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SUMMARY

Targeting bromodomains (BRDs) of the bromo-and-
extra-terminal (BET) family offers opportunities for
therapeutic intervention in cancer andother diseases.
Here, we profile the interactomes of BRD2, BRD3,
BRD4, and BRDT following treatment with the pan-
BET BRD inhibitor JQ1, revealing broad rewiring of
the interaction landscape, with three distinct classes
of behavior for the 603 unique interactors identified.
A group of proteins associate in a JQ1-sensitive
manner with BET BRDs through canonical and new
binding modes, while two classes of extra-terminal
(ET)-domain bindingmotifsmediate acetylation-inde-
pendent interactions. Last, we identify an unexpected
increase in several interactions following JQ1 treat-
ment that define negative functions for BRD3 in the
regulation of rRNA synthesis and potentially RNAPII-
dependent gene expression that result in decreased
cell proliferation. Together, our data highlight the
contributions of BET protein modules to their interac-
tomes allowing for a better understanding of pharma-
cological rewiring in response to JQ1.

INTRODUCTION

Eukaryotic transcription is a tightly controlled process that

depends on the formation of protein complexes regulated by
Molecular Cell 73, 621–638, Feb
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post-translational modifications (Bernstein et al., 2007). Bromo

and extra-terminal (BET) proteins provide a recruitment platform

initiated by the recognition of acetylated lysines (Kac) by their

tandem bromodomains (BRD, Dhalluin et al., 1999; Jacobson

et al., 2000; Owen et al., 2000). BETs, like all of the 42 human

BRD-containing proteins, contain additional interaction domains

that recruit other proteins to the acetylated protein target, form-

ing complex assemblies and contributing to processes such as

chromatin remodeling and transcription (reviewed in Fujisawa

and Filippakopoulos, 2017).

The BET sub-family comprises four proteins in humans

(BRD2, BRD3, BRD4, and the testis-specific BRDT) that harbor

at their amino-termini two BRD modules with distinct specificity

for Kac on histones and on a growing list of non-histone targets,

reviewed in Fujisawa and Filippakopoulos, 2017), followed by

an extra-terminal (ET) domain that mediates protein-protein in-

teractions (Rahman et al., 2011; Figure 1A). BRD4 and BRDT

also contain a C-terminal motif (CTM) that facilitates the recruit-

ment of transcriptional regulators, including the positive tran-

scription elongation factor b (P-TEFb; Figure 1B). BETs, and

in particular BRD4, have been implicated in human disease,

especially cancer. Translocations of BRD4 (and more rarely

BRD3) to the NUTM1 (NUT midline carcinoma family member 1)

gene cause a rare but aggressive form of squamous cell

carcinoma (French et al., 2004). Furthermore, BRD4 levels are

upregulated in a variety of tumors, leading to aberrant expres-

sion of growth-promoting genes, including the MYC oncogene

(Delmore et al., 2011; Mertz et al., 2011; Zuber et al., 2011)

and other transcription factors such as ERG, c-Myb, E2F1,

and nuclear factor kB (NF-kB) (reviewed in Fujisawa and Fili-

ppakopoulos, 2017).
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Figure 1. BET Proteins Are Molecular Scaffolds Interacting with Distinct Proteins

(A) Modular organization of BET proteins (domain boundaries in amino acids).

(B) BETs scaffold transcriptional regulators to acetylated histones. Inset: JQ1 competes with Kac-containing peptides for BRD association.

(C) Overview of experimental setup used to quantify the BET interaction network upon JQ1 treatment.

(D) Heatmap of BET high-confidence interaction partners identified by AP-MS in the JQ1 time course.

See also Figure S1 and Tables S1 and S2.
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The importance of BET proteins in cancer, together with the

recognition that BRD-Kac interactions are druggable, has

made them attractive targets for pharmaceutical intervention

(Filippakopoulos et al., 2010; Nicodeme et al., 2010). Direct tar-

geting of BET-BRDs by small-molecule inhibitors such as the

high-affinity and pan-BET specificity thienodiazepine (+)-JQ1

(hereafter referred to as JQ1) enables their displacement from

Kac (Figure 1B). JQ1 displays anticancer activity in cell-culture

models, patient-derived xenograft models of NUT midline carci-

noma, and in several Myc-driven cancers (reviewed in Bradner

et al., 2017). More than 20 clinical trials have been recently initi-

ated to investigate the efficacy of BET-BRD inhibitors in an array

of cancers (clinicaltrials.gov), with overall responses being

limited and short lived. Yet, preclinical data suggest that, in

combination with existing therapies, BET-BRD inhibitors can

potentiate the effects of cell cycle, immune checkpoint, and

DNA damage repair inhibitors (Doroshow et al., 2017). An

improved understanding of BET protein biochemistry is essential

to facilitate the successful progression of BET-BRD inhibitors

into the clinic.

Here, we establish the interactome of each BET protein,

revealing a rich network of interactions that are modulated

following treatment with JQ1. By analyzing the quantitative

behavior of 603 interactors, we define three classes of

proteins: those for which interaction decreases following JQ1

treatment, those whose association remains relatively un-

changed, and those that are unexpectedly increased following

BRD inhibition. Multiple decreased interactors harbor se-

quences that can directly associate with BET-BRDs in canonical

or new BRD-mediated structural binding modes, and we pro-

pose that the tandem BRDs present in each BET protein may

be capable of simultaneously recruiting both a histone and a sec-

ond interactor. Consistent with previous reports, we define two

distinct sequence motifs that bind to the BET ET domain in a

Kac-independent manner. Last, by examining gained interac-

tors, we identify an unsuspected function for BRD3 in ribosome

biogenesis, and a negative role in cell proliferation that is sup-

ported by mining genome-wide CRISPR-Cas9 datasets. Our

findings suggest that pan-BET inhibitors may have the unin-

tended consequence of inhibiting the growth repressive func-

tions of BRD3, in parallel to inhibiting the desired BRD4 positive

functions. Taken together, our systematic proteomics, biophys-

ical, structural, and cell biological studies provide a framework to

better understand BET biochemistry and promote the rational

development of new inhibitors.

RESULTS

Interactome Profiling Reveals Shared and Distinct BET
Protein Interaction Partners
To establish an interaction network for the BETs, we performed

affinity purification coupled with mass spectrometry (AP-MS) on

33FLAG-tagged BET proteins using optimized protocols

enabling recovery of interactors for both DNA-bound and un-

bound proteins (Lambert et al., 2014). Samples analyzed by

data-independent acquisition MS across two biological repli-

cates were scored against negative controls with Significance

Analysis of INTeractome (SAINT, Teo et al., 2014). We identified
650 high-confidence BET interactions (FDR %1% and R2 of

0.93; Table S2A) involving 357 unique preys, 329 (�92%) of

which have not been previously reported in the BioGRID repos-

itory (Figure S1A), though 106 of the interactors were detected

with at least one BET bait in a previous study (Dawson et al.,

2011; Table S2B). The 357 interactors were highly enriched for

expected Gene Ontology terms ‘‘nuclear lumen’’ (Cellular

Component), ‘‘nucleic acid binding’’ (Molecular Function), and

for the ‘‘gene expression’’ REACTOME pathway (Table S2C).

Our proteomic screens revealed multiple interactions for each

BET protein (Figure S1A), with 26 interactors shared across all

BETs and 177 detected with a single BET bait (Figure S1B).

Several interactors shared across all BETs (e.g., CHD8,

PWWP2B, and WHSC1L1) were previously identified only as

BRD4 interactors (Rahman et al., 2011; Shen et al., 2015), high-

lighting the importance of performing a systematic family-wide

assessment. BET proteins formed an interconnected interaction

network, notably through shared interactions with histones that

included association with other BRD-containing proteins, sug-

gesting an intricate physical interplay between Kac readers on

chromatin, and reinforcing the scaffolding roles of BET proteins

in regulating transcriptional programs (Table S2D).

Consistent with the existence of a CTM (Figure 1A), BRDT and

BRD4 associated with P-TEFb, as previously shown (Gaucher

et al., 2012; Jang et al., 2005), and with the negative elongation

factor (NELF) complex, as was suggested for BRD4 (Patel et al.,

2013). Components of negative transcriptional regulators such

as the nucleosome remodeling and deacetylase (NuRD) com-

plex preferentially associated with BRD3 and BRD4 while the

RNAPII subunits POLR2A and POLR2L, as well as most Medi-

ator subunits, were only identified as high-confidence partners

for BRD4 (Table S2D). Our survey therefore revealed rich interac-

tomes for each BET protein linking them to both activating and

repressive functions.

JQ1 Rewires the BET Protein Interaction Landscape
To evaluate the impact of BRD inhibition on the BET interaction

landscape, we performed AP-MS on each BET after treating

cells with 500 nM JQ1 for 10, 60, or 240 min (untreated samples,

t = 0, are described above). We identified 2,278 protein-protein

interactions (1,068 of which are non-redundant, including

1,034 not previously reported in BioGRID) involving 603 unique

significant interaction partners (FDR%1%) across all conditions

tested. Treatment with JQ1 elicited rapid (i.e., within 10 min)

changes of the interactions established by each BET, which

were sustained, and in some cases enhanced, at 60 and

240 min (Figures 1C and 1D).

Collapsing the transcription-related BET interactors to 12

functional groups or protein complexes (encompassing 149

unique interactors; Tables S2E and S2F) enabled us to capture

a network view of the transcriptional interactome changes

caused by 1 hr of JQ1 treatment (Figure 2A). While association

with histones (group I) was pronounced in untreated cells, JQ1

treatment resulted in an expected and dramatic decrease in re-

covery, validating our experimental system (Figures 2A–2C and

S1C; data in Table S2A). JQ1 treatment also led to a marked

reduction in the recovery of histone chaperones (group II),

including the FACT and CAF1 complexes, as well as DAXX and
Molecular Cell 73, 621–638, February 7, 2019 623
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Figure 2. Pharmacological BRD Inhibition Modulates the BET Interactome

(A) Network view of selected protein complexes or families (groups I–XII; names in B, details in Table S2D) associated with BETs. Node size displays the relative

abundance in cells untreated or treated with JQ1 for 1 hr.

(B) Relative spectral count contributions of individual BET proteins to selected groups or complexes.

(C) Dot plots of selected interaction partners associated with individual BETs after JQ1 treatment.

See also Figure S1 and Tables S1 and S2.
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DEK. Recovery of the switch/sucrose non-fermentable (SWI/

SNF) nucleosome remodeling complex components (group III)

with all BETs was also strongly reduced by JQ1 treatment (Fig-

ures 2A, 2B, S1C, and S1D). Altogether, JQ1 treatment for 1 hr

resulted in a global decrease (log2 fold change [LFC] %�2) of

367 interactions (Figures 1D and 2A; Table S2E). Some func-

tional groups displayed sustained interactions (LFC within ±2;

262 interactions) with BETs following JQ1 treatment (Figures

2A and 2B), including CHD4 and JMJD6 (Figures 2C, S1C, and

S1D), suggesting that they are recruited in a Kac-independent

manner. Intriguingly, JQ1 treatment also enhanced (LFC R2)

248 interactions, including the association between BRD4 and

the MRN complex (group XII in Figures 2A–2C and S1E), and

that between BRD4 and TP53 (Figures 2C and S1E). New prom-

inent interactions between BRD2/3/4 and KBTBD8, and be-

tween BRD3 and TCOF1 were also observed (Figure 2C).

To further validate these interactions and quantitative behav-

iors following JQ1 treatment, we performed immunoprecipitation

followed by MS using antibodies to endogenous BRD2, BRD3,

and BRD4 (using immunoglobulin G [IgG] as a negative control)

in the presence or absence of JQ1, in both HEK293 cells, and

in the chronic myeloid leukemia K562 cells, where we previously

examined the transcriptional outcome of BET targeting with JQ1

(Picaud et al., 2016). Despite issues of cross-reactivity and

binding site masking (see STAR Methods), we were able to vali-

date 239 of the 425 interactors of BRD2/3/4 detected across the

0 and 1-hr time points (56.2% validation; Tables S2G and S2H).

