Supplementary data

Title: The potential role of temperate Japanese regions as refugia for the coral *Acropora hyacinthus* in the face of climate change

Authors: Aki Nakabayashi, Takehisa Yamakita, Takashi Nakamura, Hiroaki Aizawa, Yuko F Kitano, Akira Iguchi,

Hiroya Yamano, Satoshi Nagai, Agostini Sylvain, Kosuke M. Teshima, Nina Yasuda.

Suppl. 1 Delta *K* estimation of STRUCTURE analysis using whole data sets including cryptic lineages.

Suppl. 3 Genetic variability of each locus within each population. Number of samples (N); number of alleles (Na); number of effective alleles (Ne); Information Index (I); Observed (Ho); Expected (He) and Unbiased (UHe) Heterozygosities; and Fixation Index (F).

> F -0.026

-0.058

-0.034

-0.017 0.000 #N/A 0.758

-0.118

0.249 0.764 -0.047 0.421

0.024

-0.200 0.000 #N/A 0.132 -0.056 0.000 #N/A 0.768

0.334

-0.078

-0.041 0.051

0.207

-0.070 0.040 -0.020 0.000

#N∕A 0.282

0.342

0.442 -0.045

-0.143

-0.050

0.401

0.695 0.357

-0.069 0.217

0.357 -0.200

0.211 0.216 -0.091 0.385

0.011

-0.385 0.000 #N/A 0.471 -0.250 0.216 -0.091 0.817 -0.008

0.348 0.042 -0.021 0.752 0.038 -0.037

0.066

0.833 0.411 -0.194 0.688

0.218

0.098 0.033

0.237

0.349

0.189

0.837

0.387 0.469

0.153

0.796 0.121 -0.051 0.647

0.305

0.692 0.223

0.196

0.071 0.514 0.377 0.218 -0.099 0.119

0.757

0.423 0.418 0.114 0.071 -0.037 0.865

0.386

0.549 0.660

0.601 0.366

0.392 0.111 -0.059 0.745

0.765 0.595

0.425

Рор	Locus	Ν	Na	Ne	Ι	Ho	He	UHe	F		Рор	Locus	N	Na	Ne	I	Ho	He	UHe
GAHo	8346m3	9	2	1.246	0.349	0.222	0.198	0.209	-0.125	;	кос	8346m3	30	3	1.070	0.169	0.067	0.065	0.
	11401m4	9	5	3.857	1.459	0.778	0.741	0.784	-0.050	1		11401m4	30	8	5.521	1.849	0.867	0.819	0.
	8499m4	9	1	1.000	0.000	0.000	0.000	0.000	#N∕A	1		8499m4	29	6	1.679	0.859	0.483	0.404	0.
	Amil2-2	9	2	1.670	0.591	0.556	0.401	0.425	-0.385			Amil2-2	30	4	1.2/2	0.472	0.067	0.214	0.
	Amil2-23	9	1	1.000	0.000	0.000	0.000	0.000	#N∕A	1		Amil2-10	30	2	1.107	0.233	0.100	0.037	0.
	Amil2-10	9	3	1,256	0.426	0.111	0.204	0.216	0.455			Amil2-12	30	1	1.000	0.000	0.000	0.000	0.
	Amil2-12	9	1	1.000	0.000	0.000	0.000	0.000	#N/A	1		10366m5	30	6	3.930	1.518	0.833	0.746	0.
	10366m5	9	4	2 348	1 014	0 111	0.574	0.608	0.806		TUK	8346m3	23	3	1.301	0.446	0.174	0.232	0.
GAHk	8346m3	10	1	1 000	0.000	0.000	0.000	0.000	#N/A			11401m4	23	7	3.963	1.591	0.783	0.748	0.
G/ III	11401m4	10	4	2 353	1 063	0.000	0.000	0.000	0 478			8499m4	20	4	1.695	0.800	0.400	0.410	0.
	8499m4	10	3	1 361	0.518	0.000	0.070	0.000	-0 132	-		Amil2-2	22	4	1.517	0.646	0.409	0.341	0.
	Amil2-2	10	2	1 105	0.010	0.000	0.200	0.273	-0.053	i		Amil2-23	23	3	1 148	0.000	0.000	0.000	0
	Amil2-22	10	1	1.100	0.100	0.100	0.000	0.100		1		Amil2-12	22	1	1.000	0.000	0.000	0.000	0.
	Amil2_23	10	1	1.000	0.000	0.000	0.000	0.000	#N/A	{		10366m5	22	6	4.017	1.510	0.500	0.751	0.
	Amil2-10	10	1	1.000	0.000	0.000	0.000	0.000	#N/A		ΤΟΙ	8346m3	25	4	1.228	0.420	0.200	0.186	0.
	Amii2-12	10		2 704	1.405	0.000	0.000	0.000	#N/A	1		11401m4	20	8	5.442	1.827	0.850	0.816	0.
