%     |                     | - 10 to 10 to 10        |
| Test for overall effect:          |         |         |          | ,        |         |           |        |                     | -10 -5 0 5 10           |
|                                   |         | ,       |          |          |         |           |        |                     | Favors APAP Favors CPAP |


### Figure S67. APAP vs. CPAP (Osler & MWT)



### Figure S68. APAP vs. CPAP (FOSQ & SAQLI)

|                                                   | Α    | PAP |                                            | C    | PAP |       |        | Std. Mean Difference | Std. Mean Difference |
|---------------------------------------------------|------|-----|--------------------------------------------|------|-----|-------|--------|----------------------|----------------------|
| Study or Subgroup                                 | Mean | SD  | Total                                      | Mean | SD  | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI   |
| Berry 2014                                        | 15.2 | 3.2 | 66                                         | 15.5 | 3.4 | 59    | 34.8%  | -0.09 [-0.44, 0.26]  | <del></del>          |
| Kushida 2011                                      | 17.1 | 2.2 | 47                                         | 16.7 | 3.3 | 47    | 26.2%  | 0.14 [-0.26, 0.55]   | <del>-   •</del>     |
| To 2008                                           | 4.8  | 1.3 | 41                                         | 4.8  | 1.3 | 41    | 22.9%  | 0.00 [-0.43, 0.43]   | <del></del>          |
| West 2006                                         | 5.5  | 6.9 | 29                                         | 4.9  | 6.6 | 29    | 16.2%  | 0.09 [-0.43, 0.60]   | -                    |
| Total (95% CI)                                    |      |     | 183                                        |      |     | 176   | 100.0% | 0.02 [-0.19, 0.23]   | <b>*</b>             |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |     | -1 -0.5 0 0.5 1<br>Favors CPAP Favors APAP |      |     |       |        |                      |                      |

### Figure S69. APAP vs. CPAP (SF-36 PCS)



# Figure S70. APAP vs. CPAP (SF-36 MCS)

| A    | PAP                                             |                                                                              | 0                                                                                                                                                                                                    | PAP                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------|-------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mean | SD                                              | Total                                                                        | Mean                                                                                                                                                                                                 | SD                                                                                                                                                                                                                                                                                                         | Total                                                                                                                                                                                                                                                                                                                                                                           | Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 80   | 14                                              | 44                                                                           | 75                                                                                                                                                                                                   | 18                                                                                                                                                                                                                                                                                                         | 44                                                                                                                                                                                                                                                                                                                                                                              | 7.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.00 [-1.74, 11.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del>                                     </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 46.4 | 11.2                                            | 51                                                                           | 47.3                                                                                                                                                                                                 | 8.7                                                                                                                                                                                                                                                                                                        | 14                                                                                                                                                                                                                                                                                                                                                                              | 11.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.90 [-6.40, 4.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 51.5 | 15.2                                            | 58                                                                           | 52                                                                                                                                                                                                   | 10.8                                                                                                                                                                                                                                                                                                       | 29                                                                                                                                                                                                                                                                                                                                                                              | 11.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.50 [-6.05, 5.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 48.7 | 10.8                                            | 181                                                                          | 48.8                                                                                                                                                                                                 | 10.8                                                                                                                                                                                                                                                                                                       | 181                                                                                                                                                                                                                                                                                                                                                                             | 69.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.10 [-2.33, 2.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                 | 334                                                                          |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            | 268                                                                                                                                                                                                                                                                                                                                                                             | 100.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.15 [-1.71, 2.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>*</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                 |                                                                              | = 3 (P =                                                                                                                                                                                             | 0.53);                                                                                                                                                                                                                                                                                                     | I² = 0%                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -10 -5 0 5 10<br>Favors CPAP Favors APAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Mean<br>80<br>46.4<br>51.5<br>48.7<br>= 0.00; C | 80 14<br>46.4 11.2<br>51.5 15.2<br>48.7 10.8<br>= 0.00; Chi <sup>2</sup> = 2 | Mean         SD         Total           80         14         44           46.4         11.2         51           51.5         15.2         58           48.7         10.8         181           334 | Mean         SD         Total         Mean           80         14         44         75           46.4         11.2         51         47.3           51.5         15.2         58         52           48.7         10.8         181         48.8           334           0.00; Chi² = 2.23, df = 3 (P = | Mean         SD         Total         Mean         SD           80         14         44         75         18           46.4         11.2         51         47.3         8.7           51.5         15.2         58         52         10.8           48.7         10.8         181         48.8         10.8           334           c 0.00; Chi² = 2.23, df = 3 (P = 0.53); | Mean         SD         Total         Mean         SD         Total           80         14         44         75         18         44           46.4         11.2         51         47.3         8.7         14           51.5         15.2         58         52         10.8         29           48.7         10.8         181         48.8         10.8         181           334         268           0.00; Chi² = 2.23, df = 3 (P = 0.53); l² = 0% | Mean         SD         Total         Mean         SD         Total         Weight           80         14         44         75         18         44         7.6%           46.4         11.2         51         47.3         8.7         14         11.4%           51.5         15.2         58         52         10.8         29         11.2%           48.7         10.8         181         48.8         10.8         181         69.7%           334         268         100.0%           0.00; Chi² = 2.23, df = 3 (P = 0.53);  ² = 0%         12         10.0% | Mean         SD         Total         Mean         SD         Total         Weight         IV, Random, 95% CI           80         14         44         75         18         44         7.6%         5.00 [-1.74, 11.74]           46.4         11.2         51         47.3         8.7         14         11.4%         -0.90 [-6.40, 4.60]           51.5         15.2         58         52         10.8         29         11.2%         -0.50 [-6.05, 5.05]           48.7         10.8         181         48.8         10.8         181         69.7%         -0.10 [-2.33, 2.13]           334         268         100.0%         0.15 [-1.71, 2.01]           10.00; Chi² = 2.23, df = 3 (P = 0.53); l² = 0% |

# Figure S71. APAP vs. CPAP (SF-36 VS)

|                                                   | Į.   | APAP |       | (        | PAP    |         |        | Mean Difference      | Mean Difference                            |
|---------------------------------------------------|------|------|-------|----------|--------|---------|--------|----------------------|--------------------------------------------|
| Study or Subgroup                                 | Mean | SD   | Total | Mean     | SD     | Total   | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                         |
| Massie 2003                                       | 65   | 20   | 44    | 58       | 23     | 44      | 34.2%  | 7.00 [-2.01, 16.01]  | -                                          |
| Nussbaumer 2006                                   | 67   | 16.4 | 30    | 66       | 16.4   | 30      | 39.8%  | 1.00 [-7.30, 9.30]   | <del></del>                                |
| Senn 2003                                         | 60   | 26.6 | 58    | 63       | 21.5   | 29      | 26.0%  | -3.00 [-13.40, 7.40] |                                            |
| Total (95% CI)                                    |      |      | 132   |          |        | 103     | 100.0% | 2.01 [-3.43, 7.45]   | -                                          |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |      |       | = 2 (P = | 0.35); | l² = 6% | •      |                      | -20 -10 0 10 20<br>Favors CPAP Favors APAP |

# Figure S72. APAP vs. CPAP (PVT reaction time, msec)

|                                                  |       | APAP  |                                            |       | CPAP  |       |        | Mean Difference        | Mean Difference    |
|--------------------------------------------------|-------|-------|--------------------------------------------|-------|-------|-------|--------|------------------------|--------------------|
| Study or Subgroup                                | Mean  | SD    | Total                                      | Mean  | SD    | Total | Weight | IV, Random, 95% CI     | IV, Random, 95% CI |
| Kushida 2011                                     | 263.1 | 41.3  | 46                                         | 256.7 | 30.1  | 47    | 90.4%  | 6.40 [-8.31, 21.11]    | <b>———</b>         |
| Vennelle 2010                                    | 292   | 174.9 | 181                                        | 302.8 | 255.6 | 181   | 9.6%   | -10.80 [-55.92, 34.32] |                    |
| Total (95% CI)                                   |       |       | 227                                        |       |       | 228   | 100.0% | 4.75 [-9.24, 18.74]    | -                  |
| Heterogeneity: Tau² :<br>Test for overall effect |       |       | -50 -25 0 25 50<br>Favors APAP Favors CPAP |       |       |       |        |                        |                    |

# Figure S73. APAP vs. CPAP (PVT lapses)

|                                                               | Α    | PAP | AP CPAP |             |      |       |        | Mean Difference     | Mean Difference         |  |
|---------------------------------------------------------------|------|-----|---------|-------------|------|-------|--------|---------------------|-------------------------|--|
| Study or Subgroup                                             | Mean | SD  | Total   | Mean        | SD   | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI      |  |
| Kushida 2011                                                  | 1    | 2.1 | 46      | 1           | 1.3  | 47    | 87.1%  | 0.00 [-0.71, 0.71]  | -                       |  |
| Vennelle 2010                                                 | 2.9  | 6.7 | 181     | 3.8         | 10.8 | 181   | 12.9%  | -0.90 [-2.75, 0.95] |                         |  |
| Total (95% CI)                                                |      |     | 227     |             |      |       | 100.0% | -0.12 [-0.78, 0.55] | •                       |  |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: |      |     |         | -4 -2 0 2 4 |      |       |        |                     |                         |  |
|                                                               |      |     | ٠ ٠,    |             |      |       |        |                     | Favors APAP Favors CPAP |  |

# Figure S74. APAP vs. CPAP (Patient Preference)

| Study           | Patients preferring APAP | Total Patients | % Preferring APAP |                           |
|-----------------|--------------------------|----------------|-------------------|---------------------------|
| d'Ortho 2000    | 15                       | 25             | 60                | •                         |
| Galetke 2008    | 13                       | 20             | 65                | <b>—</b>                  |
| Hussain 2004    | 1                        | 10             | 10                | •                         |
| Marrone 2004    | 16                       | 22             | 73                | <b>—</b>                  |
| Nolan 2007      | 14.5                     | 29             | 50                | <b>•</b>                  |
| Noseda 2004     | 16                       | 24             | 67                | <b>•</b>                  |
| Nussbaumer 2006 | 26                       | 30             | 87                | <del></del>               |
| To 2008         | 9                        | 39             | 23                | <b></b>                   |
| Vennelle 2010   | 89                       | 181            | 49                | <b>•</b>                  |
|                 |                          |                |                   | 0 50 100                  |
|                 |                          | Mean =         | 54                | Percentage prefering APAP |

