Science Advances

advances.sciencemag.org/cgi/content/full/5/2/eaau5148/DC1

Supplementary Materials for

A new painkiller nanomedicine to bypass the blood-brain barrier and the use of morphine

Jiao Feng, Sinda Lepetre-Mouelhi, Anne Gautier, Simona Mura, Catherine Cailleau, François Coudore, Michel Hamon, Patrick Couvreur*

*Corresponding author. Email: patrick.couvreur@u-psud.fr

Published 13 February 2019, *Sci. Adv.* **5**, eaau5148 (2019) DOI: 10.1126/sciadv.aau5148

This PDF file includes:

Supplementary Text

Fig. S1. Synthesis of LENK-SQ-Diox.

Fig. S2. Synthesis of LENK-SQ-Dig.

Fig. S3. Synthesis of LENK-SQ-Am.

Fig. S4. ¹H spectrum of LENK-SQ bioconjugates.

Fig. S5. ¹³C spectrum of LENK-SQ bioconjugates.

Fig. S6. Size and zeta potential of LENK-SQ NPs kept at +4°C.

Fig. S7. Hydrolysis of LENK or LENK-SQ-Am NPs in the presence of serum.

Fig. S8. In vitro colloidal stability of LENK-SQ-Am NPs in mouse serum.

Fig. S9. Biodistribution of fluorescent LENK-SQ-Am NPs or control fluorescent dye solution in mice with or without inflamed paw.

Fig. S10. Toxicity study of LENK-SQ-Am NPs upon systemic administration.

Supplementary Text IR, NMR and MS characterization of bioconjugates

IR spectra were obtained from solids or neat liquids with a PerkinElmer UATR Two spectrometer. Only significant absorptions are listed. The ¹H and ¹³C NMR spectra were recorded on a Bruker ARX 400 spectrometer (400 and 100 MHz for ¹H and ¹³C, respectively). Recognition of methyl, methylene, methine, and quaternary carbon nuclei in ¹³C NMR spectra rests on the J-modulated spin-echo sequence. Mass spectra were recorded on a Bruker Esquire-LC. High resolution Mass spectra (HR-MS) were achieved with an LTQ-Orbitrap Velos Pro (Thermo Fisher Scientific) operating in positive and negative electrospray ionization.