106 of the 319 interactors detected in the non-treated condition

(31%) were also previously identified in the AML HL-60 cells

(Dawson et al., 2011). Collectively, the endogenous datasets

provided validation to 67% of the FLAG interactions detected

in the absence of JQ1, confirming the validity of our dataset.

Importantly, in HEK293s—and to a lesser extent in K652

cells—the quantitative trends observed following JQ1 treatment

were also recapitulated (Figure S1C; Table S2I). In particular,

components of complexes such as Mediator, TFIID, TFIIH, and

RNAPII increased in abundance following JQ1 treatment, while

histones and histone chaperones decreased.

Taken together, our data highlight the complex role of JQ1

treatment in the remodeling of the BET interactome, as recently

suggested (Bhagwat et al., 2016), with both losses and gains in

associations, as well as multiple interactions that are Kac inde-

pendent. To gain additional insight, we further explored these

three different classes of binding behavior.

Di-KacMotifs on Histones and Non-histone Proteins Are
Recognized by BET BRDs
The large number of BET interactions lost following JQ treatment

in our proteomic screen prompted us to re-examine Kac-depen-

dent contributions to BET interactions with both histone and

non-histone proteins. Following up on initial findings for BRDT

(Morinière et al., 2009), we previously found preferential associ-

ation of histone H4 di-Kac motifs with an optimal linker of two

amino acids (Kac-XX-Kac; preference for glycine, G, at X1) and

identified a common structural template whereby both Kac insert

within the BET BRD cavity (Filippakopoulos et al., 2012). Here,

we applied a peptide SPOT binding approach to all histones,

confirming their preferred association to Kac-XX-Kac sites
where XX are GG, GS, DG, AA, AP, AV, AQ, AR, SA, VL, LN,

TA, and TP, though we also detected several instances of bind-

ing via longer linkers (e.g., Kac-X3-4-Kac; Tables S3A and S3B).

We previously proposed (but did not test; Filippakopoulos

et al., 2012) that the electrostatic potential of residues surround-

ing the BRD Kac-binding cavity contributes to binding specificity

by selecting for favorable sequences outside the Kac-XX-Kac

motif. The human proteome contains over 43,000 unique

K-XX-K motifs, �2,100 (�4.8%) harboring ‘‘histone-like’’ XX se-

quences. To determine whether flanking sequences influence

binding to BET BRDs, we analyzed di-Kac histone-like peptides

by SPOT arrays with the two isolated BRDs of BRD4 (BD1 and

BD2, Tables S3C and S3D). Strikingly, we observed at least

moderate (R50%) binding intensity (compared to maximum

arising from multiple hexa-His-controls) toward 41.7% of all

peptides tested (928 and 549 peptides for BD1 and BD2 respec-

tively), with 28.9% of all peptides binding strongly (R75% of

maximum) to either BD1 or BD2, and binding to BD1 systemati-

cally more prominent (9.6% bound to both domains; 15.5% only

to BD1 and 3.8% only to BD2; Figures 3A and 3B). Diverse

flanking sequences drove binding to either domain, with basic

sequences recognized by both, while leucine-rich sequences

were enriched primarily by BD1 (Figure 3C), consistent with the

charge dispersion on the surface surrounding the binding cav-

ities and the more hydrophobic character of BD1 (Figure S2A).

Based on our earlier work defining the flexible G at the X1 po-

sition as a binding preference for histone H4 (Filippakopoulos

et al., 2012), we fixed this residue to screen a subset (91) of all

2521 unique K-GX-K motifs found in the human proteome,

focusing on nuclear proteins with Kac sites annotated in the

PhosphoSitePlus database. Again, both domains exhibited

some degree of binding, with BD1 systematically exhibiting

stronger binding (Figure S2B; Tables S3C and S3D). Isothermal

titration calorimetry (ITC) confirmed interactions of selected pep-

tideswith both domains, albeit with different affinities (Table S4A;

FiguresS2CandS2D). Tobetter understand thebinding behavior

of BET BRDs toward these non-histone peptides, we structurally

characterized interactions with a di-Kac peptide found in E2F1

(K117ac/K120ac; Figures 3D and S2E). Both lysines inserted

within the Kac-binding cavity of BRD4/BD1, with K117ac directly

engaging the conserved asparagine and K120ac initiating a

water-mediated interaction with K117ac, similar to histone H4

peptides (Filippakopoulos et al., 2012). Additional peptides

carrying a Kac-GX-Kac motif, including those from GATA1,

ATRX, POLR2A, and TOP2A, adopted the same histone H4-like

structural association with BRD4/BD1 (Figures 3E and S2F–

S2I). Our data therefore suggest that Kac-XX-Kac motifs beyond

those found in histones can be recognized by BET BRDs.

Di-Kac Motifs Separated by Long (>2) Linkers Are
Recognized by BET BRDs
Our structural analysis identified multiple cases of non-histone

proteins binding to BRD4 BRDs through histone-like motifs in

the same structural template we initially described for H4. How-

ever, when crystallizing a Kac-XX-Kac SIRT7 peptide (K272ac/

K275ac) with BRD4/BD1, we surprisingly found only the first

Kac within the binding cavity. Strikingly, a bulky tyrosine residue

located 5 residues downstream of the first lysine (Y277) instead
Molecular Cell 73, 621–638, February 7, 2019 625
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Figure 3. BET BRDs Initiate Interactions with Non-histone Kac-XX-Kac Peptides

(A) Peptide SPOT validation of histone-like peptides containing a Kac-XX-Kac motif. The heatmap shows binding intensities against the first (BD1) and second

(BD2) BRDs of BRD4. Peptides exhibiting strong (R75% of maximum) intensity toward one domain, with aR2-fold lower intensity toward the other domain are

highlighted.

(B) Unique peptides containing K-XX-K motifs found in the human proteome. The inset highlights the binding results from (A) toward BRD4 BRDs.

(C) Peptide LOGOs derived from very strong (R85% of maximum intensity) binding in the SPOT arrays shown in (A).

(legend continued on next page)
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inserted into the BRD cavity, stabilizing K272ac via a hydrogen

bond (Figures 4A and S3A). This, together with our finding that

several histone peptides with longer linkers readily bind BRD4

BRDs (Kac-X3–4-Kac; Tables S3A and S3B), suggested that

associations could be mediated via more diverse protein se-

quences and structural templates than initially suspected. To un-

derstand the mode of engagement of a single BET BRD toward

adjacent Kac marks separated by longer linkers, we crystallized

BRD4/BD1 with a histone H3 peptide carrying K9ac and K14ac

(Kac-X4-Kac motif) identified in our SPOT data (Tables S3A

and S3B). Interestingly, only K14ac bound within the BRD cavity,

while K9ac packed outside of the cavity, next toW81 (Figure 4B).

This resulted in an inverted peptide orientation compared to

Kac-XX-Kac peptides. While K14ac superimposed well with

K5ac from a H4 K5ac/K8ac peptide, the longer backbone linking

it to K9ac superimposedwith K8ac, sterically filling the remaining

volume of the BRD cavity, and resulting in a small helical turn

(Figure S3B). Importantly, the conformations of S10 and T11,

and their contributions to the stabilization of this helical topology,

also suggested a functional role for their post-translational modi-

fication during binding. Indeed, while both BRD4 BRDs bind in

solution to H3 K9ac/K14ac (Figure S3C; Table S4A), phosphory-

lation of S10 had no effect on BD1 binding but abolished binding

to BD2, and phosphorylation of T11 abolished binding to both

BRD4 BRDs (Table S4A). These observations suggest that

adjacent sites separated by longer linkers can be recognized

by single BET BRDs (though with weaker affinities than

XX linkers), with linker sequences offering the potential for regu-

lating interactions.

Tyrosine at +1 Can Substitute for a Second Kac in BET
BRD Binding
Intrigued by these unprecedented modes of binding, we next

analyzed the 181 unique proteins that decreased below our

limit of detection after 1-hr JQ1 treatment in the AP-MS data-

set: these contained 903 unique annotated Kac sites in Phos-

phoSitePlus (Tables S3F–S3I). Focusing on BRD4, which

associated with the largest number of annotated sites (456),

we examined the relative enrichment of amino acids with

respect to each central Kac (Figure S3D). Weak enrichment

of lysine at +3 suggested that it is unlikely that Kac-XX-Kac

sequences drive these interactions. By contrast, tyrosine

was clearly enriched at the +1 position for several regulated

preys, including histone H1 and BAZ1B, and peptide SPOT

arrays confirmed binding of BRD4 to these sites (Table S3J).

We crystallized a K221ac BAZ1B peptide with BRD4/BD1

and observed typical Kac-engagement by N140 in the high-

resolution structure, while the adjacent tyrosine (BAZ1B

Y222) also inserted into the binding cavity, linking to K221ac

via a water-mediated bridge (Figure 4C). Although K221ac

superimposed well with K5ac in the H4 K5ac/K8ac complex

with BRD4/BD1, the peptide backbone followed a different
(D) Crystal structure of BRD4/BD1 bound to an E2F1 di-Kac peptide (K117ac-X

(PDB: 3UVW).

(E) Structural overlay of BRD4/BD1 complexes with Kac-GX-Kac-bearing peptide

the conserved asparagine (N140) and the bulky tryptophan of the WPF shelf (W8

See also Figure S2 and Tables S1, S3, S4, and S5.
path, which induced structural changes on the surface of the

BRD4/BD1 module via side-chain re-alignment of D144,

I146, and L148, while inserting BAZ1B Y222 in the same space

as H4 K8ac (Figure S3E).

We asked therefore whether this mode of binding would be

conserved in the presence of a second Kac within a Kac-YX-

Kac motif; of the 1,091 K-YX-K sequences in the human prote-

ome, 84 have been found acetylated (PhosphoSitePlus) on the

first lysine (Kac-YX-K), and 39 are di-acetylated (Kac-YX-Kac).

SRPK1 contains a Kac-YS-K motif, and its paralog, SRPK2, has

been reported as a BRD3 interactor in the BioGRID database.

We crystallized an SRPK1 K585ac/K588ac peptide with BRD4/

BD1 and found K585ac inserted within the cavity together with

Y586, while the K588ac remained outside the cavity (Figure 4D).

Importantly, validation of binding by ITC revealed similar affinities

for Kac-Y epitopes compared to other Kac-XX-Kac motifs

(BRD4/BD1 versus SRPK1 or H4, KD = �9.9 mM; Table S4A; Fig-

ure S3F). In addition, bothH4 and SRPK1 peptides were compet-

itively displaced by JQ1 in ALPHAScreen assays, supporting that

binding occurs within the BRDKac cavity in solution (Figure S3G).

Further evaluation of binding by ITC suggested, however, that

these interactions with BRD4 have different thermodynamic

properties, with H4 association driven by enthalpic contributions

(consistent with multiple electrostatic interactions present in the

structural model, a larger surface presented to the protein and

a negative change in heat capacity, DCp), while SRPK1 associa-

tion was also driven by hydrophobic and entropic contributions

(consistent with a positive change in DCp; Figure S3H; Table

S4B). Taken together, our data suggest that Kac-Y motifs can

compensate for the absence of a second Kac, resulting in a

similar structural template that fits within the volume of BET

BRD sites.

N-Terminal Tandem BET BRDs Adopt Extended
Conformations in Solution
Given this considerable expansion in the possible BET BRDs

sites, we next examined whether it would be possible for BET

proteins to engage independent target sites by employing both

N-terminal BRDs, which are linked by long (155–205 aa) flexible

regions. Analytical ultracentrifugation revealed that the individual

domains do not self- or hetero-associate, while constructs con-

taining both domains adopt more extended linear conformations

(Figure 4E; Table S4C). These observations were further sup-

ported by in-solution small-angle X-ray scattering measure-

ments of tandem BET BRD constructs, which were monomeric

and flexible, while ab initio and ensemble optimizations sup-

ported extended conformations (Figures 4F and S3I). Taken

together, our data suggest that tandem BET BRDs adopt

extended conformations in solution, possibly allowing for the

targeting of distinct sites by recognizing different Kac epitopes

in trans, and thus contributing to the assembly of large BET

complexes on chromatin.
X-K120ac motif) or the previously published histone H4 K5ac/K8ac peptide

s shown in cartoon, highlighting the topology of the BRD cavity with respect to

1).
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C D

E

F

Figure 4. Different Modes of BET BRD Recognition of Kac

(A–D) Crystal structures of BRD4/BD1 bound to histone H4 (PDB: 3UVW) and indicated peptides derived from SIRT7 (A), di-Kac H3 (B), BAZ1B (C), and SRPK1

(D). The peptide 2Fc-Fo maps contoured at 2s are shown in the insets.

