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1. Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) 
 

Land surface temperature (LST) is a key parameter in land surface processes. The difference 
between LST and surface air temperature drives energy exchange at the planetary boundary 
layer. Changes in LST can induce convection at the boundary layer and influence air 
temperature, surface winds, cloudiness, and precipitation. LST is used in global climate 
models for heat budget and boundary layer energy balance calculations, and has also proved 

useful for agricultural applications in estimating crop water demands and drought severity 

assessments1. When plants encounter water deficit, transpiration is reduced causing leaf 
temperature (which is equal to LST for dense vegetation) to rise. On the other hand, when 
water is not limited, transpiration will result in cooling of the leaf temperature relative to air 
temperature. We used LST to infer temperature conditions on the land surface especially in 
vegetated areas, which serve as potential vector emergence sites during the 2015-2016 El Niño 

period 2. In this study, we used the global monthly 0.05° MOD11C3 data set 
(https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod11c3). MODIS 
LST is derived from daytime and nighttime thermal infrared measurements in bands 31 (10.8- 

11.3 nm) and 32 (11.8-12.3 nm) using the day/night LST algorithm described in2. Cloud 
screening is performed using the MODIS cloud mask product (MOD35_L2, 

https://modaps.modaps.eosdis.nasa.gov/services/about/products/c6/MOD35_L2.html) prior to 
the LST calculation. Estimated accuracy for the MODIS LST product is 1° Kelvin for land 

cover types with known emissivity. 

 
The NDVI and similar vegetation indices are widely used to infer the photosynthetic capacity 
of vegetation and are used as a land surface input in various weather, climate, biogeochemical, 

and hydrological models3. Applications of NDVI are numerous and varied and include 
agricultural monitoring, famine early warning, ecological monitoring for habitat indicative of 
pest and arthropod vector emergence and survival, and determination of land use and land cover 

changes, among others4. The NDVI is simply the ratio of the difference between the near- 
infrared and red reflectance to their sum; since green leaves with dense chlorophyll are more 
reflective in the near-infrared wavelengths than in the visible, this ratio is higher (approaching 

one) for healthy green vegetation and lower (approaching zero) for stressed vegetation4. MODIS 
NDVI data are derived from the red and near-infrared bands, centered at 648 nm and 848 nm, 
respectively. The band reflectance data are atmospherically corrected and masked for cloud, 

cloud shadow, and aerosol contamination5. In this study we used the global monthly 0.05° 
MOD13C2 NDVI; this product has been aggregated from 250 m MODIS NDVI as described 
above. 

 

For this study we were interested in weather extremes and their impact on disease outbreaks. It 

has been shown that there is a close relationship between the seasonal trace of green vegetation 

development, as measured by NDVI, and breeding and upsurge patterns of particular insects, 

such as locusts and mosquitoes6–9. Widespread heavy rains result in rapid vegetation 

development that provides ideal habitat for immature and adult mosquito vector populations to 

increase and thrive, significantly elevating the risk of disease outbreaks10,11. Emergent vegetation 

is also associated increase in rodent populations in semi-arid areas as vegetative growth provides 

food resources for rodents and thus an increase in the transmission risk of plague and 
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hantavirus12. 

 

In general, departures in NDVI and LST are associated with various disease ecologies. Many key 

arthropod disease vectors and arthropod-borne pathogens emerge and persist when conditions 

depart from average in various landscapes. This relationship exists because these departures in 

NDVI and LST are driven to a large extent by variations in rainfall influencing landscape 

patterns2. To illustrate the strong relationships among LST, NDVI, and rainfall we used the 

Global Precipitation Climatology Project (GPCP) Global 1° Monitoring Product, available at 

ftp://ftp-anon.dwd.de/pub/data/gpcc/html/monitoring_ download.html, to compare rainfall totals 

for each region and to the monthly and seasonal means. We aggregated the monthly GPCP data 

to seasonal sums, calculated the 1979-2015 average seasonal sums, and finally the seasonal 

rainfall anomalies for each season of interest. Seasonal rainfall totals, means, and percent 

anomalies are presented by region in Table S1. Note that the seasons in each region are selected 

based on the periods when El Niño has the highest impact (see Methods section in the Main 

Text). 

 

 

2. Precipitation Anomaly Forecast 

 

As mentioned in the main manuscript, we used precipitation anomaly forecasts to calibrate disease 

transmission risk as part of the ENSO-induced disease monitoring effort orchestrated by NASA, 

USDA, and the DoD. Precipitation anomaly forecasts are derived from the anomalous precipitation 

rate forecast output from the North American Multi-Model Ensemble (NMME)13. The data are 

interpolated from the native 1° x 1° scale to a finer 0.5° x 0.5° resolution, and then extrapolated in 

time from units of mm s-1 to mm month-1 (effectively mm of precipitation for a given month). 