	10300m5	10	0	3.704	1.490	0.300	0.730	0.700	0.009	-		8499m4	25	6	1.611	0.850	0.360	0.379	0.
AMIN	6340m3	23	2	1.240	0.344	0.130	0.194	0.198	0.327			Amil2-2	22	5	1.84/	0.884	0.364	0.459	0.
	11401m4	22	9	5.095	1.858	0.727	0.804	0.822	0.095	2		Amil2-23	20	3	1.1/0	0.324	0.160	0.150	0.
	8499m4	23	4	1.000	0.798	0.304	0.400	0.409	0.239	4		Amil2-12	25	1	1.041	0.000	0.040	0.000	0
	Amil2-2	23	4	1.195	0.386	0.1/4	0.164	0.16/	-0.064	4		10366m5	25	6	4.545	1.608	0.560	0.780	0.
	Amil2-23	23	1	1.000	0.000	0.000	0.000	0.000	#N/A	4	KAHyn	8346m3	24	3	1.135	0.274	0.125	0.119	0.
	Amil2-10	23	1	1.000	0.000	0.000	0.000	0.000	#N/A	4		11401m4	24	6	2.730	1.323	0.417	0.634	0.
	Amil2-12	21	1	1.000	0.000	0.000	0.000	0.000	#N∕A	4		8499m4	24	6	1.426	0.700	0.167	0.299	0.
	10366m5	23	5	3.317	1.346	0.130	0.698	0.714	0.813			Amil2-2	24	8	3.105	1.501	0.708	0.678	0.
ZAH	8346m3	17	1	1.000	0.000	0.000	0.000	0.000	#N∕A	4		Amil2-23	24	2	1.280	0.377	0.250	0.219	0.
	11401m4	15	6	2.332	1.242	0.333	0.571	0.591	0.416	i i		Amil2-10	24	2	1.237	0.404	0.123	0.192	0.
	8499m4	16	2	1.205	0.311	0.188	0.170	0.175	-0.103			10366m5	24	7	3.789	1.514	0.708	0.736	0.
	Amil2-2	17	3	1.438	0.578	0.353	0.304	0.314	-0.159	1	KAHae	8346m3	14	2	1.074	0.154	0.071	0.069	0.
	Amil2-23	17	1	1.000	0.000	0.000	0.000	0.000	#N∕A	4		11401m4	13	5	1.977	1.024	0.308	0.494	0.
	Amil2-10	17	2	1.061	0.133	0.059	0.057	0.059	-0.030	1		8499m4	13	3	1.266	0.431	0.231	0.210	0.
	Amil2-12	17	2	1.061	0.133	0.059	0.057	0.059	-0.030	1		Amil2-2	14	5	3.698	1.443	0.643	0.730	0.
	10366m5	16	8	2.829	1.397	0.375	0.646	0.667	0.420	1		Amil2-23	14	2	1.690	0.598	0.429	0.408	0.
WAHk	8346m3	29	1	1.000	0.000	0.000	0.000	0.000	#N∕A	1		Amil2-12	14	2	1.073	0.154	0.0071	0.403	0.
	11401m4	29	7	3.602	1.502	0.517	0.722	0.735	0.284			10366m5	14	7	6.031	1.852	0.500	0.834	0.
	8499m4	28	6	2.469	1.210	0.429	0.595	0.606	0.280)	OAH	8346m3	9	3	1.573	0.655	0.111	0.364	0.
	Amil2-2	29	3	1.482	0.616	0.310	0.325	0.331	0.046	i		11401m4	9	5	2.077	1.051	0.333	0.519	0.
	Amil2-23	29	1	1.000	0.000	0.000	0.000	0.000	#N∕A	ļ		8499m4	9	4	2.656	1.168	0.667	0.623	0.
	Amil2-10	29	2	1.035	0.087	0.034	0.034	0.034	-0.018			Amil2-2	9	3	2.314	0.937	0.444	0.568	0.
	Amil2-12	29	1	1.000	0.000	0.000	0.000	0.000	#N∕A			Amil2-23	9	2	1.528	0.530	0.222	0.340	0.
	10366m5	29	7	4.335	1.653	0.621	0.769	0.783	0.193			Amil2-10	9	2	1.388	0.004	0.444	0.370	0.
WAHs	8346m3	18	2	1.117	0.215	0.111	0.105	0.108	-0.059)		10366m5	9	5	3.375	1.353	0.556	0.704	0.
	11401m4	18	6	2.711	1.283	0.389	0.631	0.649	0.384	-	MYK	8346m3	9	3	1.256	0.426	0.222	0.204	0.
	8499m4	18	4	1.600	0.746	0.222	0.375	0.386	0.407	'		11401m4	9	6	3.600	1.504	0.444	0.722	0.
	Amil2-2	18	3	1.742	0.730	0.500	0.426	0.438	-0.174			8499m4	9	4	2.282	1.040	0.556	0.562	0.
	Amil2-23	18	1	1.000	0.000	0.000	0.000	0.000	#N/A	1		Amil2-2	9	2	1.670	0.591	0.556	0.401	0.
	Amil2-10	18	2	1.117	0.215	0.111	0.105	0.108	-0.059			Amil2-23	8	1	1.000	0.000	0.000	0.000	0.
	Amil2-12	18	1	1.000	0.000	0.000	0.000	0.000	#N/A	1		Amil2-10	9	4	1.800	0.855	0.000	0.444	0.
	10366m5	16	6	4,971	1.681	0.500	0.799	0.825	0.374	1		10366m5	9	5	4 378	1 519	0.222	0.204	0