(E) Sedimentation velocity experiments of BET BRDs individually (BD1, BD2), in equimolar mixtures (1:1) or tandem constructs (BD1:2) demonstrating lack of

self- or hetero-association.

(F) Ab initio shapes of BET tandem BRD constructs restored from SAXS data; mean distances (n = 100) are shown next to the models, in agreement with the

hydrodynamic shape calculated using prolate ellipsoid models in (E).

See also Figure S3 and Tables S1, S3, S4, and S5.
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D E

F

Figure 5. Contributions of the ET Domain to the BET Interactome

(A) Overlap of full-length (FL)-BRD4 interactors (within � ± 2 LFC in spectral count ratio following JQ1 treatment) and BRD4/ET domain highlighting 12 common

proteins.

(B) Recovery of FLAG-tagged BRD9 from pull-downs with indicated recombinant BRD4 domains.

(C) Identification of the BRD9 binding site mediating interactions with BRD4/ET: (i) recovery of MBP-tagged BRD9 fragments with recombinant BRD4/ET domain;

(ii) peptide SPOT array of BRD91–99 blotted against the BRD4/ET domain; (iii) SPOT alanine-scanning of BRD920–38 against BRD4/ET.

(legend continued on next page)
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The BET ET Domain Provides a Protein Recruitment
Platform
Despite the large number of Kac-dependent interactions identi-

fied in our proteomic screen, several of the interactors were rela-

tively insensitive to treatment with JQ1. BET family proteins

contain an ET domain consisting of three helices and an acidic

surface shaped in a continuous ridge (Lin et al., 2008; Figure S4A)

previously reported to mediate diverse protein interactions

(Konuma et al., 2017; Rahman et al., 2011; Sansam et al.,

2018; Zhang et al., 2016) and to associate with viral peptides

(Crowe et al., 2016). We hypothesized that the conserved ET

domain may recruit a fraction of the identified Kac-independent

interactions.

We tested this hypothesis for BRD4, which associated with 67

proteins whose abundancewas relatively unaffected by JQ1 (i.e.,

within ± 2 LFC). AP-MS with a recombinant BRD4-ET domain

identified 151 high-confidence interactors (Tables S2E and

S2J), 12 of which overlapped with proteins insensitive to JQ1 in

AP-MS (Figure 5A). We further explored the interaction between

BRD4 and the poorly characterized BRD-containing protein

BRD9 by performing pull-downs with biotinylated recombinant

BRD4 domains against 33FLAG-BRD9 expressed in HEK293

cells. Only the ET domain was able to pull down BRD9 and, as

expected, this interaction was not affected by JQ1 treatment

(Figure 5B). Reciprocal AP-MS with 33FLAG-BRD9 identified

endogenous BET proteins as interactors for both the full-length

protein and a BRD9 1–100 construct (Figure S4B; Table S2K).

Streptavidin pull-down of recombinant BRD9 proteins with bio-

tinylated recombinant BRD4/ET (Figure 5C/i) confirmed a direct

interaction with the N terminus of BRD9, which was further vali-

dated by analytical ultracentrifugation (Figure S4C). Peptides

spanning BRD9 1–100 were synthesized on cellulose SPOT

arrays and probed with the recombinant BRD4/ET domain,

further narrowing down the interaction interface to amino acids

20–38 of BRD9 (Figure 5C/ii; Table S3K). Alanine scanning of

this region revealed a short linear motif (SLiM) combining basic

and hydrophobic residues (LKLVLKV) essential in initiating the

interaction with BRD4/ET (Figure 5C/iii; Table S3L), in a region

of the protein predicted to be disordered (Figure S4D).

To test whether similar SLiMs are present in the other proteins

in Figure 5A, we next examined the interaction with the methyl-

transferases WHSC1 and WHSC1L1 (also known as NSD2 and

NSD3). WHSC1L1 was previously found to interact with the ET

domain of BRD4 (Rahman et al., 2011), and more recently the

interaction interface was mapped to a region between amino

acids 98–265 (Shen et al., 2015). Peptide SPOT arrays within

this region identified apeptide (amino acids 147–162; FigureS4E;

Table S3N) that was further profiled by alanine scanning to reveal

a short basic and hydrophobic SLiM distinct from that in BRD9

that was responsible for interaction with BRD4/ET (IKLKI; Fig-

ure S4E; Table S3O).
(D) Schematic of BET ET-motif discovery employing AP-MS, SPOT arrays, and ala

the top of each LOGO represent the relative residue contribution to the overall p

(E) Assessment of the behavior in SPOT assays of the indicated motif classes up

(F) Cellular validation of ET-specific interactions using LacO/LacR chromatin imm

with FL-mCherry-BRD4 (WT or DET) and FL-GFP-BRD9 (WT or mutant).

See also Figures S4 and S5 and Tables S1, S2, and S3.
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Based on the BRD9 and WHSC1/L1 SLiMs defined above,

we identified 135 similar peptide regions in our 12 candidate

ET-interacting proteins. Of those, 29 motifs in 11 independent

proteins bound in SPOT assays (Figure S4F; Tables S3P–S3R).

We iteratively expanded our analysis to the remaining 55 pro-

teins relatively unaffected by JQ1 treatment (Tables S3S–S3Z

and S2E) and defined BRD9-like (fn-(F/[+])FF[+](F/[+])-fc) and

WHSC1/L1-like (fn-F[+]F[+]-fc) ET-binding motifs (Figure 5D;

Tables S3AA and S3AB, where F is one of M, L, V, I, F and [+]

is K or R), as well as several positively charged motifs (Fig-

ure S5A). To rule out non-specific interactions, we reversed the

polarity of the acidic interface of the BRD4/ET domain and

evaluated binding to the different SLiMs. While BRD4/ETWT pro-

duced strong SPOTs in peptide arrays for all identified SLiMs,

alanine scanning against wild-type (WT) or mutant ET domains

showed similar patterns for charged peptide SLiMs (Figure S5B),

suggesting that these are non-specific. By contrast, binding to

BRD9-like and WHSC1/L1-like SLiMs was lost when tested

against the BRD4/ETmut, indicating that these SLiMs initiate

BRD4-specific interactions (Figure 5E).

To assess whether the identified SLiMs are responsible for as-

sociation in cells, we immobilized mCherry-BRD4-LacR onto

chromatin through a LacO array in U-2 OS cells. While GFP-

BRD9WT co-localized with mCherry-BRD4-LacR, deletion of

the ET domain as well as deletion or mutation of the BRD9

SLiM resulted in loss of co-localization (Figure 5F). We observed

the same behavior with other BRD4 interacting partners,

including WHSC1L1 (Figure S5C) and proteins whose recovery

was not affected by JQ1 in AP-MS with full-length BRD4 and

contained BRD9- or WHSC1L1-like ET interaction motifs, such

as ZNF592 (Figure S5D). Taken together, our data demonstrate

that the BRD4 ET domain acts as a recruitment platform recog-

nizing distinct SLiMs on target proteins (Figure S5E). While this

interaction surface is mutated in cancer (Figure S5F), its precise

role in cell proliferation and survival remains to be established.

BRD3 Localizes to Ribosomal DNA
In the previous sections, we characterized interactions that were

either reduced following JQ1 treatment or relatively unaffected

and mediated by the ET domain. However, we were puzzled

by interactions that were enhanced following targeting of Kac-

dependent functions with JQ1. One of the most striking of those

was the recovery of TCOF1with BRD3 (Figure 2C; 0 to 436 spec-

tral count sum). TCOF1 is a critical regulator of ribosome biogen-

esis localized to the nucleolus (Valdez et al., 2004), a cell

compartment not reported to contain BET proteins. Consistent

with a possible re-localization to this compartment, several

nucleolar proteins also increased in abundance in 33FLAG-

BRD3 immunoprecipitates following JQ1 treatment (Figures 2B

and 2C; Table S2A). Altogether, the BRD3 interactors that were

increased >2 LFC (102 proteins) were enriched for the GO
nine scanning. Refined LOGOmotifs are shown on the right. The bar charts on

eptide binding following SPOT-ALA scanned array quantifications.

on polarity reversal of the ET surface (BRD4/ET wt vs mut).

obilization. U-2 OS cells with a stably integrated LacO array were transfected
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Figure 6. BRD Inhibition Modulates BRD3 Localization

(A) Still images of indicated GFP-tagged BET constructs in live U-2 OS cells.

(B) Average BRD3 WT or (BD1:2)mut ChIP-seq read counts plotted over genes. TSS, transcription start site; TES, transcription end site. Inset: binding sites

detected with each construct.

(C) Genome browser tracks showing BRD3 occupancy across the MYC and CCND2 gene loci. y axis: normalized read counts in reads per million per basepair.

(legend continued on next page)
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biological process ‘‘ribosome biogenesis’’ (Table S2L), prompt-

ing us to further investigate this observation.

We first performed live-cell imaging to determinewhether BRD

inhibition resulted in localization of BET proteins to the nucleolus.

Upon JQ1 treatment, BRD3, and to a lesser extent BRD2, rapidly

(within �20 s) assembled into dense foci (Figure 6A) that per-

sisted for more than 12 hr after inhibitor washout (note that the

apparent loss of signal for BRD4 is likely due to its displacement

from chromatin, as the protein levels were not markedly found

affected by immunoblot). These BRD3 foci co-localized with

TCOF1 in the nucleolus, and their formation was prevented by

small interfering RNA (siRNA) depletion of TCOF1 (Figure S6A).

No noticeable change in the localization of the nucleolar proteins

PARP1, POLR1E, and TCOF1 was observed following JQ1 treat-

ment, suggesting that the overall organization of the nucleolus is

not altered by JQ1 (data not shown). To better understand the

response of BRD3 to JQ1, we employed constructs with point

mutations ablating Kac binding in the first (BD1mut), second

(BD2mut), or both ((BD1:2)mut) BRDs. BD1mut resulted in a diffuse

nuclear localization in asynchronously growing cells, though the

mutant BRD3 still accumulated into foci upon JQ1 treatment

(Figure 6A). BD2mut prevented dense foci formation upon JQ1

treatment, yet the protein still accumulated in the nucleolus

upon JQ1 addition. (BD1:2)mut abolished the response to JQ1

treatment, and generated a nucleolar-enriched signal in both

treated and untreated cells. Deletions of regions surrounding

BRD3 BRDs (1–42; 128–315 or 403–570) did not impact BRD3

capacity to form dense nucleoli foci (data not shown), further

supporting involvement of BRD3 BRDs in this response.

We recently demonstrated that the proximity-dependent bio-

tinylation approach BioID is ideally suited to define the organiza-

tion of membraneless organelles (similar to the nucleolus, e.g.,

Youn et al., 2018). BioID permits the identification of proximity

partners in the context of a living cell and negates the mainte-

nance of interactions during lysis and purification steps required

for AP-MS. Here, we performed BioID experiments in the pres-

ence or absence of 500 nM JQ1 for 24 hr (Figure S6B; Table

S2M). As expected, prolonged JQ1 treatment resulted in the

reduced association of BRD3 with >50 of its AP-MS-identified

partners (Table S2A) with a concurrent increase in nucleolar pro-

tein partners, such as RNAPI and UBTF, a key transcription fac-

tor required for ribosomal RNA, rRNA) production and TCOF1

(Figure S6C). BD2mut lost the association with RNAPI compo-

nents and associated proteins such as UBTF upon JQ1 treat-

ment, while (BD1:2)mut recovered a higher level of nucleolar

proteins, including TCOF1, in the absence of JQ1 treatment (Fig-

ures S6B and S6C).