# Table S5. Summary of Findings Table for APAP vs. CPAP for the treatment of obstructive sleep apnea in adults

References: Berry 2014 (A); d'Ortho 2000 (B); Fietze 2007 (C); Galetke 2008 (D); Hudgel 2000 (E); Hukins 2004 (F); Hussain 2004 (G); Konermann 1998 (H); Kushida 2011 (I); Marrone 2004 (J); Massie 2003 (K); Meurice 2007 (L); Nolan 2007 (M); Noseda 2004 (N); Nussbaumer 2006 (O); Patruno 2007 (P); Planes 2003 (Q); Randerath 2001 (R); Resta 2004 (S); Senn 2003 (T); Teschler 2000 (U); To 2008 (V); Vennelle 2010 (W); Series 2001 (X); West 2006 (Y); Meurice 1996 (Z)

| Outcomes                                 | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between APAP and CPAP                                                                                                                  | № of participants<br>(studies)                |
|------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| АНІ                                      | ⊕⊕⊕⊕<br>HIGH                    | The mean AHI in the APAP group was 4.9 (3.1). The mean AHI in the CPAP group was 4.5 (3.4). The mean AHI in the APAP group was 0.56 events/hr higher (0.07 lower to 1.19 higher) | 1407 (21 RCTs)A-D,G-I,K-M,O-U,W-Z             |
| Adherence (hrs/night)*                   | ⊕⊕⊕⊕<br>HIGH                    | The mean adherence in the APAP group was 0.11 hrs/night more (0.07 less to 0.30 more)                                                                                            | 1583<br>(23 RCTs) <sup>A-W</sup>              |
| Adherence (% nights used)*               | ⊕⊕⊕○<br>MODERATE 1              | The mean nights PAP used in the APAP group was 2.84% more (6.37 more to 0.09 less)                                                                                               | 304<br>(6 RCTs) <sup>F,J,K,M,N,T</sup>        |
| Adherence (% nights >4hrs)*              | ⊕⊕⊕○<br>MODERATE ¹              | The mean nights used >4hrs in the APAP group was 5.34% more (3.93 less to 14.61 more)                                                                                            | 93<br>(2 RCTs) <sup>E,O</sup>                 |
| Self-reported sleepiness* (ESS)          | ⊕⊕⊕⊕<br>HIGH                    | The mean ESS score in the APAP group was 0.42 lower (0.88 lower to 0.03 lower)                                                                                                   | 1390<br>(19 RCTs)A,B,D-G,I,J,L-O,Q-T,X,V,W    |
| Objective sleepiness* (Osler & MWT)      | ⊕⊕⊕○<br>MODERATE¹               | The mean Osler/MWT sleep latency in the APAP group was 0.06 standard deviations lower (0.22 lower to 0.01 higher)                                                                | 593 (6 RCTs) <sup>0,T,W-Z</sup>               |
| PVT reaction time                        | ⊕⊕⊕○<br>MODERATE¹               | The mean PVT reaction time in the APAP group was 4.75 msec slower (9.24 faster to 18.74 slower)                                                                                  | 455<br>(2 RCTs) <sup>I,W</sup>                |
| PVT lapses                               | ⊕⊕⊕○<br>MODERATE¹               | The mean PVT lapses in the APAP group was 0.12 lower (0.78 lower to 0.55 higher)                                                                                                 | 455 (2 RCTs) <sup>I,W</sup>                   |
| Sleep-related QOL* (FOSQ & SAQLI)        | ⊕⊕⊕○<br>MODERATE¹               | The mean SAQLI/FOSQ in the APAP group was 0.02 standard deviations higher (0.19 lower to 0.23 higher)                                                                            | 359 (4 RCT) <sup>A,I,V,Y</sup>                |
| QOL* (SF-36 Physical Component Summary)  | ⊕⊕⊕⊕<br>HIGH                    | The mean SF-36 Physical Component Score in the APAP group was 0.64 higher (1.70 lower to 2.98 higher)                                                                            | 427<br>(2 RCTs) <sup>L,W</sup>                |
| QOL* (SF-36 Mental Component<br>Summary) | ⊕⊕⊕⊕<br>HIGH                    | The mean SF-36 Mental Component Score in the APAP group was 0.15 higher (1.71 lower to 2.01 higher)                                                                              | 602<br>(4 RCTs) <sup>K,L,T,W</sup>            |
| QOL* (SF-36 Vitality Score)              | ⊕⊕⊕⊕<br>HIGH                    | The mean SF-36 Vitality Score in the APAP group was 2.01 higher (3.43 lower to 7.45 higher)                                                                                      | 235<br>(3 RCTs) <sup>K,O,T</sup>              |
| Side Effects                             | ⊕⊕○○<br>LOW <sup>1,2</sup>      | Meta-analysis not performed due to inconsistent methods of measuring and reporting of side effects across studies                                                                | 494<br>(11 RCTs) <sup>B,F,I,K,M,O,Q-T,V</sup> |

<sup>\*</sup>Critical Outcomes

<sup>&</sup>lt;sup>1</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

<sup>&</sup>lt;sup>2</sup>Quality of evidence due to heterogeneity

# BPAP vs. CPAP for the treatment of obstructive sleep apnea in adults

## Figure S75. BPAP vs. CPAP (AHI, events/hr)

|                                                                                                                                             | В    | PAP |       | (    | PAP  |       |        | Mean Difference      |     | Mea             | n Differen   | ice          |    |
|---------------------------------------------------------------------------------------------------------------------------------------------|------|-----|-------|------|------|-------|--------|----------------------|-----|-----------------|--------------|--------------|----|
| Study or Subgroup                                                                                                                           | Mean | SD  | Total | Mean | SD   | Total | Weight | IV, Random, 95% CI   |     | IV, Ra          | ndom, 95     | % CI         |    |
| Blau 2011                                                                                                                                   | 2.5  | 3.8 | 15    | 4.3  | 5.3  | 17    | 80.9%  | -1.80 [-4.97, 1.37]  |     | _               |              |              |    |
| Gay 2003                                                                                                                                    | 3.7  | 4.4 | 12    | 7.6  | 11.9 | 15    | 19.1%  | -3.90 [-10.42, 2.62] |     | -               | _            |              |    |
| Total (95% CI)                                                                                                                              |      |     | 27    |      |      | 32    | 100.0% | -2.20 [-5.05, 0.65]  |     | -               |              |              |    |
| Heterogeneity: $Tau^2 = 0.00$ ; $Chi^2 = 0.32$ , $df = 1$ ( $P = 0.57$ ); $I^2 = 0\%$<br>Test for overall effect: $Z = 1.51$ ( $P = 0.13$ ) |      |     |       |      |      |       |        |                      | -10 | -5<br>Favors BE | 0<br>AP Favo | 5<br>rs CPAP | 10 |

# Figure S76. BPAP vs. CPAP (Adherence, hrs/night)\*

|                                                       | В    | PAP |                                     | C    | PAP  |       |        | Mean Difference     | Mean Difference    |
|-------------------------------------------------------|------|-----|-------------------------------------|------|------|-------|--------|---------------------|--------------------|
| Study or Subgroup                                     | Mean | SD  | Total                               | Mean | SD   | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI |
| Blau 2011                                             | 5.3  | 1.5 | 15                                  | 5.6  | 1    | 17    | 19.1%  | -0.30 [-1.20, 0.60] |                    |
| Gay 2003                                              | 5.6  | 1.7 | 12                                  | 5.6  | 1.4  | 15    | 10.7%  | 0.00 [-1.19, 1.19]  | <del></del>        |
| Powell 2012                                           | 4.7  | 1.8 | 26                                  | 4.4  | 2    | 22    | 13.0%  | 0.30 [-0.78, 1.38]  | <del></del>        |
| Reeves-Hoche 1995                                     | 4.9  | 1.2 | 26                                  | 5    | 0.72 | 36    | 57.2%  | -0.10 [-0.62, 0.42] | <del>-</del>       |
| Total (95% CI)                                        |      |     | 79                                  |      |      | 90    | 100.0% | -0.08 [-0.47, 0.32] | •                  |
| Heterogeneity: Tau² = (<br>Test for overall effect: 2 | -    |     | -2 -1 0 1 2 Favors CPAP Favors BPAP |      |      |       |        |                     |                    |

<sup>\*</sup>Studies included patients who were previously untreated with PAP

## Figure S77. BPAP vs. CPAP (ESS)\*

|                                                   | В    | PAP |                                     | C    | PAP |       |        | Mean Difference     | Mean Difference    |
|---------------------------------------------------|------|-----|-------------------------------------|------|-----|-------|--------|---------------------|--------------------|
| Study or Subgroup                                 | Mean | SD  | Total                               | Mean | SD  | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI |
| Blau 2011                                         | 7.6  | 2   | 15                                  | 6.8  | 3.7 | 17    | 46.8%  | 0.80 [-1.23, 2.83]  | <del>-   -</del>   |
| Gay 2003                                          | 8    | 4.8 | 15                                  | 7.8  | 3.8 | 12    | 18.3%  | 0.20 [-3.04, 3.44]  |                    |
| Powell 2012                                       | 6.9  | 4.4 | 22                                  | 8.1  | 3.8 | 26    | 34.9%  | -1.20 [-3.55, 1.15] |                    |
| Total (95% CI)                                    |      |     | 52                                  |      |     | 55    | 100.0% | -0.01 [-1.40, 1.38] | -                  |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |     | -4 -2 0 2 4 Favors BPAP Favors CPAP |      |     |       |        |                     |                    |

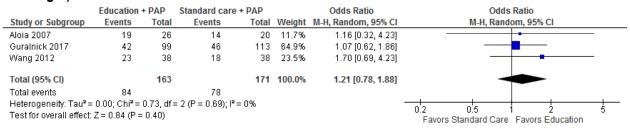
<sup>\*</sup>Studies included patients who were previously untreated with PAP

# Table S6. Summary of Findings Table for BPAP vs. CPAP for the treatment of obstructive sleep apnea in adults

References: Ballard 2007 (A), Gay 2003 (B); Powell 2012 (C); Reeves-Hoche 1995 (D); Blau 2011 (E)

| Outcomes                            | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between BPAP and CPAP                                                                                                                  | № of participants<br>(studies) |
|-------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| PAP naive                           |                                 |                                                                                                                                                                                  |                                |
| AHI                                 | ⊕⊕○○<br>LOW 12                  | The mean AHI in the APAP group was 2.7 (3.9). The mean AHI in the CPAP group was 4.9 (6.6). The mean AHI in the BPAP group was 2.20 events/hr lower (5.05 lower to 0.65 greater) | 59<br>(2 RCTs) <sup>B,E</sup>  |
| Adherence (hrs/night)*<br>PAP naïve | ⊕⊕○○<br>LOW <sup>12</sup>       | The mean adherence in the BPAP group was 0.08 hrs/night lower (0.47 lower to 0.32 higher)                                                                                        | 169<br>(4 RCTs) <sup>B-E</sup> |

| Sleepiness (ESS)*                      | ⊕⊕○○<br>LOW 12                  | The mean ESS in the BPAP group was 0.01 less (1.40 less to 1.38 more)                                             | 107<br>(3 RCTs) <sup>B,C,E</sup> |
|----------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Sleep-related QOL* (FOSQ)<br>PAP naïve | ⊕○○○<br>VERY LOW 1,2            | The mean QOL (FOSQ) in the BPAP group was 0.02 standard deviations lower (0.44 lower to 0.39 higher)              | 89<br>(1 RCT) <sup>B</sup>       |
| Sleep Quality (PSQI)                   | ⊕○○○<br>VERY LOW 1,2            | The mean PSQI in the BPAP group was 0.07 standard deviations higher (0.62 lower to 0.77 higher)                   | 32<br>(1 RCT) <sup>E</sup>       |
| Side Effects                           | ⊕⊕○○<br>LOW 12                  | Meta-analysis not performed due to inconsistent methods of measuring and reporting of side effects across studies | 97 (2 RCTs) <sup>D,E</sup>       |
| Rescue Therapy                         |                                 |                                                                                                                   |                                  |
| Adherence (hrs/night)*                 | ⊕⊕○○<br>LOW <u>1.2</u>          | The mean adherence (hrs/night) in the BPAP group was 0.80 higher (0.03 lower to 1.63 higher)                      | 104<br>(1 RCT) <sup>A</sup>      |
| Sleep-related QOL* (FOSQ)              | ⊕○○○<br>VERY LOW <sup>1,2</sup> | The mean FOSQ in the BPAP group was 0.23 standard deviations higher (0.33 lower to 0.40 higher)                   | 27<br>(1 RCT) <sup>A</sup>       |


