
Bayesian Inference of Energy Matrix Models

We use Sort-Seq data to generate energy matrices that map sequence to binding energy. As discussed in
Refs. [1, 2], one can infer these energy matrices by Bayesian parameter estimation using the observation
that for large data sets,

p(data | model) ∝ 2NI(σ;µ), (1)

where N is the number of data points and I(σ;µ) represents the mutual information between the
promoter sequence σ and the fluorescence bin µ. Using a method discussed in detail in Refs. [2, 3], we
use a Markov Chain Monte Carlo (MCMC) algorithm to infer a set of energy values (in arbitrary units)
for each energy matrix position that maximizes the mutual information between binding site sequence
and fluorescence bin. This inference is performed using the MPAthic software package [4]. In libraries
where the RNAP binding sequence is also mutated, we can infer energy matrices for both the RNAP
binding site and the transcription factor binding site. It is necessary to have this RNAP matrix in order
to constrain the model sufficiently to infer a scaling factor for the transcription factor energy matrix, as
described below. While RNAP matrices were produced as part of the inference procedure for several of
the energy matrices used in this work, we do not reproduce them here as they were not directly used for
any analysis.

In order to convert energy matrices into absolute energy units (such as the kBT units used in this
work), one must obtain a scaling factor that can be applied to the matrix. To obtain this scaling factor,
we first observe that energy matrices derived from Sort-Seq can be used to predict the binding energy
associated with a given operator mutant (∆εR) using the linear equation

∆εR = αεmat + ∆εwt, (2)

where εmat is the energy value obtained by summing the matrix elements associated with a sequence,
α is a scaling factor that converts the matrix values into kBT units, and ∆εwt is the binding energy
associated with the reference sequence. The values of the matrix positions associated with the reference
sequence are fixed at 0 kBT , so that εmat = 0 for the reference sequence. Thus, αεmat can be interpreted
as the change in binding energy relative to the reference sequence caused by the specific mutations to
the sequence. The value of α can be determined in a number of ways (as discussed further in S2 Text),
but the method employed in the main text is to use Bayesian parameter estimation by MCMC. The
advantage of this method is that if a thermodynamic model for the promoter is known, one can use the
Sort-Seq data to infer the value of α without having to perform any additional experiments. Here we
describe in detail how MCMC is used to infer a value for α.

If the energy matrix is properly converted into kBT units, then one can use energy matrix predictions,
along with a thermodynamic model for gene expression, to discern which fluorescence bin a given
promoter sequence should have fallen into. We discuss above how one can infer the energy matrix
parameters by maximizing the mutual information between sequence and expression bin. Similarly, we
can obtain an estimate for α by finding the value of α that maximizes the mutual information between
the Sort-Seq data and the expression predictions from the matrix and thermodynamic model. For the
thermodynamic model, we begin with the expression for pbound for a simple repression system,

pbound =
P

NNS
e−β∆εP

1 + P
NNS

e−β∆εP + 2R
NNS

e−β∆εR
, (3)

where P is the number of RNAP molecules in the system, NNS is the number of nonspecific binding
sites available in the system (i.e. the length of the genome), R is the number of repressors in the system,
∆εP is the binding energy of RNAP to its binding site, and ∆εR is the binding energy of the repressor
to its binding site. We can rearrange this equation to make it easier to work with. First, we divide the
top and bottom by the numerator, giving us
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Importantly, in order to evaluate the mutual information between ∆εR and pbound, it is not necessary to
adhere to the full expression for pbound. Rather, we can manipulate the expression in ways that make it
easier for us to work with, provided that the mutual information between ∆εR and pbound is preserved.
As noted in [5], the mutual information is preserved provided that any manipulations to the expression
do not disrupt the rank ordering of an expression’s values as the value of ∆εR is varied. We note that

the term
1+ 2R

NNS
e−β∆εR

P
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e−β∆εP
has the same rank ordering as the full expression for pbound. Furthermore, taking

the log of this term will also not affect the rank ordering, and it will make the calculation simpler, so we
take the log to get an expression which we will refer to as p′bound, giving us

p′bound = ln
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)
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)
+ β∆εP . (5)

We observe that the constant ln
(

P
NNS

)
also does not affect rank ordering, so we can drop this term.