Since BRD4 actively participates in numerous facets of

transcription by RNAPII (reviewed in Bradner et al., 2017), we

speculated that BRD3may participate analogously in rRNA tran-
(D) Schematic representation of a single human rDNA repeat relative to the transc

SP: spacer promoter; UCE, upstream control element; IGS, intergenic spacer; CP

TCOF1 (from HeLa cells; Calo et al., 2018).

(E) GFP-BRD3 ChIP-qPCR to rDNA H0, H1, and H27 (see D) with and witho

control purifications. Data represent the mean ± SEM (n = 3) of two biological rep

***p < 0.001; **p < 0.01; ns, not significant.

See also Figure S6 and Tables S1 and S2.
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scription in the nucleolus. To investigate this, we expressed

GFP-tagged BRD3WT or (BD1:2)mut in Flp-In T-REx U-2OS cells

and interrogated their genome-wide distribution using chromatin

immunoprecipitation sequencing (ChIP-seq). (BD1:2)mut resulted

in genome-wide loss of signal (Figure 6B), and in agreement with

previous studies (Anders et al., 2014) we found BRD3WT at pro-

moters and enhancers, as determined by analysis of ChIP-seq

signals and chromatin states from published U-2 OS cell exper-

iments (Walz et al., 2014; Figures 6C, S6D, and S6E). (BD1:2)mut

exhibited a loss of�84%of the peaks with no robust binding site

gains over BRD3 WT (Figures S6D and S6E). This loss could be

clearly seen at many BRD3-occupied loci, including BRD4-

target loci such as the MYC oncogene that is downregulated

by JQ1 treatment (Delmore et al., 2011), as well as CCND2, a

G1/S oncogenic cyclin (Dooley et al., 2016; Figure 6C).

In contrast, by comparing BRD3 WT and (BD1:2)mut occu-

pancy at the rDNA gene locus by aligning ChIP-seq reads to

a single rDNA repeat, we observed BRD3 WT localization

throughout the rDNA intergenic spacer (IGS), while BRD muta-

tions redirected the protein to the transcribed rDNA regions (Fig-

ure 6D), displaying high similarity to published TCOF1 ChIP-seq

data from HeLa cells (Calo et al., 2018; Figures S6F and S6G).

This behavior was phenocopied by JQ1 treatment, which dis-

placed BRD3 from the rDNA IGS region toward the transcribed

regions in U-2 OS cells (Figure 6E), consistent with an increased

association with TCOF1, UBTF, and RNAPI (Figures S6B and

S6C). Taken together, our data suggest that BRD3 may play an

unsuspected role in the regulation of rRNA expression.

BRD3 Impacts rRNA Production and Cell Proliferation
To assess BRD3 impact on rRNA expression, we employed a

nascent RNA imaging-based 5-ethyl uridine (5-EU) incorporation

assay (Larsen et al., 2014). BRD3 speckles co-localizing with the

nucleolar marker fibrillarin displayed reduced 5-EU incorpora-

tion, compared to regions devoid of BRD3, suggesting that these

speckles are refractory to transcription (Figure 7A). Furthermore,

BRD3 overexpression reduced 5-EU incorporation in nascent

rRNA in a dose-dependent manner (Figure 7B), while prolonged

BRD3 overexpression drastically reduced cell proliferation (Fig-

ure 7C). Overexpressing BRD3 (BD1:2)mut instead resulted in

modest increases in both rRNA production (Figure S7A) and

cell proliferation (Figure 7D), in support of the notion that BRD3

repressive functions at the rDNA IGS occur through BRD-depen-

dent interactions. Mining a large dataset of pooled CRISPR

screens in cancer cell lines (Meyers et al., 2017) further sup-

ported an anti-proliferative role for BRD3. While deletion of

BRD4 impedes a cell’s competitive advantage across 342 cell

lines profiled, BRD3 depletion caused instead amodest but clear

positive gene effect (Figure 7E), suggesting that the anti-prolifer-

ative function of BRD3 is not cell type specific.
ription start site (TSS) of the rDNA repeat (x axis; based on GenBank U13369;

, core promoter). y axis: normalized read counts of BRD3 WT, (BD1:2)mut, and

ut JQ1 for 1 hr. x axis: signal fold enrichment against rabbit IgG isotype

licates. p values were calculated using Student’s t test and are represented by
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Figure 7. BRD3 Impacts rRNA Production and Cell Proliferation

(A) U-2 OS cells were treated with JQ1 or DMSO for 1 hr and then fed 5-EU for 1 hr prior to staining for BRD3, fibrillarin (FIB), and click chemistry to

5-EU-labeled RNA.

(B) Quantitative immunofluorescence of U-2 OS cells treated with various concentrations of tetracycline (to titrate BRD3 levels) or JQ1. 5-EU signal overlapping

with fibrillarin signal (i.e., nucleolar RNA) was quantified for >400 cells for each experimental condition. ***p value <0.001, by two-tailed Student’s t test.

(C) Cell proliferation assay for U-2 OS treated with tetracycline over 6 days (n = 3).

(D) Cell proliferation assay for U-2 OS cells induced with 1 mg/mL tetracycline over 6 days (n = 3).

(legend continued on next page)
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While it is tempting to speculate that the role of BRD3 in rRNA

productionmay underlie its effects on cell proliferation, our ChIP-

seq analysis of WT and (BD1:2)mut cells also suggest that BRD3

may have additional roles on Pol II transcripts, perhaps through

competition with BRD4 for common binding sites. We titrated

increasing amounts of BRD3 and analyzed the impact on

BRD4 recruitment to the MYC TSS by qRT-PCR. BRD3 expres-

sion reduced BRD4 occupancy at theMYC TSS, similarly to JQ1

treatment (Figure S7B), suggesting that competition is possible,

at least in an overexpression system. Interpretation of these data

is, however, further complicated by the fact that BRD3 expres-

sion may also affect the levels of other BETs. Indeed, we find

significant occupancy of BRD3 WT at the TSSs of BRD2 and

BRD4 (Figure S7C). Furthermore, we observed a reduction in

BRD2 and BRD4 protein levels following ectopic expression of

33FLAG-BRD3 in HEK293 cells, while overexpression of any

BET reduces the protein levels of the other family members, sug-

gesting a previously unsuspected functional interplay between

BET proteins at RNAPII sites (Figures S7D and S7E) that will,

however, need to be further substantiated in contexts outside

of forced overexpression.

In summary, we uncovered an unsuspected modulation of

the BRD3 interactome toward ribosomal biosynthesis genes

upon JQ1 treatment, revealing a role for BRD3 in ribosomal

biogenesis. We also report an anti-proliferative role for BRD3

that can be attributed in part to its regulation of rRNA

expression but may also be associated with regulation of the

other BET family proteins and competition for their RNAPII

targets.

DISCUSSION

In this manuscript, we first defined classes of BET interactors

with differing quantitative behaviors following pharmacological

treatment (decreased, inhibitor independent, and increased),

though it remains to be determined where these interactions

occur (i.e., on chromatin or in the nucleoplasm).

We show that Kac-XX-Kac sites on non-histone proteins

insert both Kac in the BRD cavity as in the previously character-

ized histone H4 peptide (Filippakopoulos et al., 2012; Morinière

et al., 2009), while longer linkers can insert bulky residues in

place of the second Kac (e.g., SIRT7 Kac-X4-Y motif). Phos-

phorylation on the longer linker on histone H3 (Kac-X4-Kac;

the second Kac being outside of the BRD) affects BET binding,

potentially linking cellular signaling events to epigenetic circuits.

Together with the discovery of binding to a new Kac-Y motif

(>16,000 KY motifs are encoded in the human proteome), we

suggest that the BET BRDs can contact a larger target space

than previously appreciated. While our findings still require

testing in a physiological context, they are consistent with a

growing list of documented direct associations between BET

BRDs and non-histone proteins (reviewed in Fujisawa and Fili-
(E) Violin plots of CERES scores showing gene depletion effects from CRISPR-C

(F) Model of BET protein recruitment functions and the impact of BRD3 overexpres

through their tandemBRDs, and recruit to chromatin additional transcriptional reg

decreasing the levels of other BETs, and competing for binding to common loci, i

See also Figure S7 and Tables S1 and S2.
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ppakopoulos, 2017). Since we also found that all BET tandem

BRDs adopt extended and flexible conformations in solution,

it is possible that remote sites within the same or different pro-

teins can be recognized, allowing one BRD to engage a histone

while the other simultaneously recruits a non-histone protein

through Kac-dependent interactions.

We also systematically characterized two distinct specific ET-

interaction motifs for BRD4 (corresponding to motifs mapped to

BRD9 andWHSC1/WHSC1L1) that lead to binary interactions for

a large portion of the JQ1-insensitive interactome. BRD2 and

BRD3 also associated with BRD9 and WHSC1/WHSC1L1 by

AP-MS, suggesting that they share association with these SLiMs

(Table S2A), and this is supported by analysis by AP-MS of BRD3

WT and DET protein (Table S2N). Inspection of published ChIP-

seq data further revealed overlap between BRD4 and BRD9

peaks in mouse AML cells (Hohmann et al., 2016; Shi et al.,

2013), and between BRD4 and NuRD component CHD4 in

mouse embryonic stem cells (ESCs) (Flynn et al., 2016; Luo

et al., 2015), suggesting that these proteins may occupy many

common loci genome-wide (Figure S7F). Together, this suggests

that the ET-recruitment platform may play a role in maintaining

transcriptional complexes on chromatin. Since several cancer

patient mutations are expected to perturb this fold (Figure S5F),

it is possible that loss of ET-mediated interactions contributes to

tumor proliferation. Virus proteins have also evolved to hijack this

recruitment platform (reviewed in Aydin and Schelhaas, 2016)

leading to tight association with the ET domain employing similar

motifs to those described here (Crowe et al., 2016).

An initially surprising finding from our data in light of the well-

documented role of BRD4 in transcriptional activation is the re-

covery of negative transcriptional regulators (including NuRD

and NELF). While JQ1 treatment generally results in transcrip-

tional repression, we and others have previously reported that

subsets of genes are instead upregulated (Lovén et al., 2013;

Muhar et al., 2018; Picaud et al., 2013, 2016; Zuber et al.,

2011), suggesting a locus-specific de-repression of transcription

by BET inhibition, themechanisms of which remain to be studied.

Our studies also revealed an unsuspected reorganization of BET

interactomes following BRD inhibition, which included re-locali-

zation of BRD3 to nucleolar speckles where it can dampen

rRNA transcription but only in the presence of functional BRDs.

We also report a negative role for BRD3 in cell proliferation in

our model system that depends on its BRDs, which was corrob-

orated by large-scale genome-wide CRISPR datasets (Meyers

et al., 2017). Besides its negative regulation of rRNA transcription,

which should contribute to decreased growth, the roles of BRD3

in controlling proliferation are likely more complex, and we pre-

sent initial evidence for competitionwith BRD4 for shared targets,

as well as an unexpected role of BRD3 levels in regulating the

levels of BRD4, and vice versa, at least in the context of overex-

pressed proteins (schematics in Figure 7F). This has potential

implications for cancer etiology, and there are at least some
as9 loss-of-function screens in 342 cancer cell lines (Meyers et al., 2017).

sion. In proliferating cells, BETs bind to acetylated proteins, including histones

ulators through other modular domains. High levels of BRD3 antagonize this by

n addition to reducing rRNA levels, with a net result of decreasing proliferation.



instances in cancer datasets, such as in lung cancer (Szász et al.,

2016), where BRD3 and BRD4 levels have opposite associations

with patient survival, with both high BRD3 levels and low BRD4

levels showing protective effects (Figure S7G).