IR, **NMR** and **MS** characterization of LENK-SQ-Diox: IR (neat, cm⁻¹): v 3289, 2958, 2916, 2849, 1763, 1646, 1537, 1515, 1447, 1381, 1259, 1116, 1020, 982, 870, 802, 729, 700, 549, 493. ¹H NMR (400 MHz, MeOD) δ: 7.31-7.23 (m, 4H, 2H_{Ar-ortho} Phe, 2H_{Ar-meta} Phe), 7.18 (m, 1H, H_{Ar-para} Phe), 7.04 (d, 2H, H_{Ar-ortho} Tyr, J = 8.4 Hz), 6.71 (d, 2H, H_{Ar-meta} Tyr, J = 8.4 Hz), 5.77 (d, 1H, OCH₂O, J = 5.6 Hz), 5.71 (d, 1H, OCH₂O, J = 5.6 Hz), 5.19–5.04 (m, 5H, *H*C=C(CH₃)), 4.65 (dd, 1H, CH Phe, *J* = 4.9 Hz, *J* = 9.6 Hz), 4.44 (m, 1H, CH Leu), 4.00-3.60 (m, 4H, 2 CH₂ Gly), 3.54 (dd, 1H, CH Tyr, J = 6.5 Hz, J = 7.6 Hz), 3.16 (dd, 1H, CHaHb Phe, J = 4.9 Hz, J = 14.0 Hz), 3.10-2.87 (m, 2H, CHaHb Phe, CHaHb Tyr), 2.80 (dd, 1H, CHaHb Tyr, J = 7.6 Hz, J = 13.9 Hz), 2.44 (m, 2H, CH₂-CH₂-CO SQ), 2.26 (m, 2H, CH₂-CH₂-CO SQ), 2.14-1.90 (m, 16H, 8 CH₂ SQ), 1.75-1.48 (m, 21H, CH₂ Leu, CH(CH₃)₂ Leu, 6 CH₃ SQ), 0.94 (d, 3H, CH₃Leu, J = 6.2 Hz), 0.90 (d, 3H, CH₃Leu, J = 6.2 Hz). ¹³C NMR (75 MHz, MeOD) δ : 178.0 (CONH), 173.7 (CONH), 173.0 (CONH), 172.4 (CONH), 172.0 (CONH), 171.3 (CONH), 157.6 (C_{Ar-para} Tyr), 138.3 (C_{Ar} Phe), 136.0 (HC=*C*(CH₃)), 135.8 (2 HC=*C*(CH₃)), 134.1 (HC=*C*(CH₃)), 132.0 (HC=*C*(CH₃)), 131.5 (2 CH_{Ar}), ortho Tyr), 130.4 (2 CH_{Ar-ortho} Phe), 129.5 (2 CH_{Ar-meta} Phe, C_{Ar} Tyr), 127.8 (CH_{Ar-para} Phe), 126.5 (HC=C(CH₃)), 125.7 (HC=C(CH₃)), 125.5 (2 HC=C(CH₃)), 125.4 (HC=C(CH₃)), 116.5 (2 CH_{Ar-meta} Tyr), 80.9 (O-CH₂-O), 62.6 (CH Tyr), 55.8 (CH Phe), 52.2 (CH Leu), 43.8 (CH₂ Gly), 43.6 (CH₂ Gly), 41.0 (CH₂-CH(CH₃)₂ Leu), 40.8 (CH₂ SQ), 40.7 (2 CH₂ SQ, CH₂ Tyr), 38.7 (CH₂ Phe), 35.3 (CH₂-CH₂-CO), 33.8 (CH₂-CH₂-CO), 30.7 (CH₂ SQ), 30.4 (CH₂) SQ), 29.2 (CH₂ SQ), 27.8 (CH₂ SQ), 27.5 (CH₂ SQ), 25.9 (CH(CH₃)₂ Leu), 23.4 (CH₃ Leu), 21.9 (CH₃ Leu), 17.8 (CH₃ SQ), 16.7 (CH₃ SQ), 16.2 (CH₃ SQ), 16.1 (CH₃ SQ), 16.0 (CH₃ SQ), 14.5 (CH₃ SQ). HRMS (+ESI): m/z 968.6064 ($[M + H]^+$ calcd for C₅₆H₈₂N₅O₉: 968.6107).