<sup>\*</sup>Critical Outcomes

# Educational and behavioral interventions plus PAP vs. standard care plus PAP for the treatment of obstructive sleep apnea in adults

Figure S78. Education + PAP vs. Usual Care + PAP (Adherence, hrs/night)

|                                                                                                          | Edu  | catio | n     | Stand | ard ca | are   |        | Mean Difference                       | Mean Difference    |
|----------------------------------------------------------------------------------------------------------|------|-------|-------|-------|--------|-------|--------|---------------------------------------|--------------------|
| Study or Subgroup                                                                                        | Mean | SD    | Total | Mean  | SD     | Total | Weight | IV, Random, 95% CI                    | IV, Random, 95% CI |
| Aloia 2007                                                                                               | 4.4  | 2.6   | 47    | 3.5   | 2.4    | 41    | 15.3%  | 0.90 [-0.15, 1.95]                    | <del>  • </del>    |
| Aloia 2013                                                                                               | 4.3  | 2.4   | 53    | 3.7   | 2.5    | 49    | 17.2%  | 0.60 [-0.35, 1.55]                    | <del>  • -</del>   |
| Chervin 1997                                                                                             | 6.7  | 2.3   | 26    | 4.4   | 3.4    | 7     | 3.4%   | 2.30 [-0.37, 4.97]                    | +                  |
| Guralnick 2017                                                                                           | 3.1  | 2.6   | 99    | 3.4   | 2.5    | 113   | 24.1%  | -0.30 [-0.99, 0.39]                   | <del></del>        |
| Meurice 2007b                                                                                            | 6.3  | 2.2   | 22    | 5.5   | 2.4    | 25    | 11.1%  | 0.80 [-0.52, 2.12]                    | <del></del>        |
| Sarac 2017                                                                                               | 5.2  | 2.1   | 52    | 4.2   | 2.5    | 63    | 19.8%  | 1.00 [0.16, 1.84]                     | <del></del>        |
| Wang 2012                                                                                                | 3.9  | 2.3   | 23    | 3.7   | 2.5    | 18    | 9.2%   | 0.20 [-1.29, 1.69]                    |                    |
| Total (95% CI)                                                                                           |      |       | 322   |       |        | 316   | 100.0% | 0.55 [0.04, 1.06]                     | •                  |
| Heterogeneity: Tau <sup>2</sup> = 0.16; Chi <sup>2</sup> = 9.22, df = 6 (P = 0.16); I <sup>2</sup> = 35% |      |       |       |       |        |       |        | -                                     | <del></del>        |
| Test for overall effect: Z = 2.12 (P = 0.03)                                                             |      |       |       |       |        |       |        | Favors Standard Care Favors Education |                    |

Figure S79. Education + PAP vs. Usual Care + PAP (Adherence, # patients with mean usage > 4hrs/night)



<sup>&</sup>lt;sup>1</sup>Industry funded studies

<sup>&</sup>lt;sup>2</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

<sup>&</sup>lt;sup>3</sup>Study by Ballard 2007 employed BPAP as a rescue therapy

Table S7. Summary of Findings Table for Educational Interventions + PAP vs. Standard Care + PAP

References: Aloia 2007 (A); Aloia 2013 (B); Chervin 1997 (C); Meurice 2007 (D); Wang 2012 (E); Guralnick 2017 (F); Sarac 2017 (G)

| Outcomes                                                   | Quality of the evidence (GRADE) | Anticipated absolute e |                                                                                     | № of participants<br>(studies) |  |  |  |  |  |
|------------------------------------------------------------|---------------------------------|------------------------|-------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|--|
| Adherence* (hrs/night)                                     | ⊕⊕⊕○<br>MODERATE¹               |                        | ers/night) in the educational intervention group<br>er (0.04 higher to 1.06 higher) | 638<br>(7 RCTs) <sup>A-G</sup> |  |  |  |  |  |
| Relative Effect  Baseline Risk Comparative risk            |                                 |                        |                                                                                     |                                |  |  |  |  |  |
| Adherence* (# patients<br>with mean usage >4<br>hrs/night) | ⊕⊕⊕⊖<br>MODERATE²               | 632 per 1,000          | 675 per 1,000<br>(572 to 763)<br>OR 1.21<br>(0.78 to 1.88)                          | 334 (3<br>RCTs) <sup>D-F</sup> |  |  |  |  |  |

<sup>\*</sup>Critical Outcomes

Figure S80. Behavioral Interventions + PAP vs. Usual Care + PAP (Adherence, hrs/night)

|                                   | PAP + beha       | ehavioral support PA |           | PAP +   | Std. C   | are   |        | Mean Difference    | Mean Difference                                    |
|-----------------------------------|------------------|----------------------|-----------|---------|----------|-------|--------|--------------------|----------------------------------------------------|
| Study or Subgroup                 | Mean             | SD                   | Total     | Mean    | SD       | Total | Weight | IV, Random, 95% CI | IV, Random, 95% CI                                 |
| Aloia 2007                        | 4                | 2.6                  | 54        | 3.5     | 2.4      | 41    | 16.4%  | 0.50 [-0.51, 1.51] | <del></del>                                        |
| Aloia 2013                        | 3.9              | 2.6                  | 47        | 3.7     | 2.5      | 49    | 16.3%  | 0.20 [-0.82, 1.22] | <del></del>                                        |
| Deng 2013                         | 5.6              | 0.5                  | 48        | 5.3     | 0.8      | 45    | 20.4%  | 0.30 [0.03, 0.57]  | <del>  • -</del>                                   |
| Lai 2014                          | 4.4              | 1.8                  | 49        | 2.4     | 2.3      | 51    | 17.7%  | 2.00 [1.19, 2.81]  | _ <del></del>                                      |
| Parthasarathy 2013                | 5.2              | 2                    | 22        | 4       | 2.4      | 15    | 13.2%  | 1.20 [-0.27, 2.67] | <del>  • • • • • • • • • • • • • • • • • • •</del> |
| Richards 2007                     | 5.4              | 2.6                  | 48        | 2.5     | 2.7      | 48    | 16.0%  | 2.90 [1.84, 3.96]  | <del></del>                                        |
| Total (95% CI)                    |                  |                      | 268       |         |          | 249   | 100.0% | 1.15 [0.27, 2.04]  | -                                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.98; Chi² = 3   | 5.51, df=            | 5 (P < 0. | 00001); | l² = 86° | %     |        | -                  | -4 -2 0 2 4                                        |
| Test for overall effect:          | Z = 2.55 (P = 0) | 0.01)                |           |         |          |       |        |                    | Favors Standard Care Favors Behavior Change        |

Figure S81. Behavioral Interventions + PAP vs. Usual Care + PAP (Adherence, # patients with mean usage > 4hrs/night)

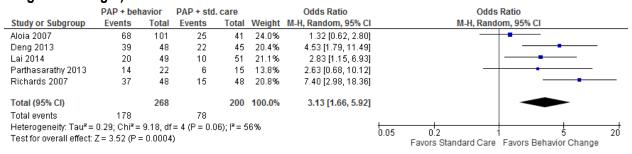
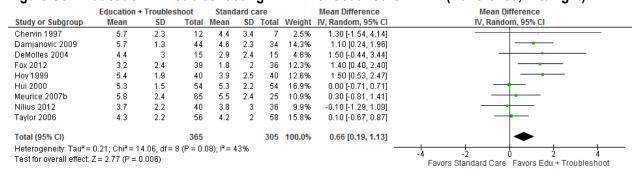



Table S8. Summary of Findings Table for Behavioral Interventions + PAP vs. Usual Care + PAP in the treatment of obstructive sleep apnea in adults

References: Aloia 2007 (A); Aloia 2013 (B); Deng 2013 (C); Lai 2014 (D); Parthasarathy 2013 (E); Richards 2007 (F)

| Outcomes               | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between behavior modification and standard care           | № of participants<br>(studies) |
|------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------|
| Adherence* (hrs/night) | ⊕⊕⊕○<br>MODERATE <sup>1</sup>   | The mean adherence in the intervention group was 1.15 hrs/night higher (0.27 higher to 2.04 higher) | 517<br>(6 RCTs) <sup>A-F</sup> |


<sup>&</sup>lt;sup>1</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold)

<sup>&</sup>lt;sup>2</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of odds ratio crosses center line of plot and/or small sample size)

|                                                          | - | Relative E<br>Baseline Risk | Effect Comparative risk                                    |                                     |  |  |  |  |
|----------------------------------------------------------|---|-----------------------------|------------------------------------------------------------|-------------------------------------|--|--|--|--|
| Adherence* (#patients with mean usage >4 HIGH hrs/night) |   | 390 per 1,000               | 667 per 1,000<br>(515 to 791)<br>OR 3.13<br>(1.66 to 5.92) | 468<br>(5<br>RCTs) <sup>A,C-F</sup> |  |  |  |  |

<sup>\*</sup>Critical Outcomes

Figure S82. Education + Troubleshooting + PAP vs. Usual Care + PAP (Adherence, hrs/night)



# Table S9. Summary of Findings Table for Education + Troubleshooting + PAP vs. Usual Care + PAP in the treatment of obstructive sleep apnea in adults

References: Chervin 1997 (A); Damjanovic 2009 (B); DeMolles 2004 (C); Fox 2012 (D); Hoy 1999 (E); Hui 2000 (F); Meurice 2007 (G); Nilius 2012 (H); Taylor 2006 (I)

| Outcomes                                             | Quality of the<br>evidence<br>(GRADE) | Anticipated absolute of MD between education   | effects (95% CI) n plus troubleshooting and standard care       | № of participants<br>(studies) |
|------------------------------------------------------|---------------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| Adherence (hrs/night)*                               | ⊕⊕⊕○<br>MODERATE ¹                    | The mean adherence in higher (0.19 higher to 1 | n the intervention group was 0.66 hrs/night .13 higher)         | 670<br>(9 RCTs) <sup>A-I</sup> |
|                                                      |                                       |                                                |                                                                 |                                |
| Adherence (# patients with mean usage >4 hrs/night)* | ⊕⊕⊕○<br>MODERATE <sup>1</sup>         | 704 per 1,000                                  | <b>740 per 1,000</b> (553 to 869) <b>OR 1.20</b> (0.52 to 2.80) | 108<br>(1<br>RCT) <sup>F</sup> |

<sup>\*</sup>Critical Outcomes

<sup>&</sup>lt;sup>1</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold)