Together, our results suggest that a potentially important

parameter that should be assessed when evaluating therapeutic

inhibition with pan-BET compounds (such as JQ1) is the level of

BRD3 expression in relation to other BET proteins. For instance,

osteosarcoma HOS cells resistant to JQ1 display increased

levels of BRD2 and BRD4 concurrent with a reduction of BRD3

when compared to matched JQ1-sensitive control cells, high-

lighting that increased BRD3 function does not promote cell

growth in this system and that its inhibitionmay have undesirable

consequences (Lamoureux et al., 2014). Finally, it is worth noting

that diverse types of cancer cells (Shu et al., 2016) are ‘‘ad-

dicted’’ to high BRD4 levels to maintain a pro-proliferative

transcriptional program, which could negatively impact the

expression levels of BRD2 and BRD3, which in the case of

BRD3 could contribute to increased proliferation. We propose

that inhibitors that would specifically target, e.g., BRD4 but not

BRD3, should be actively pursued, and some initial reports sug-

gest that this may be feasible (Nowak et al., 2018). In this regard,

while it has so far proved difficult to develop BRD inhibitors that

exhibit high specificity for a single BET, perhaps targeting addi-

tional protein-protein interaction domains, such as the ET, may

provide alternative ways to modulate BET association and

recruitment with transcriptional complexes, thus improving the

current therapeutic window.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit anti-BRD2 Sigma HPA042816; RRID: AB_10794766

Rabbit anti-BRD2 Bethyl A302-583A; RRID: AB_2034829

Mouse anti-BRD3 Abcam Ab50818; RRID: AB_868478

Rabbit anti-BRD3 Bethyl A310-859A

Rabbit anti-BRD4 Bethyl A301-985; RRID: AB_1576498

Rabbit anti-BRD9 Bethyl A303-781A; RRID: AB_11218396

Mouse anti-FLAG epitope Sigma F3165; RRID: AB_259529

Rabbit anti-GFP Abcam Ab290; RRID: AB_303395

Rabbit anti-TCOF1 Sigma HPA038237; RRID: AB_10670660

Mouse anti-Tubulin DSHB at University of Iowa E7; RRID: AB_528499

Rabbit anti-Fibrillarin Cell Signaling Technologies 2639; RRID: AB_2278087

Rabbit anti-cMyc Cell Signaling Technologies 5605; RRID: AB_1903938

Mouse anti-HSP90a/b Santa Cruz Biotechnology Sc-13119; RRID: AB_675659

Rabbit anti-p21 Waf1/Cip1 Cell Signaling Technologies 2946; RRID: AB_2260325

Mouse anti-SMARCC1 (BAF155) Santa Cruz Biotechnology Sc-10756; RRID: AB_2191997

Rabbit anti-MBP epitope New England BioLabs E8032S

Rabbit anti-Histone H3 Abcam Ab1791; RRID: AB_302613

Rabbit anti-Histone H4 EMD Millipore 05-858; RRID: AB_390138

Rabbit anti-TP53 Cell Signaling Technologies 2527; RRID: AB_331211

Rabbit anti-RAD50 Cell Signaling Technologies 3427; RRID: AB_2176936

Rabbit anti-CDK9 Cell Signaling Technologies 2316; RRID: AB_2291505

Rabbit anti-CK2a and CK2a’ David Litchfield lab at the

University of Western Ontario

N/A

Rabbit anti-CK2b David Litchfield lab at the

University of Western Ontario

N/A

Donkey anti-rabbit coupled to HRP GE Healthcare Life Science NA934

Sheep anti-Mouse coupled to HRP GE Healthcare Life Science NA931; RRID: AB_772210

Streptavidin coupled to HRP GE Healthcare Life Science GERPN1231-2ML

Goat anti-rabbit coupled to Alexa Fluor 488 Invitrogen A11008; RRID: AB_143165

Goat anti-rabbit coupled to Alexa Fluor 555 Invitrogen A-21428; RRID: AB_141784

Goat anti-mouse coupled to Alexa Fluor 488 Invitrogen A11001

Goat anti-mouse coupled to Alexa Fluor 555 Invitrogen A21422; RRID: AB_2535844

His-tag Antibody HPR conjugated Novagen, distributed by

Merck-Millipore

71841

Bacterial and Virus Strains

E.coli BL21(DE3)R3-pRARE2 Opher Gileadi Savitsky et al., 2010

Mach1 cells Invitrogen C862003

Chemicals, Peptides, and Recombinant Proteins

magnetic anti-FLAG M2 beads Sigma-Aldrich M8823; RRID:AB_2637089

streptavidin-Sepharose bead GE Healthcare 17-5113-01

MyOne Streptavidin C1 Dynabeads Invitrogen 65002

Protease Inhibitor Cocktail Sigma-Aldrich P8340

Benzonase EMD CA80601-766

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Trypsin Sigma-Aldrich T6567

(+) JQ1 ChemPartner, Shanghai China,

http://www.chempartner.com/

Filippakopoulos et al., 2010

(-) JQ1 ChemPartner, Shanghai China,

http://www.chempartner.com/

Filippakopoulos et al., 2010

Dynabeads Protein A for Immunoprecipitation Invitrogen 10002D

Peptides used for biophysical studies This study Table S1E

Critical Commercial Assays

Click-iT RNA Alexa Fluor 594 imaging kit Molecular Probes C10330

Deposited Data

Original imaging data (SPOT arrays,

microscopy, and western blots)

presented in this study

This paper; Mendeley Data https://doi.org/10.17632/xtb4mkvf8f.1

Original imaging data (western blots) This paper; Mendeley Data https://doi.org/10.17632/jb4jjxsbb7.1

Original imaging data (Live-cell imaging) This paper; Mendeley Data https://dx.doi.org/10.17632/

fzvwgpjx88.1

MS data of BET JQ1 AP-MS time-course https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000081006

MS data of BRD3 mutant BioID https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000081001

MS data of BRD9 fragment AP-MS https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000080981

MS data of rBRD4 domain pull-down dataset https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000080986

MS data of BET DET AP-MS dataset https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000080988

MS data of endogenous BET IP-MS HEK293 https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000082857

MS data of endogenous BET IP-MS K562 https://massive.ucsd.edu/

ProteoSAFe/static/massive.jsp

MSV000082859

AP-MS and BioID dataset in searchable

format

https://prohits-web.lunenfeld.ca/ Project 40 (BET rewiring)

Crystal structure of BRD4/BD1 with

an H3 (K9ac/K14ac) peptide

This paper; http://www.pdb.org PDB: 5NNC

Crystal structure of BRD4/BD1 with

an H3 (K9ac/pS10/K14ac) peptide

This paper; http://www.pdb.org PDB: 5NND

Crystal structure of BRD4/BD1 with

a TOP2A (K1201ac/K1204ac) peptide

This paper; http://www.pdb.org PDB: 5NNE

Crystal structure of BRD4/BD1 with

a BAZ1B (K221ac) peptide

This paper; http://www.pdb.org PDB: 5NNF

Crystal structure of BRD4/BD1 with

an SRPK1 (K585ac) peptide

This paper; http://www.pdb.org PDB: 5NNG

Crystal structure of BRD4/BD1 with

an ATRX (K1030ac/K1033ac) peptide

This paper; http://www.pdb.org PDB: 6G0O

Crystal structure of BRD4/BD1 with

an E2F1 (K117ac/K120ac) peptide

This paper; http://www.pdb.org PDB: 6G0P

Crystal structure of BRD4/BD1 with

a GATA1 (K312ac/K315ac) peptide

This paper; http://www.pdb.org PDB: 6G0Q

Crystal structure of BRD4/BD1 with

a POL2RA (K775ac/K778ac) peptide

This paper; http://www.pdb.org PDB: 6G0R

Crystal structure of BRD4/BD1 with

a SIRT7 (K272ac/K275ac) peptide

This paper; http://www.pdb.org PDB: 6G0S

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Small-angle scattering data and models

of tandem BRD2 BD1/BD2

This paper, https://www.sasbdb.org SASDCT2

Small-angle scattering data and models

of tandem BRD3 BD1/BD2

This paper, https://www.sasbdb.org SASDCS2

Small-angle scattering data and models

of tandem BRD4 BD1/BD2

This paper, https://www.sasbdb.org SASDCR2

Small-angle scattering data and models

of tandem BRDT BD1/BD2

This paper, https://www.sasbdb.org SASDCU2

ChIP-seq data of BRD3 WT and BRD3

BD(1:2)mut

This paper, https://www.ebi.ac.uk/

arrayexpress

E-MTAB-5670

ChIP-seq data in U2-OS for H3K27ac,

H3K4me3, and H3K4me1

https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE44672

ChIP-seq of TCOF1 in HeLa https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE89420

BRD4 ChIP-seq in mouse embryonic

stem cells (mESCs)

https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE69140

CHD4 ChIP-seq in mouse embryonic

stem cells (mESCs)

https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE61188

BRD4 ChIP-seq in mouse leukemic cells https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE52279

BRD9 ChIP-seq in mouse leukemic cells https://www.ncbi.nlm.nih.gov/geo/ GEO: GSE79360

DNaseI peaks from Encode http://hgdownload.soe.ucsc.edu/

goldenPath/mm9/encodeDCC/

wgEncodePsuDnase/

wgEncodePsuDnaseG1eS

129ME0PkRep1.

narrowPeak.gz

Encode blacklist regions (hg19) https://sites.google.com/site/

anshulkundaje/projects/blacklists

hg19/GRCh37

CERES dataset Meyers et al., 2017 Table S3

RefSeq database (v. 57 (01/30/2013)) NCBI N/A

Common mass spectrometry contaminants Max Planck Institute http://141.61.102.106:8080/share.cgi?

ssid=0f2gfuB

Global Proteome Machine Beavis, 2006 https://www.thegpm.org/

crap/index.html

BioGRID (version 3.4.157 (01/25/2018)) https://thebiogrid.org/ RRID: SCR_007393

PhosphoSitePlus: Protein Modification

Site (June 2016 version)

https://www.phosphosite.org/ RRID: SCR_001837

Uniprot/SwissProt (April 2017 version) https://www.uniprot.org/ RRID: SCR_002380

Experimental Models: Cell Lines

HEK293 Flp-In T-REx Invitrogen R780-07

U-2 OS Flp-In T-REx Dr. Patrick Meraldi from ETH Zurich LTRI cell line ID C971

HeLa ATCC CCL-2

K562 Mark Minden CCL-243

Oligonucleotides

ChIP-qPCR primers This study Table S1F

ON-TARGETplus siRNA targeting BRD3 (1) Dharmacon J-004936-05-0002

ON-TARGETplus siRNA targeting BRD3 (2) Dharmacon J-004936-06-0002

ON-TARGETplus siRNA targeting BRD3 (3) Dharmacon J-004936-07-0002

ON-TARGETplus siRNA targeting BRD3 (4) Dharmacon J-004936-08-0002

ON-TARGETplus siRNA targeting TCOF1 (1) Dharmacon J-012550-05-0002

ON-TARGETplus siRNA targeting TCOF1 (2) Dharmacon J-012550-06-0002

ON-TARGETplus siRNA targeting TCOF1 (3) Dharmacon J-012550-07-0002

ON-TARGETplus siRNA targeting TCOF1 (4) Dharmacon J-012550-08-0002

Primers employed for cloning This study Table S1D

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

pDEST 50 3x-FLAG-pcDNA5-FRT-TO Lambert et al., 2015 LTRI vector ID V4978

pDEST 50 BirA*-FLAG-pcDNA5-FRT-TO Lambert et al., 2015 LTRI vector ID V8164

pDEST 50 eGFP-pcDNA5-FRT-TO Lambert et al., 2015 LTRI vector ID V4874

pDESTpMal_c2x-v2 N/A LTRI vector ID V8324

Human BRD4 (NP_490597.1) cDNA codon

optimized

FivePrime N/A

Mouse Brd9 (NP_001019679.2) cDNA MGC (Mammalian Gene Collection) LTRI vector ID V7333

Human BRD3 (NP_031397.1) cDNA Picaud et al., 2013 N/A

Human WHSC1L1 (NP _075447.1) cDNA MGC (Mammalian Gene Collection) BC101717; IMAGE ID:8069223