IR, NMR and MS characterization of LENK-SQ-Dig: IR (neat, cm⁻¹): v 3297, 3068, 2958, 2924, 2851, 1653, 1516, 1443, 1260, 1142, 1099, 1020, 799, 699, 583. ¹H NMR (400 MHz, MeOD) δ: 7.30–7.22 (m, 4H, 2H_{Ar-ortho} Phe, 2H_{Ar-meta} Phe), 7.19 (m, 1H, H_{Ar-para} Phe), 7.06 (d, 2H, H_{Ar-ortho} Tyr, J = 8.5 Hz), 6.71 (d, 2H, H_{Ar-meta} Tyr, J = 8.5 Hz), 5.20–5.05 (m, 5H, $HC=C(CH_3)$), 4.65 (dd, 1H, CH Phe, J = 4.7 Hz, J = 9.4 Hz), 4.57 (dd, 1H, CH Tyr, J = 6.1Hz, J = 8.3 Hz), 4,40 (m, 1H, CH Leu), 4.17-3.85 (m, 6H, 2 CH₂ Diglycolyl, CH₂-O SQ), 3.90-3.72 (m, 4H, 2 CH₂ Gly), 3.20 (dd, 1H, CHaHb Phe, J = 4.7 Hz, J = 14.0 Hz), 3.11 (dd, 1H, CHaHb Tyr, J = 6.1 Hz, J = 13.9 Hz), 3.00-2.89 (m, 2H, CHaHb Phe, CHaHb Tyr), 2.14-1.93 (m, 19H, 9 CH₂ SQ, CHaHb-CH₂-O SQ), 1.74 (m, 1H, CHa*Hb*-CH₂-O SQ), 1.71–1.54 (m, 21H, CH₂ Leu, CH(CH₃)₂, 6 CH₃ SQ), 0.94 (d, 3H, CH₃ Leu, J = 6.2 Hz), 0.91 (d, 3H, CH₃Leu, J = 6.2 Hz). ¹³C NMR (75 MHz, MeOD) δ : 176.8 (CONH), 174.2 (CONH), 173.4 (CONH), 172.2 (O-CO-CH₂), 172.0 (CONH), 171.3 (CONH), 157.5 (C_{Ar-para} Tyr), 138.5 (C_{Ar-Phe}), 135.9 (3 HC= C(CH₃)), 134.8 (HC=C(CH₃)), 132.0 (HC=C(CH₃)), 131.4 (2CH_{Ar-ortho} Tyr), 130.4 (2CH_{Ar-ortho} Phe), 129.4 (2CH_{Ar-meta} Phe), 128.6 (C_{Ar} Tyr), 127.7 (CH_{Ar-bara} Phe), 126.3 (HC=C(CH₃)), 125.6 (2 HC=C(CH₃)), 125.5 (HC=C(CH₃)), 125.4 (HC=C(CH₃)), 116.3 (2CH_{Ar-meta} Tyr), 71.5 (O-CH₂-O), 69.4 (CO-CH₂-O), 65.9 (CH₂-CH₂-CH₂-O), 56.2 (CH Tyr), 56.0 (CH Phe), 52.3 (CH Leu), 44.0 (CH₂ Gly), 43.4 (CH₂ Gly), 41.7 (CH₂-CH(CH₃)₂ Leu), 38.6 (CH₂Phe), 37.9 (CH₂ Tyr), 36.8 (CH₂-CH₂-CH₂-O), 29.2 (CH₂ SQ), 27.8 (2 CH₂ SQ), 27.6 (3 CH₂ SQ), 25.9 (CH(CH₃)₂ Leu, CH₃ SQ), 23.4 (CH₃ Leu), 22.0 (CH₃ Leu), 17.8 (CH₃ SQ), 16.2 (2 CH₃ SQ), 16.0 (2 CH₃ SQ). HRMS (-ESI): m/z 1038.61572 ($[M - H]^-$ calcd for $C_{59}H_{84}N_5O_{11}$: 1038.61618).

IR, NMR and MS characterization of LENK-SQ-Am: IR (neat, cm⁻¹): v 3303, 2957, 2925, 2856, 1711, 1697, 1543, 1516, 1440, 1282, 1241, 1213, 828, 671. ¹H NMR (400 MHz, MeOD) δ : 7.31–7.22 (m, 4H, 2H_{Ar-ortho} Phe, 2H_{Ar-meta} Phe), 7.18 (m, 1H, H_{Ar-para} Phe), 7.05 (d, 2H, H_{Ar-ortho} Tyr, *J* = 8.5 Hz), 6.71 (d, 2H, H_{Ar-meta} Tyr, *J* = 8.5 Hz), 5.19–5.05 (m, 5H, *H*C=C(CH₃)), 4.68 (dd, 1H, CH Phe, *J* = 4.9 Hz, *J* = 9.2 Hz), 4.50-4.39 (m, 2H, CH Tyr, CH Leu), 3.87-3.67 (m, 4H, 2 CH₂ Gly), 3.20 (dd, 1H, *CHaHb* Phe , *J* = 4.9 Hz, *J* = 14.0 Hz), 3.07-2.93 (m, 2H, CHa*Hb* Phe, *CHa*Hb Tyr), 2.85 (dd, 1H, CHa*Hb* Tyr, *J* = 8.2 Hz, *J* = 13.8 Hz), 2.31 (m, 2H, CH₂-CH₂-CO), 2.18 (m, 2H, CH₂-CH₂-CO), 2.13-1.88 (m, 16H, 8 CH₂ SQ), 1.73-1.53 (m, 21H, CH₂ Leu, *CH*(CH₃)₂ Leu, 6 CH₃ SQ), 0.94 (d,