<sup>1</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

# Telemonitoring + PAP vs. Usual Care + PAP for the treatment of obstructive sleep apnea in adults

Figure S83. Telemonitoring + PAP vs. Usual Care + PAP (adherence, hrs/day)

|                   | PAP+tele                                                                                                                                       | PAP+telemonitoring |       |      |     |       | Mean Difference |                    | Mean Difference                                        |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|------|-----|-------|-----------------|--------------------|--------------------------------------------------------|
| Study or Subgroup | Mean                                                                                                                                           | SD                 | Total | Mean | SD  | Total | Weight          | IV, Random, 95% CI | IV, Random, 95% CI                                     |
| Fox 2012          | 3.2                                                                                                                                            | 2.4                | 28    | 1.8  | 2   | 26    | 12.9%           | 1.40 [0.22, 2.58]  |                                                        |
| Hoet 2017         | 5.7                                                                                                                                            | 1.6                | 17    | 4.2  | 1.9 | 20    | 13.9%           | 1.50 [0.37, 2.63]  | <del></del>                                            |
| Hwang 2018        | 4.8                                                                                                                                            | 2.3                | 138   | 3.8  | 2.5 | 129   | 39.1%           | 1.00 [0.42, 1.58]  | <del></del>                                            |
| Stepnowsky 2007   | 4.1                                                                                                                                            | 1.8                | 20    | 2.8  | 2.2 | 20    | 11.6%           | 1.30 [0.05, 2.55]  | <del></del>                                            |
| Turino 2017       | 5.1                                                                                                                                            | 2.1                | 50    | 4.9  | 2.2 | 50    | 22.6%           | 0.20 [-0.64, 1.04] |                                                        |
| Total (95% CI)    |                                                                                                                                                |                    | 253   |      |     | 245   | 100.0%          | 0.98 [0.53, 1.42]  | •                                                      |
|                   | Heterogeneity: $Tau^2 = 0.05$ ; $Chi^2 = 4.85$ , $df = 4$ ( $P = 0.30$ ); $I^2 = 17\%$<br>Test for overall effect: $Z = 4.26$ ( $P < 0.0001$ ) |                    |       |      |     |       |                 |                    | -4 -2 0 2 4 Favors Standard Care Favors Telemonitoring |

Figure S84. Telemonitoring + PAP vs. Usual Care + PAP (ESS)

Nasal congestion (0-10

scale)\*

 $\Theta\ThetaOO$ 

LOW 1

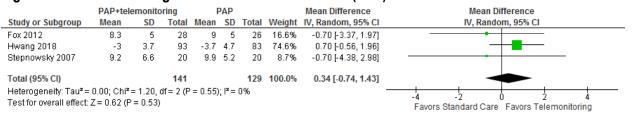



Table S10. Summary of Findings Table for Telemonitoring + PAP vs. Usual Care + PAP in the treatment of obstructive sleep apnea in adults

| <b>References:</b> Fox 2012 (A); Stepnowsky 2007 (B); Hoet 2017 (C); Hwang 2018 (D); Turino 2017 (E) |                                 |                                                                                                                   |                                  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|--|--|
| Outcomes                                                                                             | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between monitoring and standard care                                    | № of participants<br>(studies)   |  |  |  |  |  |
| Adherence (hrs/night)*                                                                               | ⊕⊕⊕⊕<br>HIGH                    | The mean adherence in the intervention group was 0.98 hrs/night higher (0.53 higher to 1.42 higher)               | 498<br>(5 RCTs) <sup>A-E</sup>   |  |  |  |  |  |
| Self-reported Sleepiness<br>(ESS)*                                                                   | ⊕⊕⊕○<br>MODERATE 1              | The mean ESS score in the intervention group was 0.34 lower (0.74 higher to 1.43 lower)                           | 270<br>(3 RCTs) <sup>A,B,D</sup> |  |  |  |  |  |
| CPAP discomfort (0-10 scale)*                                                                        | ⊕⊕○○<br>LOW ¹                   | The mean CPAP discomfort score (0-10 scale) in the intervention group was 0.8 lower (2.41 lower to 0.81 higher)   | 54<br>(1 RCT) <sup>A</sup>       |  |  |  |  |  |
| Difficulty exhaling (0-10 scale)*                                                                    | ⊕⊕○○<br>LOW ¹                   | The mean difficulty exhaling score (0-10 scale) in the intervention group was 1 lower (2.74 lower to 0.74 higher) | 54<br>(1 RCT) <sup>A</sup>       |  |  |  |  |  |
| Mask leaks (0-10 scale)*                                                                             | ⊕⊕○○<br>LOW ¹                   | The mean mask leaks score (0-10 scale) in the intervention group was 0.9 lower (2.45 lower to 0.65 higher)        | 54<br>(1 RCT) <sup>A</sup>       |  |  |  |  |  |
| Dry mouth (0-10 scale)*                                                                              | ⊕⊕○○<br>LOW ¹                   | The mean dry mouth score (0-10 scale) in the intervention group was 1.6 lower (2.91 lower to 0.29 lower)          | 54<br>(1 RCT) <sup>A</sup>       |  |  |  |  |  |

was 0.9 lower (2.27 lower to 0.47 higher)

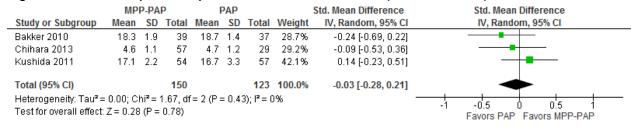
The mean nasal congestion score (0-10 scale) in the intervention group

(1 RCT)<sup>A</sup>

| Sleep-related QOL | ⊕⊕○○          | The mean FOSQ score in the intervention group was 0.80 lower (3.66 lower to 2.06 higher)  | 40                          |
|-------------------|---------------|-------------------------------------------------------------------------------------------|-----------------------------|
| (FOSQ)*           | LOW ¹         |                                                                                           | (1 RCT) <sup>B</sup>        |
| QOL (EuroQOL)*    | ⊕⊕○○<br>LOW 1 | The mean EuroQOL sore in the intervention group was 0.00 lower (0.07 lower to 0.07 lower) | 100<br>(1 RCT) <sup>E</sup> |

<sup>\*</sup>Critical Outcomes

# Modified pressure profile PAP vs. standard PAP for the treatment of obstructive sleep apnea in adults


Figure S85. Modified pressure profile PAP vs. Standard PAP (Adherence, hrs/night)

|                                                                      | MP       | P-PA | Р     | F    | PAP |       |        | Mean Difference     | Mean Difference                                  |
|----------------------------------------------------------------------|----------|------|-------|------|-----|-------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                                                    | Mean     | SD   | Total | Mean | SD  | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                               |
| Bakker 2010                                                          | 5.6      | 2.5  | 39    | 5.9  | 1.3 | 37    | 14.4%  | -0.30 [-1.19, 0.59] |                                                  |
| Chihara 2013                                                         | 4.8      | 1.9  | 57    | 4    | 1.7 | 29    | 17.6%  | 0.80 [0.01, 1.59]   | <del></del>                                      |
| Kushida 2011                                                         | 4.4      | 2    | 54    | 4.4  | 2   | 57    | 19.6%  | 0.00 [-0.74, 0.74]  | <del>-</del>                                     |
| Leidag 2008                                                          | 5.8      | 1.2  | 25    | 5.8  | 1.2 | 23    | 22.9%  | 0.00 [-0.68, 0.68]  | <del>-+</del> -                                  |
| Marshall 2008                                                        | 4.7      | 2.9  | 9     | 3    | 2.1 | 10    | 2.4%   | 1.70 [-0.60, 4.00]  | <del>                                     </del> |
| Pepin 2009                                                           | 5        | 2    | 83    | 4.9  | 2.4 | 82    | 23.2%  | 0.10 [-0.57, 0.77]  | +                                                |
| Total (95% CI)                                                       |          |      | 267   |      |     | 238   | 100.0% | 0.16 [-0.19, 0.52]  | <b>•</b>                                         |
| Heterogeneity: Tau² = 0.02; Chi² = 5.69, df = 5 (P = 0.34); I² = 12% |          |      |       |      |     |       |        | -4 -2 0 2 4         |                                                  |
| Test for overall effect:                                             | Z = 0.89 | (P=  | 0.37) |      |     |       |        |                     | Favors PAP Favors MPP-PAP                        |

Figure S86. Modified pressure profile PAP vs. Standard PAP (ESS)

|                                                                                                                                                       | MP   | P-PA | P     | F    | PAP |       |        | Mean Difference     | Mean Difference           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-------|------|-----|-------|--------|---------------------|---------------------------|
| Study or Subgroup                                                                                                                                     | Mean | SD   | Total | Mean | SD  | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI        |
| Bakker 2010                                                                                                                                           | 6    | 3.9  | 39    | 5.5  | 3.6 | 37    | 24.4%  | 0.50 [-1.19, 2.19]  | <b></b>                   |
| Chihara 2013                                                                                                                                          | 7.7  | 4    | 57    | 8.2  | 4   | 29    | 22.6%  | -0.50 [-2.29, 1.29] | <del></del>               |
| Kushida 2011                                                                                                                                          | 6.9  | 4.3  | 54    | 6.9  | 4.3 | 57    | 26.2%  | 0.00 [-1.60, 1.60]  | +                         |
| Marshall 2008                                                                                                                                         | 11.9 | 4.5  | 8     | 6.9  | 4.5 | 8     | 5.0%   | 5.00 [0.59, 9.41]   | <del></del>               |
| Pepin 2009                                                                                                                                            | 7.8  | 4.6  | 66    | 8    | 5.5 | 55    | 21.9%  | -0.20 [-2.03, 1.63] | +                         |
| Total (95% CI)                                                                                                                                        |      |      | 224   |      |     | 186   | 100.0% | 0.21 [-0.80, 1.23]  | <b>+</b>                  |
| Heterogeneity: Tau <sup>2</sup> = 0.36; Chi <sup>2</sup> = 5.49, df = 4 (P = 0.24); i <sup>2</sup> = 27% Test for overall effect: Z = 0.41 (P = 0.68) |      |      |       |      |     |       |        |                     | -10 -5 0 5 10             |
| 1001101 0701411 011001                                                                                                                                | 0.41 | ν –  | 0.00, |      |     |       |        |                     | Favors MPP-PAP Favors PAP |

### Figure S87. Modified pressure profile PAP vs. Standard PAP (FOSQ & SAQLI)



Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

Figure S88. Modified pressure profile PAP vs. Standard PAP (PSQI)

|                                                                                                                                                  | MP   | MPP-PAP |       | PAP  |     | PAP Mean Difference |        | Mean Difference     | Mean Difference                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------|---------|-------|------|-----|---------------------|--------|---------------------|---------------------------------------|
| Study or Subgroup                                                                                                                                | Mean | SD      | Total | Mean | SD  | Total               | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                    |
| Bakker 2010                                                                                                                                      | 4.8  | 3       | 39    | 5.8  | 3   | 37                  | 46.3%  | -1.00 [-2.35, 0.35] | <del></del>                           |
| Chihara 2013                                                                                                                                     | 6    | 2.6     | 57    | 6.1  | 2.9 | 29                  | 53.7%  | -0.10 [-1.35, 1.15] | <del></del> -                         |
| Total (95% CI)                                                                                                                                   |      |         | 96    |      |     | 66                  | 100.0% | -0.52 [-1.43, 0.40] | -                                     |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.92, df = 1 (P = 0.34); $I^2$ = 0%<br>Test for overall effect: $Z$ = 1.10 (P = 0.27) |      |         |       |      |     |                     |        |                     | -4 -2 0 2 4 Favors MPP-PAP Favors PAP |