Human ZNF592 (NP_055445.2) cDNA MGC (Mammalian Gene Collection) BC112232; IMAGE ID:8327700

pNIC28-Bsa4 Savitsky et al., 2010 N/A

Software and Algorithms

MS data storage and analysis: ProHits (v.4.0) Liu et al., 2016 http://prohitsms.comProhits_download/

list.php

ProteoWizard (v3.0.4468) http://proteowizard.sourceforge.net/ N/A

AB SCIEX MS Data Converter (V1.3 beta) N/A

Mascot (version 2.3.02) http://www.matrixscience.com RRID: SCR_014322

Comet (version 2012.02 rev.0) Eng et al., 2013 http://comet-ms.sourceforge.net/

MS-GFDB (Beta version 1.0072 (6/30/2014)) Kim et al., 2010 N/A

G:Profiler https://biit.cs.ut.ee/gprofiler/ RRID: SCR_006809

MS Data: Independent Acquisition analysis:

MSPLIT-DIA (v.1.0)

Wang et al., 2015 http://proteomics.ucsd.edu/software-

tools/msplit-dia/

MS data: Significance Analysis of

INTeractome analysis (SAINT v.3.3)

Choi et al., 2011 http://saint-apms.sourceforge.net/

MS data visualization: ProHits-Viz Knight et al., 2017 https://prohits-viz.lunenfeld.ca/

Network visualization: Cytoscape (v.3.5.1) https://cytoscape.org/ RRID: SCR_003032

Mass Hunter WorkStation Qualitative

Analysis (v.B.06.00)

Agilent Technologies,

Palo Alto, CA

https://www.agilent.com/en/products/

software-informatics/masshunter-suite/

masshunter-qualitative-analysis-gcms

Image analysis: MATLAB scripts This study N/A

WebLogo http://weblogo.berkeley.edu RRID: SCR_010236

Harmony analysis software (v.4.1) PerkinElmer http://www.perkinelmer.com/product/

harmony-4-8-office-hh17000001

ImageJ (FiJi v.1.51w) https://imagej.net/Fiji/Downloads RRID: SCR_003070

Kodak 1D Scientific Imaging System (v.3.6.2) Kodak N/A

INTAVIS RSi Spotter MultiPep (v.4.0.34) INTAVIS Bioanalytical Instruments https://intavis.com/

OriginPro (v.7.5 & v.9.4) https://www.originlab.com/Origin RRID: SCR_014212

SEDFIT (v.15.01) Schuck, 2000 http://www.analyticalultracentrifugation.

com/download.htm

Sednterp (v.1.08) http://www.jphilo.mailway.com/download.htm RRID: SCR_016253

MACS2 (v.2.1.0.20151222) Liu Lab https://github.com/taoliu/MACS/

Ngs.plot (v.2.6.3) https://github.com/shenlab-sinai/

ngsplot

RRID: SCR_011795

seqMINER (v.1.3.3) https://sourceforge.net/projects/

seqminer/

RRID: SCR_013020

softWoRx (v.5.0) Applied Precision https://www.bioz.com/search/applied

%20precision%20softworx%20imaging

%20software

deepTools (v.2.0) https://deeptools.readthedocs.io/en/develop/ RRID: SCR_016366

(Continued on next page)
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GAT Heger et al., 2013 https://github.com/AndreasHeger/gat

Bedtools (2.26) Quinlan laboratory https://bedtools.readthedocs.io/en/latest/

Bowtie 2 (v.2.2.3.4.1) http://bowtie-bio.sourceforge.

net/bowtie2/index.shtml

RRID: SCR_016368

Trimmomatic (v.0.36) http://www.usadellab.org/cms/?

page=trimmomatic

RRID: SCR_011848

Bwa (v.0.7.8) Li and Durbin, 2009 http://bio-bwa.sourceforge.net/

RRID:SCR_010910

Sushi (v.1.16.0) Phanstiel et al., 2014 https://www.bioconductor.org/

packages/release/bioc/html/Sushi.html

SRA toolkit (v.2.9.0) NCBI https://www.ncbi.nlm.nih.gov/sra/

docs/toolkitsoft/

ChromHMM (v.1.17) Ernst and Kellis, 2012 http://compbio.mit.edu/ChromHMM/

Expasy ProtParam https://www.expasy.org/tools/protparam.html RRID: SCR_012880

R Project for Statistical Computing (v.3.5) https://www.r-project.org/ RRID: SCR_001905

PyMOL, (v.1.8) https://pymol.org/2/ RRID: SCR_000305

XDS Program Package (built 20180126) Kabsch, 2010 http://xds.mpimf-heidelberg.mpg.de/;

RRID: SCR_015652

CCP4 Suite (v.6.5 & v.7.0) Winn et al., 2011 RRID: SCR_007255

ARP/wARP (v.7.0) Perrakis et al., 1999 http://www.embl-hamburg.de/ARP/

Coot (v.0.8) https://www2.mrc-lmb.cam.ac.

uk/personal/pemsley/coot/

RRID: SCR_014222

MolProbity (v.3.0) http://molprobity.biochem.duke.edu/ RRID: SCR_014226

Refmac (v.5.1) http://www.ccp4.ac.uk/html/refmac5/

description.html

RRID: SCR_014225

DAWN Suite (v.2.10.0) Basham et al., 2015 https://dawnsci.org/downloads/

ATSAS Suite (v.2.8) Franke et al., 2017 https://www.embl-hamburg.de/biosaxs/

software.html

ScÅtter (v.3.1) Robert Rambo at the Diamond

Light Source (Didcot, UK)

http://www.bioisis.net/tutorial/9
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to the Lead Contact, Panagis Filippakopoulos

(panagis.filippakopoulos@sgc.ox.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Flp-In T-REx HEK293 cells (female; Invitrogen), Flp-In T-REx U-2 OS (female; P. Meraldi) or HeLa (female; ATCC) cells were

grown in DMEM + 10% FBS (or 5% FBS and 5% calf serum for Flp-In T-REx HEK293 cells) containing penicillin and strepto-

mycin. K562 cells (a kind gift from Mark Minden) were grown in suspension in RPMI + 10% FBS containing penicillin and strep-

tomycin to a concentration of 500,000 cells/mL (in a 175 cm2 flask containing 60 mL of medium). Flp-In T-REx U-2 OS (female;

P. Meraldi) for the chromatin localization assay were grown and maintained in DMEM, with GlutaMAX supplement, supple-

mented with 10% heat-inactivated fetal bovine serum, 100 U/mL penicillin-streptomycin; clones for the LacO/LacR assay

were grown in 1 mg/mL puromycin. Cells were grown at 37�C in 5% (HEK293, HeLa, K562) or 10% (U-2 OS) CO2; parental

stocks are periodically checked for mycoplasma contamination, but have not been independently authenticated. E. coli

BL21(DE3)-R3-pRARE2 cells (a phage-resistant derivative of the BL21(DE3) strain), with a pRARE plasmid encoding rare codon

tRNAs were cultured in 2 3 lysogeny broth (LB) supplemented with 50 mg/mL kanamycin and 34 mg/mL chloramphenicol at

37�C. Mach1 cells (Invitrogen, cat# C862003) were cultured in 2 3 lysogeny broth (LB) supplemented with 50 mg/mL kanamycin

at 37�C.
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METHOD DETAILS

BET Inhibitors
The thienodiazepines (+)-JQ1 and (-)-JQ1 were synthesized as previously described (Filippakopoulos et al., 2010).

Cloning
Constructs for the genes of interest were generated via Gateway cloning into pDEST 50 33FLAG-pcDNA5-FRT-TO, pDEST 50

eGFP-pcDNA5-FRT-TO or pDEST 50 BirA*-FLAG-pcDNA5-FRT-TO. Details of all entry clones and destination vectors used in this

study can be found in Tables S1A and S1B.

cDNAs encoding human BRD4 (National Center for Biotechnology Information (NCBI) accession number NP_490597.1; first

bromodomain (BD1): N44-E168; second bromodomain (BD2): D334-E460; and BRD4 extra-terminal domain (ET): A589-R676)

(from synthetic codon optimized clone (FivePrime)) and mouse Brd9 (NCBI accession number NP_001019679.2, M1-A242) N-termi-

nal region, were amplified by polymerase chain reaction (PCR) in the presence of Herculase II fusion DNA polymerase (Agilent

Technologies). PCR products were purified (QIAquick PCRPurification Kit, QIAGENUK) and further sub-cloned into a pET28-derived

expression vector, pNIC28-Bsa4 using ligation-independent cloning (Savitsky et al., 2010). This vector includes sites for ligation-in-

dependent cloning and a Tobacco Etch Virus (TEV)-cleavable N-terminal His6-tag (extension MHHHHHHSSGVDLGTENLYFQ*SM-).

After digestion with TEV protease, the protein retains an additional serine and methionine on the N terminus. The constructs were

transformed into competent Mach1 cells (Invitrogen, UK) to yield the final plasmid DNA.

Mutagenesis
The BRD4/ET mutant (BRD4/ETmut, D650K/E651K/E653K/D655K) was cloned using a two-step PCR. First, the C-terminal part was

amplified using a long forward primer bearing the mutations and the BRD4/ET reverse primer. The PCR product was then purified

from an agarose gel and used as a degenerated primer during the amplification of the full-length PCR fragment, in combination

with the BRD4/ET forward primer. Mutations which impede binding to a first (N116F) or second (N391F) bromodomains were intro-

duced into the full-length BRD3 Gateway entry clone using a 15-cycle QuikChange II PCR protocol (Agilent). Mutations or deletions

which impede binding to the BRD4 ET domain were introduced into full-length BRD9 (Uniprot: Q9H8M2; BRD9mut: K29A/V31A/K33A;

BRD9del: deletion of D18-G36); WHSC1L1 (Uniprot: Q9BZ95; WHSC1L1mut: K154A/L155A/K156A; WHSC1L1del: deletion of V143-

I161); ZNF592 (Uniprot: Q92610; ZNF592mut: K374A/V375A/R376A; ZNF592del: deletion of V364-T379) in Gateway entry clones using

the same QuikChange II protocol.

Cell Line Generation
Bait proteins of interest were stably expressed in Flp-In T-REx HEK293 or Flp-In T-REx U-2 OS cells as described (Lambert et al.,

2014). Parental Flp-In T-REx HEK293 cells, and stable cells expressing BirA*-FLAG fused either to a green fluorescent protein

(GFP) or to a nuclear localization sequence (NLS) were used as negative controls for the BioID experiments and processed in parallel

to the bait proteins. Flp-In T-REx HEK293 cells, expressing NLS-BirA* fused to a FLAG tag were used as negative controls for AP-MS

experiments and were processed in parallel to the bait-expressing cell lines. Stable cell lines were selectively grown in the presence

of 200 mg/mL hygromycin up to 80% confluence before expression was induced via 1 mg/mL tetracycline for 24 h (unless otherwise

indicated) and the cells were harvested. For BioID experiments, two 150-mm plates were induced with tetracycline and treated with

50 mMbiotin for 24 h before harvesting. Cells were pelleted at low speed, washed with ice-cold phosphate-buffered saline (PBS) and

frozen at �80�C until purification.

The U-2 OS-LacO cell line was generated using Flp-In T-REx U2-OS cells following a previously described protocol (Roukos et al.,

2014). The LacO array (256x repeats) was digested from the Lac-I-SceI-Tet plasmid (Addgene, #17655) with Xhol. The linearized

LacO array together with a pSELECT-puro plasmid encoding the puromycin resistance gene (Invivogen, cat. no. psetp-mcs) were

co-transfected into U-2 OS cells using FuGENE6 (Promega, cat.# E2692) according to the manufacturer’s protocol. After 48 h of

transfection, cells were re-plated onto a 15 cm tissue culture dish and selected with 1 mg/mL puromycin for 10 d. Individual colonies

of puromycin-resistant clones were grown andmaintained in DMEM, with GlutaMAX supplement (cat.# 10566-016, GIBCO), supple-

mented with 10% heat-inactivated fetal bovine serum (FBS, Sigma, cat.# F4135), 100 U/mL penicillin-streptomycin (GIBCO, cat.#

15140122), and 1 mg/mL puromycin (Invivogen, cat.# ant-pr-1). Integration of the LacO array was confirmed by exogenously express-

ing mCherry-LacR-NLS and checking for bright mCherry-dots.

