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1 Details Regarding Assessment of Community
Structure

1.1 The Stochastic Block Model

The SBM [1] is a well-established generative model for networks with commu-
nities. Under the SBM, each of the n nodes is independently assigned to one
of K communities, with probability of assignment to community k given by
πk,

∑K
i=1 πk = 1. Given a realization of the community assignments vector c,

where ci is the community label of node i, the SBM generates edge weights
Aij between nodes i and j independently, from a distribution depending only
on the community labels ci and cj . If the distribution is parameterized by a
parameter θci,cj , the distribution of the entire network is determined by the set
of parameters θkl, k, l = 1, . . . ,K, with θkl = θlk if the network is symmetric, as
it is in our case. In the classical formulation of the SBM, the adjacency matrix
is assumed to be binary, in which case the distribution of Aij is Bernoulli and
θkl = P (Aij = 1|ci = k, cj = l). In our case, because we work with weighted
matrices and the weights are Fisher-transformed correlations, we model the dis-
tribution of Aij as normal, determined by parameters θkl = (µkl, σ

2
kl).

1.2 Calculating profile likelihood under the SBM

In our setting, we have an a priori community membership as given by the
Power et al. parcellation [2]. The log-likelihood of the observed weights for a
given community assignment, c, is given by

logL(θ, π|A) =

K∑
k=1

nk log(πk) +

n∑
i=1

i−1∑
j=1

log f(Aij ; θci,cj ),

=

K∑
k=1

nk log(πk) +

n∑
i=1

i−1∑
j=1

[
−1

2
log(2π)− log σci,cj −

(Aij − µci,cj )2

2σ2
ci,cj

,

]

where nk is the number of nodes in community k, and f(·; θkl) is the probability
density function of N(µkl, σ

2
kl).

Maximizing the likelihood of the SBM over community assignments is an
NP-hard problem, but for a given c, maximizing over π and θ is easy and
there is a closed form solution. Let Skl denote the set of node pairs connecting
community k to community l, Skl = {i < j : ci = k, cj = l}, and let nkl = |Skl|
denote the number of such pairs. Then the maximum likelihood estimates of
parameters for a given c are
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π̂k =
nk
n
,

µ̂kl =
1

nkl

∑
(i,j)∈Skl

Aij ,

σ̂2
kl =

1

nkl

∑
(i,j)∈Skl

(Aij − µ̂kl)
2 ,

the usual MLEs under the normal distribution. Plugging in these values into
the profile likelihood gives the maximized profile likelihood, which we use as the
test statistic.

To carry out the test, we need to compare the value of the observed pro-
file log-likelihood, l̂, to the distribution of profile log-likelihoods under the null
hypothesis of no community structure in the data. We obtain this distribution
empirically, shuffling the labels of the given parcellation c randomly and recom-
puting the profile log-likelihood in the same way, m = 20,000 times in total,
to obtain the values lj , j = 1, . . . ,m. Finally, we estimated empirically the
probability that a profile log-likelihood L sampled from this null distribution
will exceed l̂, as

P (L ≥ l̂) = max

(
1

m
,

1

m

m∑
i=1

I(li ≥ l̂)

)
,

where I is the indicator function.
Note that permutation of the labels does not change the number of nodes in

each community, so the terms involving π̂k’s can omitted.
This procedure is repeated for each of the 809 components of interest, and

the resulting 809 p-values are Bonferroni-corrected for multiple comparisons.
The number of permutations was selected such that it would be mathematically
possible to achieve Bonferroni-corrected significance at α = .05.

In addition, for each component we retained both the profile log-likelihood
under the Power et al. parcellation [2] and the empirical profile log-likelihood
across the m shufflings, and plotted these as a function of the component number
(see Figure 6). Because of the use of logs, the ratio of likelihoods is proportional
to the difference of log-likelihoods, and one may descriptively interpret the “gap”
between the two traces as some indication of the magnitude of the divergence
from the null.
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