## Figure S89. Modified pressure profile PAP vs. Standard PAP (change in PVT Reaction Time)

|                                                   | MF    | P-PAF | )                                            |       | PAP   |       |        | Std. Mean Difference | Std. Mean Difference                             |
|---------------------------------------------------|-------|-------|----------------------------------------------|-------|-------|-------|--------|----------------------|--------------------------------------------------|
| Study or Subgroup                                 | Mean  | SD    | Total                                        | Mean  | SD    | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                               |
| Bakker 2010                                       | -32.4 | 70.8  | 39                                           | -64.4 | 113.9 | 37    | 40.4%  | 0.34 [-0.12, 0.79]   | -                                                |
| Kushida 2011                                      | -13.7 | 45.5  | 46                                           | -30.9 | 59.2  | 47    | 49.5%  | 0.32 [-0.09, 0.73]   | <del>                                     </del> |
| Marshall 2008                                     | -75   | 540   | 9                                            | -179  | 357.8 | 10    | 10.1%  | 0.22 [-0.68, 1.12]   |                                                  |
| Total (95% CI)                                    |       |       | 94                                           |       |       | 94    | 100.0% | 0.32 [0.03, 0.61]    | •                                                |
| Heterogeneity: Tau² =<br>Test for overall effect: |       |       | -1 -0.5 0 0.5 1<br>Favors MPP-PAP Favors PAP |       |       |       |        |                      |                                                  |

### Figure S90. Modified pressure profile PAP vs. Standard PAP (change in PVT Lapses)

|                                                   | MP    | P-PAF | )                                            |       | PAP  |       |        | Std. Mean Difference | Std. Mean Difference |
|---------------------------------------------------|-------|-------|----------------------------------------------|-------|------|-------|--------|----------------------|----------------------|
| Study or Subgroup                                 | Mean  | SD    | Total                                        | Mean  | SD   | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI   |
| Bakker 2010                                       | -3.3  | 4.1   | 39                                           | -8.6  | 10.6 | 37    | 36.1%  | 0.66 [0.20, 1.12]    | <del></del>          |
| Kushida 2011                                      | -2.2  | 2.9   | 46                                           | -2.4  | 4.5  | 47    | 39.4%  | 0.05 [-0.35, 0.46]   | <del></del>          |
| Marshall 2008                                     | -12.5 | 13.6  | 16                                           | -11.2 | 18.4 | 16    | 24.5%  | -0.08 [-0.77, 0.61]  |                      |
| Total (95% CI)                                    |       |       | 101                                          |       |      | 100   | 100.0% | 0.24 [-0.21, 0.69]   |                      |
| Heterogeneity: Tau² =<br>Test for overall effect: |       |       | -1 -0.5 0 0.5 1<br>Favors MPP-PAP Favors PAP |       |      |       |        |                      |                      |

Table S11. Summary of Findings Table for modified pressure profile PAP vs. standard PAP in the treatment of obstructive sleep apnea in adults

References: Bakker 2010 (A); Chihara 2013 (B); Kushida 2011 (C); Marshall 2008 (D); Pepin 2009 (E); Leidag 2008 (F); Nilius 2006 (G)

| Outcomes                                | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between modified pressure profile PAP and standard PAP                                                                | № of participants<br>(studies)   |
|-----------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Adherence (hrs/night)*                  | ⊕⊕○○<br>LOW 1,2                 | The mean adherence in the modified pressure profile group was 0.16 hrs/night greater (0.52 greater to 0.19 fewer)                                               | 505<br>(6 RCTs) <sup>A-F</sup>   |
| Self-reported Sleepiness (ESS)*         | ⊕⊕○○<br>LOW 1,2                 | The mean ESS score in the modified pressure profile group was 0.21 higher (1.23 higher to 0.80 lower)                                                           | 413<br>(5 RCTs) <sup>A-E</sup>   |
| Attention/Vigilance (PVT Reaction Time) | ⊕⊕○○<br>LOW <sup>1,2</sup>      | The mean PVT Reaction Time in the modified pressure profile group was 0.32 standard deviations lower (0.03 lower to 0.61 lower)                                 | 188<br>(3 RCTs) <sup>A,C,D</sup> |
| Attention/Vigilance (PVT Lapses)        | ⊕⊕○○<br>LOW <sup>1,2</sup>      | The mean PVT Lapses in the modified pressure profile group based on $\text{PVT}_{\text{Lapses}}$ was 0.24 standard deviations lower (0.53 lower to 0.04 higher) | 188<br>(3 RCTs) <sup>A.C.D</sup> |
| Sleep-related QOL* (FOSQ & SAQLI)       | ⊕⊕○○<br>LOW 1,2                 | The mean FOSQ/SAQLI) in the modified pressure profile group was 0.03 standard deviations less (0.28 less to 0.21 greater)                                       | 273 (3 RCTs) <sup>A-C</sup>      |

| QOL* (SF-36 PCS)     | ⊕○○○<br>VERY LOW 1.2       | The mean SF-36 Physical Component Score in the modified pressure profile group was 1.3 more (9.93 fewer to 12.53 more) | 76<br>(1 RCT) <sup>A</sup>     |
|----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| QOL* (SF-36 MCS)     | ΦΟΟ<br>VERY LOW 1.2        | The mean SF-36 Mental Component Score in the modified pressure profile group was 0.4 less (9.53 greater to 10.33 less) | 76<br>(1 RCT) <sup>A</sup>     |
| QOL* (SF-36 VS)      | ⊕⊕○○<br>LOW <sup>1,2</sup> | The mean SF-36 Vitality Score in the modified pressure profile group was 2.5 less (6.44 greater to 11.44 less)         | 76<br>(1 RCT) <sup>A</sup>     |
| Sleep Quality (PSQI) | ⊕⊕⊖⊖<br>LOW <sup>1,2</sup> | The mean PSQI score in the modified pressure profile group was 0.52 less (0.40 greater to 1.43 less)                   | 162<br>(2 RCTs) <sup>A,B</sup> |
| Side Effects*        | ⊕⊕⊖⊖<br>LOW ¹,2            | Meta-analysis not performed due to inconsistent methods of measuring and reporting of side effects across studies      | 313 (3 RCTs) <sup>C,E,G</sup>  |

<sup>\*</sup>Critical Outcomes

# Oral vs. oronasal vs. nasal (nasal mask vs. intranasal mask) CPAP for the treatment of obstructive sleep apnea in adults

Figure S91. Nasal pillows vs. Nasal mask (AHI, events/hr)

|                                               | Nasa | l pillo | ws    | Nasa       | al ma  | sk      |        | Mean Difference    | Mean Difference                                    |
|-----------------------------------------------|------|---------|-------|------------|--------|---------|--------|--------------------|----------------------------------------------------|
| Study or Subgroup                             | Mean | SD      | Total | Mean       | SD     | Total   | Weight | IV, Random, 95% CI | IV, Random, 95% CI                                 |
| Massie 2003b                                  | 10.2 | 9.8     | 39    | 7          | 7.7    | 39      | 3.9%   | 3.20 [-0.71, 7.11] | +                                                  |
| Ryan 2011                                     | 3    | 2.6     | 21    | 2.6        | 2.7    | 21      | 21.5%  | 0.40 [-1.20, 2.00] | <del></del>                                        |
| Zhu 2013                                      | 1.9  | 1.3     | 20    | 1.7        | 1.1    | 20      | 74.6%  | 0.20 [-0.55, 0.95] | <del>*</del>                                       |
| Total (95% CI)                                |      |         | 80    |            |        | 80      | 100.0% | 0.36 [-0.42, 1.14] | •                                                  |
| Heterogeneity: Tau²<br>Test for overall effec |      |         |       | = 2 (P = 1 | 0.33); | I² = 9% | )      | _                  | -4 -2 0 2 4 Favors nasal pillows Favors nasal mask |

### Figure S92. Nasal pillows vs. Nasal mask (Adherence, hrs/night)

|                                   | Nasa        | l pillo | WS    | Nasa       | al ma  | sk                  |        | Mean Difference     | Mean Difference                                  |
|-----------------------------------|-------------|---------|-------|------------|--------|---------------------|--------|---------------------|--------------------------------------------------|
| Study or Subgroup                 | Mean        | SD      | Total | Mean       | SD     | Total               | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                               |
| Massie 2003b                      | 5.4         | 1.4     | 39    | 4.8        | 1.9    | 39                  | 45.7%  | 0.60 [-0.14, 1.34]  | <del>                                     </del> |
| Ryan 2011                         | 5           | 1.7     | 21    | 5.1        | 1.9    | 21                  | 21.1%  | -0.10 [-1.19, 0.99] | <del></del>                                      |
| Zhu 2013                          | 7.4         | 1.4     | 20    | 7.2        | 1.4    | 20                  | 33.3%  | 0.20 [-0.67, 1.07]  |                                                  |
| Total (95% CI)                    |             |         | 80    |            |        | 80                  | 100.0% | 0.32 [-0.18, 0.82]  | -                                                |
| Heterogeneity: Tau <sup>2</sup> : | •           |         |       | = 2 (P = I | 0.55); | I <sup>2</sup> = 0% | )      |                     | -2 -1 0 1 2                                      |
| Test for overall effect           | L. Z = 1.25 | (F = 0  | 1.21) |            |        |                     |        |                     | Favors nasal mask Favors nasal pillow            |

## Figure S93. Nasal pillows vs. Nasal mask (Adherence, % nights used)

|                                                   | Nasa | al pillo | w     | Nas    | al mas | sk         |        | Mean Difference       | Mean Difference                                          |
|---------------------------------------------------|------|----------|-------|--------|--------|------------|--------|-----------------------|----------------------------------------------------------|
| Study or Subgroup                                 | Mean | SD       | Total | Mean   | SD     | Total      | Weight | IV, Random, 95% CI    | IV, Random, 95% CI                                       |
| Massie 2003b                                      | 94.1 | 8.3      | 20    | 85.7   | 23.5   | 19         | 62.3%  | 8.40 [-2.78, 19.58]   | <del></del>                                              |
| Ryan 2011                                         | 81   | 25       | 21    | 84     | 27     | 21         | 37.7%  | -3.00 [-18.74, 12.74] |                                                          |
| Total (95% CI)                                    |      |          | 41    |        |        | 40         | 100.0% | 4.10 [-6.73, 14.93]   |                                                          |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |          |       | f=1 (P | = 0.25 | ); l² = 2: | 5%     |                       | -20 -10 0 10 20<br>Favors nasal mask Favors nasal pillow |

Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

<sup>&</sup>lt;sup>2</sup>Quality of evidence was downgraded due to potential risk of bias from industry funding.