FLAG Affinity Purification Using a Chromatin Optimized Protocol
To identify interactions for BET proteins that are either occurring on chromatin, the nucleoplasm or in other locations, we adapted the

chromatin-optimized FLAG AP-MS protocol from (Lambert et al., 2014) with slight modifications. Essentially, this protocol incorpo-

rates DNA shearing by sonication and nucleases to solubilize protein complexes associated with DNA while largely maintaining pro-

tein-protein interactions. This protocol was initially optimized to enable the solubilisation of histones from cell pellets alongside the

recovery of their interaction partners, including BRD2 and BRD4 (Lambert et al., 2014). These protocols were also tested on the re-

covery of interaction partners for FLAG-taggedBRD2 at the onset of the project, revealing a shift fromproteins expected to be soluble

(in the cytosol or nucleoplasm) to proteins known to be associated to chromatin when employing the optimized protocol instead of a
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more standard AP-MS protocol (data not shown). Stable cells from two 150-mmplates were pelleted, frozen, and lysed in 1.5mL ice-

cold low salt lysis buffer [50 mM HEPES-NaOH pH 8.0, 100 mM KCl, 2 mM EDTA. 0.1% NP40, and 10% glycerol with 1 mM PMSF,

1 mMDTT and Sigma-Aldrich protease inhibitor cocktail (P8340, 1:500) added immediately prior to processing]. To aid with lysis, the

cells were frozen on dry ice, thawed in a 37�C water bath, and returned to ice. The samples were sonicated using a QSONICA 125W

sonicator equipped with 1/8’’ probe at 4�C using three 10 s bursts with 2 s pauses at 35% amplitude. Benzonase (100 units) was

added and the lysates were incubated at 4�C for 1 h with rotation. The lysates were centrifuged at 20,817 3 g for 20 min at 4�C
and the supernatant was added to tubes containing 25 mL of a 50% magnetic anti-FLAG M2 beads (Sigma-Aldrich, M8823) slurry

prewashed in lysis buffer. FLAG immunoprecipitation was allowed to proceed at 4�C for 2 h with rotation. Beads were pelleted by

centrifugation (1000 rpm for 1 min) and magnetized, and the unbound lysate was aspirated and kept for analysis. The beads were

demagnetized, washed with 1 mL lysis buffer, and remagnetized to aspirate the wash buffer. The beads were then washed with

1mL of 20mMTris–HCl (pH 8.0) containing 2mMCaCl2 and any excess wash buffer was removed by centrifuging the beads,magne-

tizing, and pipetting off the remaining liquid. The now-dry magnetic beads were removed from themagnet and resuspended in 7.5 mL

of 20mMTris–HCl (pH 8.0) containing 750 ng of trypsin (Sigma-Aldrich, T7575) and themixture was incubated overnight at 37�Cwith

agitation. After the initial incubation, the beads were magnetized and the supernatant was transferred to a fresh tube. Another 250 ng

of trypsin was added to the mixture and further digested, without agitation, for 3–4 h. The sample was acidified with formic acid to a

final concentration of 2% and the tryptic digests were stored at �40�C until mass spectrometry analysis.

Endogenous Immunoprecipitation for Mass Spectrometry
Untransfected Flp-In T-REx HEK293 cells (Invitrogen: R780-07 – passage 6) were grown in DMEM + 10% FBS (or 5% FBS and 5%

calf serum) containing penicillin and streptomycin until a confluence of 85% was reached. JQ1 (or DMSO) was added at a final con-

centration of 500 nM for 1 h, prior to harvest by scraping and centrifugation. Cell pellets were washed once with ice-cold PBS, and

were stored dry at �80�C. K562 cells (a kind gift from Mark Minden) were grown in suspension in RPMI + 10% FBS containing peni-

cillin and streptomycin to a concentration of 500,000 cells/mL (in a 175 cm2 flask containing 60mL of medium) prior to treatment with

JQ1 as above. Cells were harvested by centrifugation (400 g for 5min at 4�C), rinsed in 1mL ice-cold PBS, and centrifuged again. The

dry pellets were stored at �80�C.
Dry cell pellets were weighed and re-suspended in ice-cold lysis buffer at a 1:4 pellet weight:volume ratio. The lysis buffer contains

50 mM HEPES-NaOH pH 8.0, 100 mM KCl, 2 mM EDTA. 0.1% NP40, and 10% glycerol with 1 mM PMSF, 1 mM DTT and Sigma-

Aldrich protease inhibitor cocktail (P8340, 1:500) added immediately prior to processing. To aid with lysis, the cells were frozen on dry

ice, thawed in a 37�C water bath, and nutated for 10 min at 4�C before being returned to ice. As for the FLAG AP-MS dataset, the

chromatin optimized protocol from (Lambert et al., 2014) was adopted with minor modifications to gently solubilize DNA-associated

protein complexes. The samples were sonicated using a QSONICA 125W sonicator equipped with 1/8’’ probe at 4�C using three 10 s

bursts with 3 s pauses at 33% amplitude. Benzonase (100 units) was added and the lysates were incubated at 4�C for 30 min with

rotation. The lysates were centrifuged at 20,817 3 g for 20 min at 4�C.
To prepare beads for immunoprecipitation, antibodies to endogenous BRD2, BRD3 and BRD4 (0.5 mg per immunoprecipitation)

were coupled to pre-washed magnetic beads (Dynabeads Protein A for Immunoprecipitation, Invitrogen; 10 mL of a 50:50% slurry)

for 2 h in PBS on a nutator (at 4�C) [Note that the optimal amount of antibody needed for the depletion of the BET proteins from the cell

lysate was assessed by immunoprecipitation coupled to western blot from an HEK293 cell lysate prior to the mass spectrometry

experiment]. Beads washed three times in lysis buffer (500 mL) before they were added to the lysate.

The lysate supernatants were added to the prepared beads (equivalent cell pellet weights were used for each immunoprecipitation

across each cell line). Immunoprecipitations were allowed to proceed at 4�C for 4 h with rotation. Beads were pelleted by centrifu-

gation (1000 rpm for 1 min) and magnetized. The beads were demagnetized, washed with 1 mL lysis buffer, and re-magnetized to

aspirate the wash buffer. The beads were then washed with 1 mL of 50 mM ammonium bicarbonate pH 8. The now-dry magnetic

beads were removed from the magnet and re-suspended in 7.5 mL of 20 mM Tris–HCl (pH 8.0) containing 1 mg of trypsin (Sigma-Al-

drich, T7575) and the mixture was incubated overnight at 37�Cwith agitation. After the initial incubation, the beads were magnetized

and the supernatant was transferred to a fresh tube. Another 250 ng of trypsin was added to themixture and further digested, without

agitation, for 3–4 h. The sample was acidified with formic acid to a final concentration of 2% and the tryptic digests were set to dry

using the speedvac. This was followed by a peptide clean-up using C18 Stage Tips (Thermo, SP301) and then stored at �40�C until

mass spectrometry analysis.

Proximity-Dependent Biotinylation Mass Spectrometry
Cell pellets from two 150-mm plates were pelleted, frozen, and thawed in 1.5 mL ice cold RIPA buffer containing 50 mM Tris-HCl

(pH 7.5), 150 mM NaCl, 1% NP-40, 1 mM EDTA, 1 mM EGTA, 0.1% SDS and 0.5% sodium deoxcycholate. PMSF (1 mM), DTT

(1mM) and Sigma-Aldrich protease inhibitor cocktail (P8340, 1:500) were added immediately before use. The lysates were sonicated

using a QSONICA 125W sonicator equipped with 1/8’’ probe, treated with benzonase and centrifuged as described in the FLAG AP-

MS section. For each sample, 60 mL of streptavidin-Sepharose bead slurry (GE Healthcare, Cat 17-5113-01) was pre-washed three

times with 1 mL of lysis buffer by pelleting the beads with gentle centrifugation and aspirating off the supernatant before adding the

next wash. Biotinylated proteins were captured on pre-washed streptavidin beads for 3 h at 4�Cwith rotation. The beads were gently

pelleted and then washed twice with 1 mL RIPA buffer and three times with 1 mL 50 mM ammonium bicarbonate (pH 8.0). Following
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the final wash, the beads were pelleted and any excess liquid was aspirated off. Beads were re-suspended in 100 mL of 50 mM

ammonium bicarbonate, and 1 mg of trypsin solution was added. The samples were incubated overnight at 37�C with rotation

and then an additional 1 mg of trypsin was added, followed by further incubation for 2–4 h. The beads were pelleted and the super-

natant was transferred to a fresh tube. The beads were rinsed twice with 100 mL HPLC-grade water, and the wash fraction was com-

bined with the supernatant. The peptide solution was acidified with 50% formic acid to a final concentration of 2% and the samples

were placed in a Speedvac to dry. Tryptic peptides were re-suspended in 25 mL 5% formic acid and stored at�80�C until mass spec-

trometry analysis.

Recombinant Domain Pull-Downs for Mass Spectrometry
To a frozen HEK293 cell pellet of�23 107 cells, 1.5 mL of ice-cold high salt lysis buffer [50 mMHEPES-NaOH (pH 8.0), 500 mMKCl,

2 mM EDTA, 0.1% NP-40, 10% glycerol, 1 mM PMSF, 1 mM dithiothreitol, and Sigma-Aldrich Protease Inhibitor Cocktail (P8340,

1:500)] was added to gently re-suspend the frozen pellet. Samples were subjected to a freeze/thaw cycle on dry ice until completely

frozen (5 to 10 min) and then transferred to a 37�C water bath with agitation until only a small amount of ice remained. Samples were

sonicated using a QSONICA 125W sonicator equipped with 1/8’’ probe and treated with benzonase as per the AP-MS protocol. The

resulting samples were centrifuged at 14,000 rpm (20,8733 g) for 20min at 4�C, and the supernatants were transferred to fresh 2-mL

tubes. Biotinylated recombinant BRD4 fragment [25 mg conjugated to 30 mL ofMyOne Streptavidin C1Dynabeads (65002; Invitrogen,

Thermo Fisher Scientific per sample for at least 1 h in PBS) were washed as a pool with lysis buffer. A volume representing the initial

30 mL of beads was subsequently aliquoted for each purification and an equal amount of cell lysates was added to each aliquot. The

mixture was incubated for 2 h at 4�C with gentle agitation (nutator) with or without competition with 5 nmol of JQ1 (for recombinant

bromodomains only). Beads were pelleted by centrifugation (1000 rpm for 5 s), and tubes were placed on a cold magnetic rack (on

ice) to collect the beads on the side of the tubes. The supernatant was removed slowly with a pipette, and the beads were washed

once with 1 mL of cold lysis buffer containing 500 mM KCl and twice more with 1 mL of cold lysis buffer containing a reduced salt

concentration (100mMKCl). The beadswere then transferred to a fresh 1.7-mL tube using 1mL of 20mMTris-HCl (pH 8.0) and 2mM

CaCl2. After the last wash, the samples were quickly centrifuged, and the last drops of liquid were removed with a fine pipette. The

samples were re-suspended in 7.5 mL of 20 mM Tris-HCl (pH 8.0) containing 750 ng of trypsin (Sigma-Aldrich, T7575), and the sus-

pension was incubated at 37�C with agitation overnight on an angled rotating wheel (�15 h). After this first incubation, samples were

quickly centrifuged and thenmagnetized, and the supernatants were transferred to a fresh tube. Another 250 ng of trypsin was added

to the digested proteins [in 2.5 mL of 20 mM Tris-HCl (pH 8.0)], and the resulting sample was incubated at 37�C for 3–4 h without

agitation. Formic acid was then added to a final concentration of 2% (from 50% stock solution) and the samples were stored

at �80�C.