Suppl. 4 IBD patterns based on different geographic distances (a and c used Euclidean distance, b and d used number of larvae exchanged between sites based on numerical simulation) with different sample sets (a,b all populations, c,d excluding recently colonized populations).

Suppl. 5 Likelihood values of STRUCTURE analysis only using green lineage (a) No prior (b) LOCPRIOR model used (temperate or subtropical regions).

Suppl. 6 Recent migration based on assignment test results using GeneClass2. Numbers indicate the number of individuals assigned to a population. Bold face indicates self-seeding. Columns are source populations, and rows are sink populations.

Assigned population	recentl te	y coloni mperate	zed in e	ł	ore-exis	ting in [.]	subtropical area					
Source population	GAH	AMK	ZAH	WAH	KOC	TUK	TOI	KAHyn	KAHae	OAH	MYK	
	GAH	8		1	2							
recently colonized in temperate area	AMK		5									
	ZAH			2								
	WAH	1			13							
	KOC					5						
pre-existing in temperate	TUK				1		21	1				
	ΤΟΙ							6				
	KAHyn								9			
	KAHae					1				9		
subtropical area	OAH									1	3	
	MYK											6
Unassigned	10	18	14	31	24	2	18	15	4	6	3	

Suppl. 7 Environmental parameters of different regions. Data from NASA Goddard Space Flight Center, O. E. L., Ocean Biology Processing Group [25] and Yara, Y. et al. [26]

DECION	Water temperature	Chlorophylla	POC	Aragonite saturation		
REGION	average lowest month (°C)	average (µl/L)	average (mg/ m³)	Ω −arag		
Okinawa	21.98	0.17	54.24	3.30		
Yakushima	19.56	0.26	76.30	3.10		
Shikine	15.85	0.43	101.75	2.60		
Amakusa-Goto	15.47	0.64	174.91	2.90		

[25] NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group; (2018): MODIS-Aqua Level-2 Ocean Color Data Version, NASA OB.DAAC. http://doi.org/10.5067/AQUA/MODIS/L2/OC/2018. Accessed on 2018/01/01.

[26] Ocean acidification limits temperature-induced poleward expansion of coral habitats around Japan. Biogeosciences 9, 4955-4968 (2012).

Suppl. 8 Microsatellite markers used in this study.

Microsatellite locus	Primer F	Primer R	Repeat motif	Color	Multiplex	Reference	
8346m3	CGACAAAGATTGGAGACCC	TTTCAATGCAGTGTGATTCC	(ATT)12	FAM (Blue)			
11401m4	TGCAGACAGAACCGAGAAGG	TGGGCCACGATTCTTACG	(ATTT)8	NED (Yellow)	Dlay 1	Shinzata at al 2014	
8499m4	AAACCGTGGGTTAAGGGC	CGATGGAATTATTCGCGG	(CGGT)5	PET (Red)		Shinzato et al., 2014	
10366m5	CAACGACTGAAAGGCAGC	ACGACTGAAAGGCAGC GGCTTTCGACTTTTATGTCC (AAAAC)5 NED (Yellov		NED (Yellow)			
Amil2-2h	AATAACCCCTTCTACCTCTCT	TCTACAGCCGATTGTCAAGG	(CA)8	PET (Red)		medified van Oppen et al. 2007	
Amil2–23h	GTGTTACTGCATCAAACTG	GTGAGCATCCAAAGGTTTCC	(CT)5	(CT)5 NED (Yellow)		modified van Oppen et al., 2007	
Amil2-10	CAGCGATTAATATTTTAGAACAGTTTT	CGTATAAACAAATTCCATGGTCTG	TA(TG)11	FAM (Blue)	Plexz	ven Oppen et al. 2007	
Amil2-12	TTTTAAAATGTGAAATGCATATGACA	TCACCTGGGTCCCATTTCT	GA(CA)6GA(CA)2	VIC (Green)		van Oppen et al., 2007	