# Figure S94. Nasal pillows vs. Nasal mask (ESS)

|                                                  | Nasa | l pillo | NS    | Nasa       | al ma  | sk                  |        | Mean Difference     | Mean Difference                                   |
|--------------------------------------------------|------|---------|-------|------------|--------|---------------------|--------|---------------------|---------------------------------------------------|
| Study or Subgroup                                | Mean | SD      | Total | Mean       | SD     | Total               | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                                |
| Massie 2003b                                     | 5.9  | 3.4     | 39    | 6.4        | 3.8    | 39                  | 78.1%  | -0.50 [-2.10, 1.10] | <del></del>                                       |
| Ryan 2011                                        | 8    | 5       | 21    | 7          | 5      | 21                  | 21.9%  | 1.00 [-2.02, 4.02]  |                                                   |
| Total (95% CI)                                   |      |         | 60    |            |        | 60                  | 100.0% | -0.17 [-1.59, 1.24] |                                                   |
| Heterogeneity: Tau² :<br>Test for overall effect |      |         |       | = 1 (P = 1 | 0.39); | I <sup>2</sup> = 0% | )      | -                   | -4 -2 0 2 4 Favors nasal pillow Favors nasal mask |

# Table S12. Summary of Findings Table for Nasal pillows vs. Nasal mask

References: Massie 2003 (A); Ryan 2011 (B); Zhu 2013 (C)

| Outcomes                           | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between nasal pillows and nasal mask                                                                                                                      | № of participants<br>(studies) |
|------------------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| АНІ                                | ⊕⊕○○<br>LOW 1.2                 | The mean AHI in the nasal pillow group was 2.5 (1.9). The mean AHI in the nasal group was 2.1 (1.7). The mean AHI in the nasal pillow group was 0.36 events/hr greater (1.14 greater to 0.42 lower) | 160<br>(3 RCTs) <sup>A-C</sup> |
| Adherence (hrs/night)*             | ⊕⊕⊖⊖<br>LOW <sup>1,2</sup>      | The mean adherence in the nasal pillow group was 0.32 hrs/night more (0.18 fewer to 0.82 more)                                                                                                      | 160<br>(3 RCTs) <sup>A-C</sup> |
| Adherence (% nights used)*         | ⊕⊕⊖⊖<br>LOW <sup>1,2</sup>      | The mean adherence (% nights used) in the nasal pillow group was 4.1% more (6.73 fewer to 14.93 more)                                                                                               | 81<br>(2 RCTs) <sup>A,B</sup>  |
| Self-reported Sleepiness<br>(ESS)* | ⊕⊕⊖⊖<br>LOW 1,2                 | The mean ESS score in the nasal pillow group was 0.17 lower (1.59 lower to 1.24 greater)                                                                                                            | 120<br>(2 RCTs) <sup>A,B</sup> |
| Sleep-related QOL* (FOSQ)          | ⊕⊕⊖⊖<br>LOW 1,2                 | The mean FOSQ score in the nasal pillow group was 0.00 different (0.97 lower to 0.97 greater)                                                                                                       | 39<br>(1 RCT) <sup>A</sup>     |
| Side Effects                       | ⊕⊕⊖⊖<br>LOW 1,2                 | Meta-analysis not performed due to inconsistent methods of measuring and reporting of side effects across studies                                                                                   | 80 (3 RCTs) <sup>A-C</sup>     |

# Figure S95. Oronasal mask vs. Nasal mask (AHI, events/hr) [RCTs]

|                                                  | Nasa | al Mas | k     | Orona | sal Ma | ask     |        | Mean Difference      | Mean Difference                                      |
|--------------------------------------------------|------|--------|-------|-------|--------|---------|--------|----------------------|------------------------------------------------------|
| Study or Subgroup                                | Mean | SD     | Total | Mean  | SD     | Total   | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                                   |
| Ebben 2014                                       | 2.7  | 1.5    | 14    | 7.9   | 3.6    | 14      | 57.9%  | -5.20 [-7.24, -3.16] | -                                                    |
| Rowland 2018                                     | 4    | 3.1    | 37    | 7.1   | 7.7    | 39      | 42.1%  | -3.10 [-5.71, -0.49] |                                                      |
| Total (95% CI)                                   |      |        | 51    |       |        | 53      | 100.0% | -4.32 [-6.35, -2.28] | •                                                    |
| Heterogeneity: Tau² :<br>Test for overall effect |      |        |       |       | 0.21); | I²= 359 | %      | _                    | -10 -5 0 5 10 Favors nasal mask Favors oronasal mask |

<sup>\*</sup>Critical Outcomes
¹Study funded by industry
²95% CI of absolute effect crosses clinical significance threshold and/or small sample size

Figure S96. Oronasal mask vs. Nasal mask (Adherence, hrs/night) [RCTs]

|                                                  | Orona | sal Ma | isk   | Nasa     | al Mas | sk     |        | Mean Difference     | Mean Difference                                    |
|--------------------------------------------------|-------|--------|-------|----------|--------|--------|--------|---------------------|----------------------------------------------------|
| Study or Subgroup                                | Mean  | SD     | Total | Mean     | SD     | Total  | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                                 |
| Ebben 2014                                       | 4.6   | 2.2    | 14    | 5.2      | 1.7    | 14     | 26.3%  | -0.60 [-2.06, 0.86] |                                                    |
| Mortimore 1998                                   | 4.3   | 2.2    | 20    | 5.3      | 1.8    | 20     | 35.9%  | -1.00 [-2.25, 0.25] |                                                    |
| Rowland 2018                                     | 5.5   | 2.8    | 39    | 5.6      | 2.6    | 37     | 37.8%  | -0.10 [-1.31, 1.11] |                                                    |
| Total (95% CI)                                   |       |        | 73    |          |        | 71     | 100.0% | -0.55 [-1.30, 0.19] |                                                    |
| Heterogeneity: Tau² =<br>Test for overall effect |       |        |       | 2 (P = 0 | 1.60); | I²= 0% |        |                     | -2 -1 0 1 2 Favors nasal mask Favors oronasal mask |

Figure S97. Oronasal mask vs. Nasal mask (Adherence, hrs/night) [non-RCTs]

|                                                 | Orona | sal Ma | isk   | Nasa     | al Ma  | sk     |        | Mean Difference      | Mean Difference                                    |
|-------------------------------------------------|-------|--------|-------|----------|--------|--------|--------|----------------------|----------------------------------------------------|
| Study or Subgroup                               | Mean  | SD     | Total | Mean     | SD     | Total  | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                                 |
| Bachour 2013                                    | 4.7   | 2.8    | 68    | 5.8      | 2.8    | 572    | 29.0%  | -1.10 [-1.80, -0.40] |                                                    |
| Beecroft 2003                                   | 4     | 2.3    | 3     | 5.5      | 1.8    | 41     | 2.9%   | -1.50 [-4.16, 1.16]  | <del></del>                                        |
| Borel 2013                                      | 5     | 2.7    | 605   | 5.5      | 3.4    | 1443   | 68.1%  | -0.50 [-0.78, -0.22] | -                                                  |
| Total (95% CI)                                  |       |        | 676   |          |        | 2056   | 100.0% | -0.70 [-1.16, -0.24] | •                                                  |
| Heterogeneity: Tau²:<br>Test for overall effect |       |        |       | 2 (P = 0 | 1.24); | I= 309 | %      | _                    | -4 -2 0 2 4 Favors nasal mask Favors oronasal mask |

# Figure S98. Oronasal mask vs. Nasal mask (ESS) [RCTs]

|                                                   | Nasa | al Mas | sk    | Orona    | sal Ma | ask     |        | Mean Difference     | Mean Difference                                    |
|---------------------------------------------------|------|--------|-------|----------|--------|---------|--------|---------------------|----------------------------------------------------|
| Study or Subgroup                                 | Mean | SD     | Total | Mean     | SD     | Total   | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                                 |
| Mortimore 1998                                    | 8.2  | 4      | 20    | 9.8      | 4      | 20      | 45.7%  | -1.60 [-4.08, 0.88] | <del></del>                                        |
| Rowland 2018                                      | 6.6  | 5.2    | 37    | 6.9      | 4.9    | 39      | 54.3%  | -0.30 [-2.57, 1.97] | <del></del>                                        |
| Total (95% CI)                                    |      |        | 57    |          |        | 59      | 100.0% | -0.89 [-2.57, 0.78] |                                                    |
| Heterogeneity: Tau² =<br>Test for overall effect: |      |        |       | = 1 (P = | 0.45); | l² = 0% |        |                     | -4 -2 0 2 4 Favors nasal mask Favors oronasal mask |

Table S13. Summary of Findings Table for Oronasal mask vs. Nasal mask in the treatment of obstructive sleep apnea in adults

References: Ebben 2014 (A); Mortimore 1998 (B); Bachour 2013 (C); Beecroft 2003 (D); Borel 2013 (E); Rowland 2018 (F)

| Outcomes                                  | Quality of the evidence (GRADE) | Anticipated absolute effects (95% CI)  MD between oronasal mask and nasal mask                                    | № of participants<br>(studies)                         |
|-------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| AHI [RCTs]                                | ⊕⊕○○<br>LOW 12                  | The mean AHI in the oronasal mask group was 4.3 events/hr higher (2.3 higher to 6.4 higher)                       | 90 (2 RCTs) <sup>A,F</sup>                             |
| Adherence (hrs/night)* [RCTs]             | ⊕⊕○○<br>LOW ¹                   | The mean adherence in the oronasal mask group was 0.55 hrs/night lower (1.30 lower to 0.19 higher)                | 144<br>(3 RCT) <sup>A,B,F</sup>                        |
| Adherence (% nights > 4hrs) [RCTs]        | ⊕⊕○○<br>LOW 12                  | The mean adherence (% nights > 4hrs) in the oronasal mask group was 2.00% lower (16.4 lower to 12.4 higher)       | 76 (1 RCT) <sup>F</sup>                                |
| Adherence (hrs/night) [non-<br>RCTs]      | ⊕⊕○○<br>LOW <u>1</u>            | The mean adherence in the oronasal mask group was 0.70 hrs/night lower (0.24 lower to 1.16 lower)                 | 2752 (3 observational studies) <sup>C-E</sup>          |
| Self-reported Sleepiness<br>(ESS)* [RCTs] | ⊕⊕○○<br>LOW 12                  | The mean ESS score in the oronasal mask group was 0.89 lower (2.57 lower to 0.78 higher)                          | 59<br>(2 RCT) <sup>B,F</sup>                           |
| Side Effects                              | ⊕○○○<br>VERY LOW 1,2            | Meta-analysis not performed due to inconsistent methods of measuring and reporting of side effects across studies | 2112 (2 RCT, 2 observational studies) <sup>B,D-F</sup> |

# Table S14. Summary of Findings Table for Oral mask vs. Nasal mask in the treatment of obstructive sleep apnea in adults

References: Anderson 2003 (A); Khanna 2003 (B); Beecroft 2003 (C); Borel 2013 (D)

|                                                     | Quality of the                  | Anticipated absolu                         | te effects (95% CI)                                                          | № of participants                                    |
|-----------------------------------------------------|---------------------------------|--------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|
| Outcomes                                            | evidence                        |                                            | nask and nasal mask                                                          | (studies)                                            |
|                                                     | (GRADE)                         | MD between oral if                         | iask and nasai mask                                                          |                                                      |
| АНІ                                                 | ⊕○○○<br>VERY LOW 1,2            | The mean AHI in the greater (13.85 fewer   | e oral mask group was 5.00 events/hr<br>to 3.85 greater)                     | 42<br>(1 RCT) <sup>A</sup>                           |
| Adherence (hrs/night)*                              | ⊕○○○<br>VERY LOW 1,2            | The mean adherence higher (0.73 lower to   | e in the oral mask group was 0.90 hrs/night o 2.53 higher)                   | 38<br>(1 RCT) <sup>B</sup>                           |
| Self-reported Sleepiness<br>(ESS)*                  | ⊕⊕○○<br>LOW 12                  | The mean ESS scor<br>(3.84 fewer to 1.84 r | e in the oral mask group was 1.00 greater nore)                              | 42<br>(1 RCT) <sup>A</sup>                           |
| Side Effects                                        | ⊕○○○<br>VERY LOW <sup>1,2</sup> |                                            | erformed due to inconsistent methods of rting of side effects across studies | 2151(2 RCTs, 2 observational studies) <sup>A-D</sup> |
|                                                     |                                 | Relative<br>Baseline Risk                  | Effect<br>Comparative risk                                                   |                                                      |
| Adherence (#patients with mean usage >4 hrs/night)* | ⊕⊕○○<br>LOW 12                  | 667 per 1,000                              | <b>734 per 1000</b> (342 to 935)                                             | 27<br>(1                                             |
| <b>J</b> 7                                          |                                 | , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,    | OR 1.38<br>(0.26 to 7.22)                                                    | RCT) <sup>B</sup>                                    |