Additionally, we recall that ∆εR = αεmat,R+∆εwt,R. Likewise, we can say that ∆εP = γεmat,P +∆εwt,P ,
where γ is the scaling factor for the RNAP matrix. As before, we can drop the constant ∆εwt,P as it
will not affect rank ordering. This leaves us with the expression

p′bound = ln

(
1 +

2R

NNS
e−β(αεmat,R−∆εwt,R)

)
+ βγεmat,P . (6)

With this expression in hand we can sample values of γ and α to identify values that maximize the
mutual information between p′bound and the expression bin which a particular sequence was sorted into
during Sort-Seq. Note that while the rest of the discussion will focus on α, a value for γ comes out of
this analysis as well.

The mutual information surface is very rough, with many peaks, so we need to use a method which
can avoid getting stuck in local maxima. We use a parallel tempering MCMC algorithm to achieve
this [6]. The parallel tempering MCMC algorithm works by randomly sampling possible values for α
and rejecting the value with some probability if it does not increase the mutual information relative to
the previous sampled value of α. In this respect it is similar to a “standard” MCMC algorithm. By
contrast with a standard MCMC algorithm, a parallel tempering algorithm runs multiple chains at once
at different temperatures. In our case, we use 10 different temperatures ranging from β = 0.02 to β = 4
on a log scale, where β = 1/kBT . Periodically throughout the MCMC run, the current α values from
different temperature chains will swap. This allows the algorithm to sample α values at different levels
of precision. Specifically, the high temperature chains will explore widely and not get stuck in local
minima, while the low temperature chains will then carefully explore the peak that was found by the high
temperature chain. The output is a distribution of values, and we take the median of this distribution to
obtain our estimate for α.

To quantify the error associated with our energy matrices, we elected to compare replicate energy
matrices inferred using the methods described above. As discussed in S4 Text, we performed three
biological replicates each for the energy matrices with O1 reference sequence and repressor copy number
R = 30, O1 reference sequence and R = 62, O2 reference sequence and R = 30, and O2 reference
sequence and R = 62. It was not feasible to perform biological replicates for every matrix studied in this
work, so in several cases we instead used a technique we refer to here as “sequence-splitting,” in which a
sequencing data set is split into three separate groups of nonoverlapping sequences which can be assumed
to be independent. Each of these groups of sequences is used to produce an energy matrix as described
above. To evaluate whether this provides similar statistics to the biological replicates, in Figure 1 we
compare the energy matrix values derived from each method for energy matrices obtained using an O1
reference sequence and R = 62. For the sequence-splitting data we used the “Day 1” Sort-Seq data. In
Figure 1A we directly plot the values from each resulting energy matrix against one another. We see
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that the mean energy matrix values agree overall with one another (r = 0.97). To determine whether
the methods infer a similar amount of error, in Figure 1B we display box plots overlaid with beeswarm
plots of the coefficient of variation (CV) associated with each data point for each inference method.
We find that the distribution of CVs for each method is quite similar, with a median CV of 0.11 for
the sequence-splitting method and a median CV of 0.12 for the multi-day replicate method. Thus, we
conclude that for the case of matrices made using an O1 reference sequence, sequence-splitting replicates
give similar statistics to multi-day biological replicates.
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Figure 1. Comparison of alternate methods of obtaining energy matrix error bars. (A) We
infer mean energy matrix values and standard deviation error bars using two different methods for
Sort-Seq experiments using an O1 reference sequence and R = 62. The first method (multi-day
replicates, x-axis) uses data from three separate biological replicates taken on three different days. The
second method (sequence-splitting, y-axis) uses a single biological replicate, but splits the sequence data
into three groups of sequences and treats each group as a separate replicate. (B) The range in CV is
shown for the sequence-splitting replicates (blue) and the multi-day replicates (green). A box-plot is
overlaid for each set of replicates.
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