Suppl. 10 Distances and the simulated larval dispersal exchange between pairs of populations

category	Pairwise o	compariso	Linearlized Fst	straightline distance	oceanog raphic_ distance	42d simulation 1 generation	42 simulation multiple generation	42 d simulation multiple generation_lg	category	Pairwise o	compariso	Linearlized Fst	straightline distance	oceanog raphic_ distance	42d simulation 1 generation	42 simulation multiple generation	42 d simulation multiple generation_lg
recent	GAHo	GAHk	0.078	7.1	7.33	1704	1.9E+03	5.E-04	Pre-exsited	WAHk	WAHs	0.023	44.18	62.64	201	2.7E+02	4.E-03
recent		AMK	0.059	108.04	110.31	1E-24	1.1E-01	9.E+00	Pre-exsited		KOC	0.022	278.94	362.95	1	4.2E+00	2.E-01
recent			0.052	976.9	1423.44	1E-24	6.8E-02	1.E+01	Pre-exsited		тик	0.118	465.35	524.88	2	3.7E+00	3.E-01
recent		WAHK	0.064	646.47	919.78	15.04	1.6E+01	6.E-02	Pre-exsited		TOI	0.029	477.32	540 97	558	7 0E+02	1 E-03
recent		KOC	0.057	372.22	628.40	2231	2.0E=01	5.E∓00	Pre-excited		K A Hyp	0.020	503 77	646 70	558	7.0E+02	1.E 00
recent		TUK	0.030	264.21	436.04	/15	5 1E+02	2 E−03	Pre exsited		KAHaa	0.040	000.00	040.79	15.04	7.0L+02	1.L 03
recent		TOI	0.032	265.16	386.92	1F-24	1 1F-01	9 F+00	Pre-exsiled		KAnae	0.090	1070.07	300.00	1E-24	4.0E+00	3.⊑−01
recent		KAHvn	0.043	285.27	311.47	1E-24	5.2F-01	2.E+00	Pre-exsited		UAH	0.073	10/2.97	1/51.5	1E-24	1.4E-02	7.E+01
recent		KAHae	0.092	475.29	1428.37	1E-24	1.1E-02	9.E+01	Pre-exsited		MYK	0.050	1393.67	1623.42	1E-24	3.0E-02	3.E+01
recent		OAH	0.093	679.58	1161.03	1E-24	3.5E-05	3.E+04	Pre-exsited	WAHs	KOC	0.029	250.93	341.41	1E-24	4.9E-02	2.E+01
recent		MYK	0.069	933.26	1034.22	1E-24	1.8E-07	6.E+06	Pre-exsited		TUK	0.099	444.37	507.04	1E-24	3.9E-02	3.E+01
recent	GAHk	AMK	0.052	114.25	105.09	1E-24	1.1E-01	9.E+00	Pre-exsited		TOI	0.028	456.99	519.7	334	8.5E+02	1.E-03
recent		ZAH	0.052	981.76	1412.67	1E-24	6.8E-02	1.E+01	Pre-exsited		KAHyn	0.024	576.63	629.14	1E-24	2.1E-01	5.E+00
recent		WAHk	0.057	651.67	915.69	2	1.6E+01	6.E-02	Pre-exsited		KAHae	0.069	811.42	941.76	1E-24	5.7E+00	2.E-01
recent		WAHs	0.072	617.75	894.58	1E-24	2.0E-01	5.E+00	Pre-exsited		OAH	0.052	1063.25	1736.32	1E-24	2.5E-02	4.E+01
recent		KOC	0.027	378	622.98	2231	2.4E+03	4.E-04	Pre-exsited		MYK	0.044	1381 69	1612 41	1F-24	3 0F-02	3 F+01
recent		TUK	0.169	2/1.2/	432.45	415	5.1E+02	2.E-03	Pre-exsited	KOC	тик	0.105	201.46	237.87	1429	1 6E+03	6 E-04
recent		TOI	0.044	2/2.25	381.67	1E-24	1.1E-01	9.E+00	Dre-exsited	KOU		0.105	201.40	257.07	15-24	2.55-02	0.∟ 04