<sup>\*</sup>Critical Outcomes

# Humidified PAP vs. standard PAP for the treatment of obstructive sleep apnea in adults

Figure S99. Humidified PAP vs. Standard PAP (Adherence, hrs/night)

| •                       |          |          |       |           |         |       | ,      |                     |                                           |
|-------------------------|----------|----------|-------|-----------|---------|-------|--------|---------------------|-------------------------------------------|
|                         | Humid    | lified F | PAP   | Stand     | lard P  | AP    |        | Mean Difference     | Mean Difference                           |
| Study or Subgroup       | Mean     | SD       | Total | Mean      | SD      | Total | Weight | IV, Random, 95% CI  | IV, Random, 95% CI                        |
| Mador 2005              | 4.2      | 2.3      | 39    | 4.8       | 2.4     | 38    | 9.8%   | -0.60 [-1.65, 0.45] | •                                         |
| Massie 1999             | 5.5      | 2.1      | 38    | 5.2       | 1.9     | 38    | 13.3%  | 0.30 [-0.60, 1.20]  | <del>-   •</del>                          |
| Neill 2003              | 5.7      | 1.5      | 37    | 5.3       | 1.7     | 37    | 20.2%  | 0.40 [-0.33, 1.13]  | <del></del>                               |
| Ruhle 2011              | 4.7      | 3        | 44    | 4.5       | 3       | 44    | 6.9%   | 0.20 [-1.05, 1.45]  | <del></del>                               |
| Ryan 2009               | 5.2      | 1.8      | 42    | 5.2       | 1.7     | 39    | 18.6%  | 0.00 [-0.76, 0.76]  |                                           |
| Salgado 2008            | 5.3      | 2.4      | 17    | 5.2       | 2.3     | 22    | 4.9%   | 0.10 [-1.39, 1.59]  | -                                         |
| Sommer 2014             | 4.8      | 1.4      | 20    | 4.7       | 1.4     | 20    | 14.4%  | 0.10 [-0.77, 0.97]  | <del></del>                               |
| Soudorn 2016            | 4.6      | 1.7      | 10    | 4         | 1.7     | 10    | 4.9%   | 0.60 [-0.89, 2.09]  | -                                         |
| Worsnop 2010            | 4.7      | 2.4      | 25    | 4.5       | 2.2     | 29    | 7.1%   | 0.20 [-1.04, 1.44]  |                                           |
| Total (95% CI)          |          |          | 272   |           |         | 277   | 100.0% | 0.14 [-0.19, 0.47]  | •                                         |
| Heterogeneity: Tau² =   |          |          |       | 8 (P = 0. | 93); l² | = 0%  |        |                     | -2 -1 0 1 2                               |
| Test for overall effect | Z = 0.83 | (P = 0.  | 41)   |           |         |       |        |                     | Favors Standard PAP Favors Humidified PAP |

¹Study funded by industry

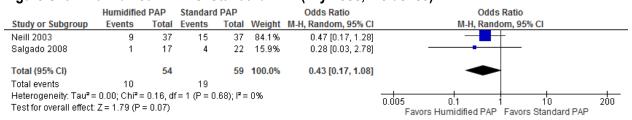
<sup>&</sup>lt;sup>2</sup>Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

## Figure S100. Humidified PAP vs. Standard PAP (ESS)

|                                   | Humidified PAP                                                                        |         | Stand | ard P | AP  |       | Mean Difference | Mean Difference     |                                           |
|-----------------------------------|---------------------------------------------------------------------------------------|---------|-------|-------|-----|-------|-----------------|---------------------|-------------------------------------------|
| Study or Subgroup                 | Mean                                                                                  | SD      | Total | Mean  | SD  | Total | Weight          | IV, Random, 95% CI  | IV, Random, 95% CI                        |
| Mador 2005                        | 9                                                                                     | 4.9     | 39    | 8.8   | 5.8 | 38    | 8.8%            | 0.20 [-2.20, 2.60]  |                                           |
| Massie 1999                       | 6.2                                                                                   | 3.8     | 38    | 7.2   | 4.8 | 38    | 13.4%           | -1.00 [-2.95, 0.95] | <del></del>                               |
| Neill 2003                        | 4.1                                                                                   | 2.1     | 37    | 4.5   | 3.1 | 37    | 34.8%           | -0.40 [-1.61, 0.81] | <del></del>                               |
| Ryan 2009                         | 8                                                                                     | 6       | 42    | 9     | 5   | 39    | 8.8%            | -1.00 [-3.40, 1.40] | <del></del>                               |
| Salgado 2008                      | 6.9                                                                                   | 5.4     | 17    | 6.7   | 5.3 | 22    | 4.4%            | 0.20 [-3.19, 3.59]  | <del></del>                               |
| Sommer 2014                       | 5.4                                                                                   | 2.6     | 20    | 5.6   | 3.2 | 20    | 15.5%           | -0.20 [-2.01, 1.61] | <del></del>                               |
| Soudorn 2016                      | 9.6                                                                                   | 4.1     | 10    | 9.6   | 4.2 | 10    | 3.8%            | 0.00 [-3.64, 3.64]  |                                           |
| Worsnop 2010                      | 4.9                                                                                   | 3.6     | 25    | 5.4   | 4.6 | 29    | 10.6%           | -0.50 [-2.69, 1.69] |                                           |
| Total (95% CI)                    |                                                                                       |         | 228   |       |     | 233   | 100.0%          | -0.42 [-1.13, 0.29] | •                                         |
| Heterogeneity: Tau <sup>2</sup> = | Heterogeneity: $Tau^2 = 0.00$ ; $Chi^2 = 1.06$ , $df = 7$ ( $P = 0.99$ ); $I^2 = 0\%$ |         |       |       |     |       |                 | -                   | <del></del>                               |
| Test for overall effect:          | Z = 1.15                                                                              | (P = 0. | 25)   |       |     |       |                 |                     | Favors Humidified PAP Favors Standard PAP |

# Figure S101. Humidified PAP vs. Standard PAP (QSQ & FOSQ & SAQLI)

|                                                 | Humid | lified P | AP    | Stand    | lard P   | AP    |        | Std. Mean Difference | Std. Mean Difference                                   |
|-------------------------------------------------|-------|----------|-------|----------|----------|-------|--------|----------------------|--------------------------------------------------------|
| Study or Subgroup                               | Mean  | SD       | Total | Mean     | SD       | Total | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                                     |
| Mador 2005                                      | 4.7   | 1.5      | 49    | 4.7      | 1.5      | 49    | 47.6%  | 0.00 [-0.40, 0.40]   | <del></del>                                            |
| Ruhle 2011                                      | 5.7   | 1.2      | 44    | 5.7      | 1.3      | 44    | 42.7%  | 0.00 [-0.42, 0.42]   | <del></del>                                            |
| Soudorn 2016                                    | 17.6  | 4.1      | 10    | 17.6     | 3.3      | 10    | 9.7%   | 0.00 [-0.88, 0.88]   |                                                        |
| Total (95% CI)                                  |       |          | 103   |          |          | 103   | 100.0% | 0.00 [-0.27, 0.27]   |                                                        |
| Heterogeneity: Tau²:<br>Test for overall effect |       |          |       | 2 (P = 1 | .00); l² | = 0%  |        | -1                   | -0.5 0 0.5 1 Favors Standard PAP Favors Humidified PAP |


## Figure S102. Humidified PAP vs. Standard PAP (Nasal Discharge, incidence)

|                                                                                                                                          | Humidified | PAP   | Standard | I PAP |        | Odds Ratio          | Odds Ratio                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|------------|-------|----------|-------|--------|---------------------|---------------------------------------------------------|
| Study or Subgroup                                                                                                                        | Events     | Total | Events   | Total | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI                                     |
| Neill 2003                                                                                                                               | 8          | 37    | 10       | 37    | 82.2%  | 0.74 [0.26, 2.17]   | <del></del>                                             |
| Salgado 2008                                                                                                                             | 1          | 17    | 4        | 22    | 17.8%  | 0.28 [0.03, 2.78]   |                                                         |
| Total (95% CI)                                                                                                                           |            | 54    |          | 59    | 100.0% | 0.63 [0.24, 1.65]   |                                                         |
| Total events                                                                                                                             | 9          |       | 14       |       |        |                     |                                                         |
| Heterogeneity: $Tau^2 = 0.00$ ; $Chi^2 = 0.57$ , $df = 1$ ( $P = 0.45$ ); $I^2 = 0$ . Test for overall effect: $Z = 0.95$ ( $P = 0.34$ ) |            |       |          |       |        |                     | 0.05 0.2 5 20 Favors Humidified PAP Favors Standard PAP |

### Figure S103. Humidified PAP vs. Standard PAP (Nasal Congestion, incidence)

|                                                                                                         | Humidified PAP Standard PAP |         |        | Odds Ratio | Odds Ratio |                     |                                           |
|---------------------------------------------------------------------------------------------------------|-----------------------------|---------|--------|------------|------------|---------------------|-------------------------------------------|
| Study or Subgroup                                                                                       | Events                      | Total   | Events | Total      | Weight     | M-H, Random, 95% CI | M-H, Random, 95% CI                       |
| Neill 2003                                                                                              | 19                          | 37      | 25     | 37         | 62.5%      | 0.51 [0.20, 1.30]   | <del></del>                               |
| Salgado 2008                                                                                            | 3                           | 17      | 9      | 22         | 24.4%      | 0.31 [0.07, 1.40]   | <del></del>                               |
| Sommer 2014                                                                                             | 2                           | 20      | 2      | 20         | 13.0%      | 1.00 [0.13, 7.89]   |                                           |
| Total (95% CI)                                                                                          |                             | 74      |        | 79         | 100.0%     | 0.49 [0.23, 1.03]   | •                                         |
| Total events                                                                                            | 24                          |         | 36     |            |            |                     |                                           |
| Heterogeneity: Tau <sup>2</sup> = 0.00; Chi <sup>2</sup> = 0.82, df = 2 (P = 0.66); I <sup>2</sup> = 0% |                             |         |        |            |            | 0.02 0.1 1 10 50    |                                           |
| Test for overall effect:                                                                                | Z=1.87 (P=                  | = 0.06) |        |            |            |                     | Favors Humidified PAP Favors Standard PAP |

### Figure S104. Humidified PAP vs. Standard PAP (Dry nose, incidence)



# Figure S105. Humidified PAP vs. Standard PAP (Bleeding nose, incidence)

|                                                                                                                                | Humidified | PAP   | Standard | PAP   |        | Odds Ratio          | Odds Ratio                                                  |
|--------------------------------------------------------------------------------------------------------------------------------|------------|-------|----------|-------|--------|---------------------|-------------------------------------------------------------|
| Study or Subgroup                                                                                                              | Events     | Total | Events   | Total | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI                                         |
| Neill 2003                                                                                                                     | 4          | 37    | 4        | 37    | 81.7%  | 1.00 [0.23, 4.34]   | <del>-</del>                                                |
| Salgado 2008                                                                                                                   | 0          | 17    | 2        | 22    | 18.3%  | 0.23 [0.01, 5.21]   |                                                             |
| Total (95% CI)                                                                                                                 |            | 54    |          | 59    | 100.0% | 0.77 [0.20, 2.89]   | -                                                           |
| Total events                                                                                                                   | 4          |       | 6        |       |        |                     |                                                             |
| Heterogeneity: Tau $^2$ = 0.00; Chi $^2$ = 0.70, df = 1 (P = 0.40); $ ^2$ = 0%<br>Test for overall effect: Z = 0.39 (P = 0.70) |            |       |          |       |        |                     | 0.001 0.1 10 1000 Favors Humidified PAP Favors Standard PAP |