Extrapolation is based on a constant anomalous precipitation rate across the total number of days 

in the calendar year and month for which the forecast is valid (here October, November, or 

December 2015) accounting for leap days. For forecasts at seasonal time scales (e.g., October – 

December), a sum is taken of the three individual monthly precipitation forecasts. Results of such 

forecast products are shown in Fig. S1. Regions anomalous in either direction, that is, experiencing 

drought or excessive rainfall and possibly flooding, are determined to be areas of potential disease 

emergence and used in early warning alerts. 
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Fig. S1. Forecast cumulative rainfall anomalies for October- - December 2015. Note regions of 

forecast above-normal rainfall in Eastern Africa, Southern Brazil/Argentina, and southern 

US/Mexico, and below-normal rainfall including northern South America, Southern Africa, 

Southeast Asia, and Australia. This figure was created using Interactive Data Language (IDL) 

software (version 8.6.0) (www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx). 
 

 

 

Fig. S2. Observed cumulative rainfall anomalies for May, June, July, August 2015. This figure 

was created using Interactive Data Language (IDL) software (version 8.6.0) 

(www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx). 

http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx)
http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx)
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Fig. S3. Observed normalized difference vegetation index anomalies for December 2015. The 

patterns of vegetation anomalies here agree with the forecast anomalies and observed 

precipitation anomalies shown in Fig. S1 and Fig. S3 above. This figure was created using 

Interactive Data Language (IDL) software (version 8.6.0) 

(www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx). 

http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx)
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a April 2014 – March 2015 

b April 2015 – March 2016 

 

c April 2016 – March 2017 

d   April 2017 – March 2018 
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Fig. S4. Climate-sensitive diseases that were reported through ProMED between 2014 to 2018. This 

figure was created using Interactive Data Language (IDL) software (version 8.6.0) 

(www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx) 
 

 

Fig. S5. West Nile fever activity in the US in 2015. Note the clustering in central and southern 

US and California regions of maximum precipitation departures in shown in S3. This figure was 

created using Interactive Data Language (IDL) software (version 8.6.0) 

(www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx). 
 

 

 

 

 

 

Fig. S6. Annual Tularemia cases per 100,000 populations. (a) In year 2015. (b) Percent change in 

Tularemia cases per 100,000 populations from the mean in 2015. (c) Annual cases per 100,000 

http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx)
http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx)
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populations between 2006 – 2016 for the top 3 states with highest increase in 2015 from the mean. Grey 

dashed lines indicate annual mean ±2.5 standard deviation. Annual Tularemia cases and population by 

states were obtained, respectively, from the CDC [https://www.cdc.gov/tularemia/statistics/index.html] 

and US Census [https://www.census.gov/data/tables/2017/demo/popest/nation- 

total.html#par_textimage_2011805803]. This figure was created using R software (version 3.4.1)14. 
 

 

Fig. S7. Observed cumulative rainfall anomalies for October - December 2015 for the Pacific 

Islands (Tonga, Hawaii, America Samoa, Cook Islands, Fiji Islands, French Polynesia, and 

Marshall Islands) showing the predominance of lower-than-normal conditions or drought in 

areas of outbreaks of chikungunya (CHK), dengue fever (DV), and Zika (ZV). This figure was 

created using Interactive Data Language (IDL) software (version 8.6.0) 

(www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx). 

http://www.cdc.gov/tularemia/statistics/index.html
http://www.census.gov/data/tables/2017/demo/popest/nation-
http://www.harrisgeospatial.com/SoftwareTechnology/IDL.aspx)
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Fig. S8. Land Surface Temperature (LST) distribution of 3-month average anomaly during 

2015/2015 El Niño year (in red) compared to the same 3-month window in other years (in black). 

The distributions were generated using those pixels where outbreaks were reported during the 

specified 3-month period. This figure was created using R software (version 3.4.1)14. 
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Fig. S9. Normalized Difference Vegetation Index (NDVI) 3-month average anomaly during 

2015/2015 El Niño year (in red) compared to the same 3-month window in other years (in black). 

The distributions were generated using those pixels where outbreaks were reported during the 

specified 3-month period. This figure was created using R software (version 3.4.1)14. 
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Fig. S10. Niño 3.4 region is in red (5°N – 5°S, 120°W – 170°W); Niño 3 region in orange (5°N 

– 5°S, 150°W – 90°W); Niño 4 region in blue (5°N – 5°S, 160°E – 150°W); Niño 1.2 region in 

green (0° – 10°S, 90°W – 80°W. This figure is generated using R software (version 3.4.1)14. 
 

 
 

Hantavirus in Colorado and New Mexico Plague in Colorado and New Mexico 

 

0 2 4 6 8 10 12 0 2 4 6 8 10 12 
 

Lag Lag 

 

Dengue in Brazil Dengue in SE Asia 

 
 
 
 
 
 

0 2 4 6 8 10 12 0 2 4 6 8 10 12 

   Lag       Lag    
 

Cholera in Tanzania 

 

0 2 4 6 8 10 12 
 

Lag 

 

Fig. S11. Autocorrelation Function (ACF) plots for dependent variable (annual disease report or count). 

This figure was created using R software (version 3.4.1)14. 
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