recent		KAHyn	0.064	291.79	307.7	1E-24	0.2E-01	2.E+00	Pre-exsited			0.015	210.20	200.00	1E-24	Z.JE-02	4.⊑+01
recent			0.132	479.00	1423.90	1E-24	2.55-05	9.E+01	Pre-exsited		KAHyn	0.034	339.90	309.7	1E-24	5.4E-02	Z.E+01
recent		MYK	0.120	934 54	1034.91	1E-24	1.8E-07	6 E+06	Pre-exsited		KAHae	0.085	588.32	683.25	1E-24	2.1E-03	5.E+02
recent	AMK	ZAH	0.032	874.16	1513 76	1E-24	1.3E+02	8 E-03	Pre-exsited		OAH	0.074	840.14	1451.37	1E-24	7.2E-06	1.E+05
recent	7 0011	WAHk	0.028	541.88	1011.11	23	8.8F+01	1.E-02	Pre-exsited		MYK	0.042	1150.26	1336.68	1E-24	5.1E-08	2.E+07
recent		WAHs	0.028	509.7	986.3	1173	1.9E+03	5.E-04	Pre-exsited	TUK	TOI	0.068	14.45	37.29	1E-24	2.0E-02	5.E+01
recent		KOC	0.016	265.49	720.82	1E-24	2.3E-02	4.E+01	Pre-exsited		KAHyn	0.062	139.58	161.9	1E-24	5.4E-02	2.E+01
recent		TUK	0.128	171.49	520.13	1E-24	2.1E-02	5.E+01	Pre-exsited		KAHae	0.087	392.08	533.97	1E-24	4.8E-04	2.E+03
recent		TOI	0.023	176.31	472.99	505	1.6E+03	6.E-04	Pre-exsited		OAH	0.087	642.05	1312.98	1E-24	1.6E-06	6.E+05
recent		KAHyn	0.043	237.13	406.35	28	1.7E+02	6.E-03	Pre-exsited		MYK	0 100	949.2	1183 07	1F-24	1 5E-08	7 F+07
recent		KAHae	0.103	468.39	1515	11.33045623	1.3E+01	8.E-02	Pre-exsited	TOT	KAHyn	0.025	125 29	120.22	1	7 4E+01	1 E-02
recent		OAH	0.078	697.01	1250.82	9.15434606	9.2E+00	1.E-01	Pro-ovoited	101	K A H a a	0.020	277.62	100.52	1E-24	7.7E-01	1.E 02
recent		MYK	0.051	974.86	1126.35	1E-24	3.6E-02	3.E+01	Pre-exsited			0.071	577.03	499.00	1E-24	7.7E-01	1.⊑+00
recent	ZAH	WAHk	0.033	334.48	637.46	79	3.4E+02	3.E-03	Pre-exsited		UAH	0.058	027.07	12/3.00	1E-24	4.3E-01	2.E+00
recent		WAHs	0.019	364.45	/09.68	94	4./E+02	2.E-03	Pre-exsited		MYK	0.045	935.16	1151.99	1E-24	6.0E+00	2.E-01
recent		KUC	0.022	613.22	8/5.59	1E-24	4.1E-02	2.E+01	Pre-exsited	KAHyn	KAHae	0.028	254.04	1264	72	9.4E+01	1.E-02
recent			0.108	/9/.3	1034.32	1E-24	1.0E-02	1.E+02	Pre-exsited		OAH	0.031	502.68	1006.51	53	1.0E+02	1.E-02
recent		KAH _V n	0.031	000.00	1158 /1	51	0.0E+01 2.1E±02	Z.E-UZ 5 E-02	Pre-exsited		MYK	0.045	810.31	883.48	1E-24	3.5E+00	3.E-01
recent	1	KAHae	0.029	1135 32	1486	1F-24	1 9E+00	5 E-01	Pre-exsited	KAHae	OAH	0.044	252.47	533.87	1014	1.6E+03	6.E-04
recent		OAH	0.072	1381.01	2248.71	1F-24	8.4F-03	1.E+02	Pre-exsited		MYK	0.079	571.72	752.09	1E-24	4.3E+01	2.E-02
recent		MYK	0.056	1705.74	2129.23	1E-24	2.8E-05	6 4.E+04	Pre-exsited	OAH	MYK	0.049	326	487.42	67	6.0E+02	2.E-03