# Figure S106. Humidified PAP vs. Standard PAP (Dry Mouth/Throat, incidence)

|                                                                                                                                 | Humidified | 1 PAP | Standard | PAP   |        | Odds Ratio          | Odds Ratio                                                     |
|---------------------------------------------------------------------------------------------------------------------------------|------------|-------|----------|-------|--------|---------------------|----------------------------------------------------------------|
| Study or Subgroup                                                                                                               | Events     | Total | Events   | Total | Weight | M-H, Random, 95% CI | M-H, Random, 95% CI                                            |
| Neill 2003                                                                                                                      | 10         | 37    | 17       | 37    | 53.2%  | 0.44 [0.16, 1.15]   |                                                                |
| Salgado 2008                                                                                                                    | 6          | 17    | 12       | 22    | 29.7%  | 0.45 [0.12, 1.67]   | <del></del>                                                    |
| Sommer 2014                                                                                                                     | 2          | 20    | 8        | 20    | 17.1%  | 0.17 [0.03, 0.92]   |                                                                |
| Total (95% CI)                                                                                                                  |            | 74    |          | 79    | 100.0% | 0.37 [0.18, 0.76]   | •                                                              |
| Total events                                                                                                                    | 18         |       | 37       |       |        |                     |                                                                |
| Heterogeneity: Tau $^z$ = 0.00; Chi $^z$ = 1.04, df = 2 (P = 0.59); $I^z$ = 0%<br>Test for overall effect: Z = 2.72 (P = 0.007) |            |       |          |       |        |                     | 0.001 0.1 10 1000<br>Favors Humidified PAP Favors Standard PAP |

Table S15. Summary of Findings Table for Humidified PAP vs. Standard PAP in the treatment of obstructive sleep apnea in adults

**References:** Mador 2005 (A); Massie 1999 (B); Neill 2003 (C); Ruhle 2011 (D); Ryan 2009 (E); Salgado 2008 (F); Sommer 2014 (G); Worsnop 2010 (H); Soudorn 2016 (I)

| Outcomes                                              | Quality of the evidence (GRADE)                 |                                         | ute effects (95% CI)<br>idified PAP and standard PAP                                 | № of participants<br>(studies)     |  |  |  |  |
|-------------------------------------------------------|-------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------|------------------------------------|--|--|--|--|
| Adherence (hrs/night)*                                | ФФФФ<br>HIGH                                    | The mean adheren greater (0.19 lower    | ice in the humidified PAP group was 0.14 hrs/night to 0.47 greater)                  | 549<br>(9 RCTs) <sup>A-I</sup>     |  |  |  |  |
| Self-reported Sleepiness<br>(ESS)*                    | ӨӨӨӨ<br>HIGH                                    | The mean ESS scc<br>(1.13 lower to 0.29 | ore in the humidified PAP group was 0.42 lower higher)                               | 461<br>(8 RCTs) <sup>A-C,E-I</sup> |  |  |  |  |
| Sleep-related QOL*<br>(SAQLI, FOSQ & QSQ<br>combined) | ⊕⊕○○<br>LOW 1                                   |                                         | AQLI)/FOSQ in the humidified PAP group was 0 s different (0.27 lower to 0.27 higher) | 206 (3 RCTs) <sup>ADJ</sup>        |  |  |  |  |
|                                                       | Relative Effect  Baseline Risk Comparative risk |                                         |                                                                                      |                                    |  |  |  |  |
| Nasal discharge<br>(incidence)*                       | ⊕⊕○○<br>LOW ¹                                   | 237 per 1,000                           | 164 per 1000<br>(69 to 339)<br>OR 0.63<br>(0.24 to 1.65)                             | 113<br>(2 RCTs) <sup>C,F</sup>     |  |  |  |  |
| Nasal congestion (incidence)*                         | ⊕⊕○○<br>LOW ¹                                   | 522 per 1,000                           | 348 per 1000<br>(201 to 529)<br>OR 0.49<br>(0.23 to 1.03)                            | 153<br>(3 RCTs) <sup>C,F,G</sup>   |  |  |  |  |
| Dry nose (incidence)*                                 | ⊕⊕⊖⊖<br>LOW ¹                                   | 322 per 1,000                           | 170 per 1000<br>(75 to 339)<br>OR 0.43<br>(0.17 to 1.08)                             | 113<br>(2 RCTs) <sup>C,F</sup>     |  |  |  |  |

| Bleeding nose<br>(incidence)*          | ⊕⊕○○<br>LOW ¹                 | 102 per 1,000 | 80 per 1000<br>(22 to 247)<br>OR 0.77<br>(0.20 to 2.89)        | 113<br>(2 RCTs) <sup>C,F</sup>   |
|----------------------------------------|-------------------------------|---------------|----------------------------------------------------------------|----------------------------------|
| Dry mouth/throat (incidence)*          | ⊕⊕⊕⊜<br>MODERATE <sup>1</sup> | 536 per 1,000 | <b>276 per 1000</b> (131 to 487) <b>OR 0.37</b> (0.18 to 0.76) | 153<br>(3 RCTs) <sup>C,F,G</sup> |
| Sinus infection<br>(incidence)*        | ⊕⊕○○<br>LOW ¹                 | 135 per 1,000 | 135 per 1000<br>(39 to 372)<br>OR 1.00<br>(0.26 to 3.79)       | 74<br>(1 RCT) <sup>c</sup>       |
| Sinus pain or<br>headache (incidence)* | ⊕⊕○○<br>LOW ¹                 | 270 per 1,000 | 135 per 1000<br>(46 to 340)<br>OR 0.42<br>(0.13 to 1.39)       | 74<br>(1 RCT) <sup>c</sup>       |
| Sore throat (incidence)*               | ⊕⊕○○<br>LOW ¹                 | 162 per 1,000 | 55 per 1000<br>(11 to 233)<br>OR 0.30<br>(0.06 to 1.57)        | 74<br>(1 RCT) <sup>c</sup>       |
| Hoarse voice (incidence)*              | ⊕⊕○○<br>LOW ¹                 | 135 per 1,000 | 109 per 1000<br>(29 to 330)<br>OR 0.78<br>(0.19 to 3.15)       | 74<br>(1 RCT) <sup>c</sup>       |
| Cough (incidence)*                     | ⊕⊕○○<br>LOW ¹                 | 243 per 1,000 | 298 per 1000<br>(131 to 543)<br>OR 1.32<br>(0.47 to 3.69)      | 74<br>(1 RCT) <sup>c</sup>       |
| Reduced smell<br>(incidence)*          | ⊕⊕○○<br>LOW ¹                 | 216 per 1,000 | 162 per 1000<br>(57 to 385)<br>OR 0.70<br>(0.22 to 2.27)       | 74<br>(1 RCT) <sup>c</sup>       |

# Table S16. Summary of Possible PAP-Related Side Effects (Adapted from Gay et al, 2006¹)

| <u>Interface</u>                | Equipment-Related                  |
|---------------------------------|------------------------------------|
| Mask leak                       | Noise                              |
| Skin abrasion/ulceration (pain) | Smell                              |
| Mask allergy                    | Tubing condensation                |
| Conjuntivitis/Sore eyes         | Cumbersome equipment               |
| Dermatitis/facial irritation    | Spousal intolerance/less intimacy  |
| Claustrophobia                  | Ramp overuse                       |
|                                 | Equipment maintenance and cleaning |
| Pressure-Related (Airway)       | -                                  |
| Rhinitis                        | Equipment Failure                  |

<sup>\*</sup>Critical Outcomes 1Quality of evidence was downgraded due to imprecision (i.e., 95% CI of mean difference crosses clinical decision threshold and/or small sample size)

|                                             | <u> </u>                             |
|---------------------------------------------|--------------------------------------|
| Rhinorrhea                                  | Lifespan of machine, tubing and mask |
| Sneezing                                    | Recurrence of OSA                    |
| Desiccation                                 |                                      |
| Sinusitis                                   | <u>General</u>                       |
| Headache                                    | Periodic limb movements              |
| Epistaxis                                   | Anxiety                              |
| Otitis/Ear pain                             | Insomnia                             |
| Air swallowing/aspiration                   | Headache                             |
| Belching                                    | Fatigue/Feeling tired                |
|                                             | Chest discomfort                     |
| Pressure-Related                            |                                      |
| Mouth leak (dry mouth) or mask leak         |                                      |
| Pressure intolerance                        |                                      |
| Sense of suffocation or difficulty exhaling |                                      |
| Tinnitus                                    |                                      |
| Aerophagia                                  |                                      |
| Pneumoencephalus                            |                                      |
| Central sleep apnea                         |                                      |
| Prolonged oxyhemoglobin desaturations       |                                      |

Gay P, Weaver T, Loube D, Iber C; Positive Airway Pressure Task Force.; Standards of Practice Committee.; American Academy of Sleep Medicine. Evaluation of positive airway pressure treatment for sleep related breathing disorders in adults. Sleep. 2006 Mar;29(3):381-401.

Table S17. Summary of Measures of Neurocognitive Function\*

| Domain of Neurocognitive Function |                 | Tests                                                                                                                                                                                       |  |  |  |  |
|-----------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Processing s                      | peed            | Digit Symbol Substitution Test; 8-Choice Reaction Time; Reaction Time, Trail Making A                                                                                                       |  |  |  |  |
| Attention/Vigilance               |                 | PVT-Reaction Time; PVT Lapses; Rapid Visual Information Processing; SteerClear; Cogscreen Pathfinder Number Test – Total Time; Cogscreen Shifting Attention Task                            |  |  |  |  |
| Memory                            |                 | Digit Span Backwards; Weschler Memory Scale; Benton Visual Retention Test; Verbal Recall; Word Pair Memory Recall; WMS-R Visual Reproduction; Buschke Selective Reminding Test - Sum Recall |  |  |  |  |
| Intelligence                      |                 | Performance IQ Decrement; Weschler Adult Intelligence Scale                                                                                                                                 |  |  |  |  |
|                                   | Fluid Reasoning | Block Design; Executive Maze                                                                                                                                                                |  |  |  |  |
| Executive                         | Shifting        | Trail Making B; Cogscreen Shifting Attention Task                                                                                                                                           |  |  |  |  |
| Function                          | Inhibition      | Stroop Color-Word                                                                                                                                                                           |  |  |  |  |
| Function                          | Updating        | PASAT -1, -1.2, -2, -3, -4; Sustained Working Memory                                                                                                                                        |  |  |  |  |
|                                   | Generativity    | COWAT Letter Fluency                                                                                                                                                                        |  |  |  |  |

<sup>\*</sup>Identification of the principal neurocognitive domain assessed by each test was established by the Task Force on the basis of literature review and discussions with Dr Romola Bucks (University of Western Australia) and Dr Gerry Taylor (Case Western Reserve University).