3H, CH₃ Leu, J = 6.2 Hz), 0.91 (d, 3H, CH₃ Leu, J = 6.2 Hz). ¹³C NMR (75 MHz, MeOD) δ : 176.2 (CO₂H), 175.8 (CONH), 174.7 (CONH), 173.3 (CONH), 172.0 (CONH), 171.2 (CONH), 157.4 (C_{Ar-para} Tyr), 138.4 (C_{Ar Phe}), 136.0 (2 HC=*C*(CH₃)), 135.8 (HC=*C*(CH₃)), 134.7 (HC=*C*(CH₃)), 132.0 (HC=*C*(CH₃)), 131.3 (2CH_{Ar-ortho} Tyr), 130.4 (2CH_{Ar-ortho} Phe), 129.4 (2CH_{Ar-meta} Phe), 128.9 (C_{Ar} Tyr), 127.7 (CH_{Ar-para} Phe), 126.2 (HC=C(CH₃)), 125.5 (HC=C(CH₃)), 125.5 (2 HC=C(CH₃)), 116.3 (2CH_{Ar-meta} Tyr), 56.9 (CH Tyr), 55.9 (CH Phe), 52.3 (CH Leu), 43.9 (CH₂ Gly), 43.3 (CH₂ Gly), 41.7 (CH₂-CH(CH₃)₂ Leu), 38.7 (CH₂Phe), 37.9 (CH₂ Tyr), 36.5 (CH₂-CH₂-CO), 35.8 (CH₂-CH₂-CO), 29.2 (3 CH₂ SQ), 27.8 (4 CH₂ SQ), 27.5 (2 CH₂ SQ), 25.9 (CH(CH₃)₂ Leu, CH₃ SQ), 23.4 (CH₃ Leu), 21.9 (CH₃ Leu), 17.7 (CH₃ SQ), 16.2 (2 CH₃ SQ), 16.1 (CH₃ SQ), 16.0 (CH₃ SQ). HRMS (-ESI): m/z 936.5826 ([M - H]⁻ calcd for C₅₅H₇₈N₅O₈ : 936.5845).

Fig. S1. Synthesis of LENK-SQ-Diox.

Fig. S2. Synthesis of LENK-SQ-Dig.

Fig. S3. Synthesis of LENK-SQ-Am.

Fig. S4. ¹**H spectrum of LENK-SQ bioconjugates.** (**A**) LENK-SQ-Diox, (**B**) LENK-SQ-Dig, and (**C**) LENK-SQ-Am.

Fig. S5. ¹³C spectrum of LENK-SQ bioconjugates. (A) LENK-SQ-Diox, (B) LENK-SQ-Dig, and (C) LENK-SQ-Am.

Fig. S6. Size and zeta potential of LENK-SQ NPs kept at +4°C. (A) LENK-SQ-Diox NPs, (B) LENK-SQ-Dig NPs and (C) LENK-SQ-Am NPs. Results of three independent preparations are presented as mean ± SEM.

Fig. S7. Hydrolysis of LENK or LENK-SQ-Am NPs in the presence of serum. 300 µL of LENK-SQ-Am NPs (2 mg/mL, 2 mmol) or LENK (1.15 mg/mL, 2 mmol) were incubated in 900 µL mouse serum, and samples were collected at different times for HPLC analysis. The LENK-SQ bioconjugate was unaltered during the course of the experiment, whereas free LENK was rapidly metabolized.

Fig. S8. In vitro colloidal stability of LENK-SQ-Am NPs in mouse serum. (A) Controls: When diluted in 5% dextrose LENK-SQ-Am NPs remained assembled (DiD: reporter dye; DiR: quencher). They disassembled in ethanol; **(B)** LENK-SQ-Am NPs (DiD: reporter dye; DiR: quencher) incubated in mouse serum (1:4). The fluorescence emission was measured to assess the progressive disassembly of the nanoparticles.

Fig. S10. Toxicity study of LENK-SQ-Am NPs upon systemic administration. LENK-SQ-Am NPs (20mg/kg) were intravenously administered in rats. The AST (A) and ALT (B) levels in plasma showed no differences compared with dextrose solution (data presented as mean UI/L \pm SED, N = 3 animals per group). Histological analysis of organs after intravenous administration of LENK-SQ-Am NPs (20mg/kg) did not show any signs of cell or tissue damage at 24 h and 48h, comparatively to a control 5% dextrose solution. Liver (C-F), spleen (G-J), kidneys (K-N), lungs (O-R) and heart (S-V). All tissue images were analyzed by microscopy at 10× magnification except for kidneys which were at 5× magnification (Zeiss).