Experimental Design for Mass Spectrometry Experiments
For each bait, two biological replicates were processed independently. These were analyzed alongside negative controls in each

batch of samples processed. For AP-MS, cell lines expressing a 33FLAG-GFP tag construct or no bait (i.e., empty cell lines)

were used. For BioID, cell lines expressing a BirA*-FLAG-GFP construct, a BirA*-NLS-FLAG construct or no bait (i.e., empty cell

line) were used. These control cell lines were grown in parallel to those expressing baits and treated in the same manner (24 hr tetra-

cycline induction, etc.). To minimize carry-over issues during liquid chromatography, extensive washes were performed between

each sample (see details for each instrumentation type); and the order of sample acquisition on the mass spectrometer was also

reversed for the second biological replicates to avoid systematic bias.

Preparation of HPLC Columns for Mass Spectrometry
A spray tip was formed on a fused silica capillary column (0.75 mm ID, 350 mmOD) using a laser puller (program= 4; heat = 280, FIL = 0,

VEL = 18, DEL = 200). C18 reversed-phase material in MeOH (10–12 cm; Reprosil-Pur 120 C18-AQ, 3 mm; Dr.Maisch HPLC GmbH,

Germany) was packed in the column with a pressure bomb. The column was then equilibrated in buffer A prior to sample loading.

Mass Spectrometry Acquisition Using TripleTOF Mass Spectrometers
Each sample (5 mL) was directly loaded at 400 nL/min onto an equilibrated HPLC column. The peptides were eluted from the column

over a 90 min gradient generated by a NanoLC-Ultra 1D plus (Eksigent, Dublin CA) nano-pump and analyzed on a TripleTOF 5600

instrument (AB SCIEX, Concord, Ontario, Canada). The gradient was delivered at 200 nL/min starting from 2% acetonitrile with 0.1%

formic acid to 35% acetonitrile with 0.1% formic acid over 90min followed by a 15min clean-up at 80% acetonitrile with 0.1% formic

acid, and a 15 min equilibration period back to 2% acetonitrile with 0.1% formic acid, for a total of 120 min. To minimize carryover

between each sample, the analytical column was washed for 3 h by running an alternating sawtooth gradient from 35% acetonitrile

with 0.1% formic acid to 80%acetonitrile with 0.1% formic acid, holding each gradient concentration for 5min. Analytical column and

instrument performance were verified after each sample by loading 30 fmol bovine serum albumin (BSA) tryptic peptide standard

(Michrom Bioresources Fremont, CA) with 60 fmol a-casein tryptic digest and running a short 30 min gradient. TOF MS calibration

was performed on BSA reference ions before running the next sample to adjust for mass drift and verify peak intensity. The instrument

method was set to data dependent acquisition (DDA) mode, which consisted of one 250 ms (ms) MS1 TOF survey scan from

400–1300 Da followed by 20 100 ms MS2 candidate ion scans from 100–2000 Da in high sensitivity mode. Only ions with a charge
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of 2+ to 4+ that exceeded a threshold of 200 cps were selected for MS2, and former precursors were excluded for 10 s after one

occurrence. For the analysis of the JQ1 time course, half of the sample was analyzed by DDA as above, and the other half was

analyzed (using the same loading and HPLC gradient conditions) by data independent acquisition (SWATH). In that case, acquisition

consisted of one 50 ms MS1 scan followed by 323 25 a.m.u. isolation windows covering the mass range of 400–1250 a.m.u. (cycle

time of 3.25 s); an overlap of 1 Da between SWATHwas preselected. The collision energy for each window was set independently as

defined by CE = 0.063m/z + 4, where m/z is the center of each window, with a spread of 15 eV performed linearly across the accu-

mulation time.

Mass Spectrometry Acquisition Using LTQ-Orbitrap Mass Spectrometers
Each sample (5 mL) was directly loaded at 400 nL/min onto an equilibrated HPLC column. The peptides were eluted from the column

by a gradient generated by a NanoLC-Ultra 1D plus (Eksigent, Dublin CA) nano-pump and analyzed on a LTQ-Orbitrap Elite (Thermo

Electron) equipped with a nanoelectrospray ion source (Proxeon, Thermo Scientific). The LTQ-Orbitrap Elite instrument under Xca-

libur 2.0 was operated in the data dependent mode to automatically switch between MS and up to 10 subsequent MS/MS acquisi-

tions. Buffer A was 99.9%H2O, 0.1% formic acid; buffer B was 99.9%ACN, 0.1% formic acid. The HPLC gradient program delivered

an acetonitrile gradient over 125 min. For the first 20 min, the flow rate was 400 mL/min with 2% B. The flow rate was then reduced to

200 mL/min and the fraction of solvent B increased in a linear fashion to 35%until 95.5 min. Solvent Bwas then increased to 80%over

5 min and maintained at that level until 107 min. The mobile phase was then reduced to 2% B until the end of the run (125 min). The

parameters for DDA on themass spectrometer were: 1 centroidMS (mass range 400–2000) followed byMS/MSon the 10most abun-

dant ions. General parameters were: activation type = CID, isolation width = 1 m/z, normalized collision energy = 35, activation

Q = 0.25, activation time = 10 ms. The minimum threshold was 500, repeat count = 1, repeat duration = 30 s, exclusion size list =

500, exclusion duration = 30 s, exclusion mass width (by mass) = low 0.03, high 0.03.

Data-Dependent Acquisition MS Analysis
Mass spectrometry data were stored, searched, and analyzed using the ProHits laboratory information management system (LIMS)

platform (Liu et al., 2016). Within ProHits, AB SCIEXWIFF files were first converted to anMGF format usingWIFF2MGF converter and

to an mzML format using ProteoWizard (v3.0.4468) and the AB SCIEX MS Data Converter (v.1.3 beta). Thermo Fisher scientific RAW

mass spectrometry files were converted to mzML and mzXML using ProteoWizard (version 3.0.4468 - http://proteowizard.

sourceforge.net/). The mzML and mzXML files were then searched using Mascot (version 2.3.02) and Comet (version 2012.02

rev.0). The spectra were searched with the RefSeq database (version 57, January 30th, 2013) acquired from NCBI against a total

of 72,482 human and adenovirus sequences supplemented with common contaminants from the Max Planck Institute (http://141.

61.102.106:8080/share.cgi?ssid=0f2gfuB) and the Global Proteome Machine (GPM; https://www.thegpm.org/crap/index.html).

For TripleTOF 5600 files, the database parameters were set to search for tryptic cleavages, allowing up to two missed cleavage sites

per peptide with a mass tolerance of 40 ppm for precursors with charges of +2 to +4 and a tolerance of ± 0.15 amu for fragment ions.

For files analyzed on the Orbitrap Elite, charges of +2, +3 and +4were allowed and the parent mass tolerancewas set at 12 ppmwhile

the fragment bin tolerance was set at 0.6 amu. Deamidated asparagine and glutamine and oxidized methionine were allowed as var-

iable modifications. The results from each search engine were analyzed through the Trans-Proteomic Pipeline (version 4.6 OCCUPY

rev 3) via the iProphet pipeline (Shteynberg et al., 2011). SAINTexpress version 3.3 (Teo et al., 2014) was used as a statistical tool to

calculate the probability value of each potential protein-protein interaction compared to background contaminants using default

parameters. Unless otherwise specified, controls were compressed by half, to a minimum of eight, to create ‘‘virtual controls’’

that provide for more stringent background estimation. Two unique peptide ions and a minimum iProphet probability of 0.95 were

required for protein identification prior to SAINTexpress.

Data Independent Acquisition Analysis with MSPLIT
DIA MS data were analyzed using MSPLIT-DIA (version 1.0; Wang et al., 2015) implemented in ProHits 4.0 (Liu et al., 2016). To

generate a sample-specific spectral library for the FLAG AP-MS dataset, peptide-spectrum matches (PSMs) from matched DDA

runs (36 runs) were pooled by retaining only the spectrum with the lowest MS-GFDB (Beta version 1.0072 (6/30/2014), Kim et al.,

2010) probability for each unique peptide sequence and precursor charge state, and a peptide-level false discovery rate (FDR) of

1% was enforced using a target-decoy strategy. The MS-GFDB parameters were set to search for tryptic cleavages, allowing no

missed cleavage sites, 1 C13 atom per peptide with a mass tolerance of 50 ppm for precursors with charges of +2 to +4 and a toler-

ance of ± 50 ppm for fragment ions. Peptide length was limited to 8–30 amino acids. Variable modifications were deamidated aspar-

agine and glutamine and oxidized methionine. The spectra were searched with the NCBI RefSeq database (version 57, January 30th,

2013) against a total of 36,241 human and adenovirus sequences supplemented with common contaminants from the Max Planck

Institute (http://141.61.102.106:8080/share.cgi?ssid=0f2gfuB) and the Global Proteome Machine (GPM; https://www.thegpm.org/

crap/index.html). This spectral library was further enhanced by incorporating non-redundant PSMs from the previously reported

SWATH-Atlas library (Rosenberger et al., 2014) and decoys were appended using the decoy library command built in to MSPLIT,

with a fragment mass tolerance of ± 0.05 Da. The spectral library was then used for protein identification by MSPLIT as previously

described (Wang et al., 2015) with peptides identified by MSPLIT-DIA passing a 1% FDR subsequently matched to genes using

ProHits 4.0 (Liu et al., 2016). The MSPLIT search parameters were as follows: parent mass tolerance of ± 25 Da and fragment
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mass tolerance of ± 50 ppm.When retention time was available within the spectral library, a cut-off of ± 5 min was applied to spectral

matching as previously described (Wang et al., 2015). For the analysis of the endogenous IP-MS data, a separate library was built

based on the 32 matched DDA runs only using essentially the same parameters as above except that only oxidized methionine

was allowed as a variable modification.

MS Data Visualization and Archiving
Functional enrichment analysis was performed using g:Profiler (https://biit.cs.ut.ee/gprofiler/) using the default parameters. Dot plots

and heatmaps were generated using ProHits-viz (https://prohits-viz.lunenfeld.ca; Knight et al., 2015), while Venn diagrams were

generated in R (https://www.r-project.org/). Interaction networks were generated using Cytoscape (https://cytoscape.org/) with

edge thickness based on spectral counts. Individual nodes were manually arranged in physical complexes. All MS files used in

this study were deposited at MassIVE (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) and the scored interactions asso-

ciated with quantitative values are available for searching at prohits-web.lunenfeld.ca (project ‘‘BET rewiring’’). Additional details

(including MassIVE accession numbers and FTP download links) can be found in Table S2O.

Comparison of the Interaction Proteomics Datasets
To assess which fraction of the FLAG AP-MS dataset could be supported by endogenous IP-MS in either the parental HEK293

cells or in K562 cells, the datasets post-SAINT analysis (SAINT analysis was performed individually on each dataset) were

directly compared at a fixed 1% FDR cutoff (excluding the BRDT dataset as BRDT is not expressed in HEK293 or K562 cells).

We note that there were specific issues affecting each of the endogenous antibodies. The BRD2 antibody seemed to have a

high number of cross-reacting proteins, notably to components of the mTOR amino acid sensing pathway (GATOR2 compo-

nents MIOS, WDR24, WDR59, and SEH1L were all abundantly detected). The BRD3 antibody consistently yielded lower recov-

ery of the bait and interactors, making quantitative comparisons to the other BETs more challenging. The BRD4 antibody was

raised against a portion in the C terminus of the protein responsible to bind to P-TEFb: consistent with this, no P-TEFb was

recovered using this antibody. Since it is not directly possible to compare the recovery of interactors with each BET in this

set-up (or in our opinion to identify new interaction partners solely on the basis of this endogenous IP-MS analysis), we therefore

used the data in aggregate to assess whether they could provide support to the FLAG AP-MS data. Looking at unique proteins

that pass the 1% SAINT FDR cutoff when combining the t = 0 and t = 60 min time points for BRD2, BRD3 and BRD4, we recov-

ered 425 proteins in the FLAG AP-MS dataset while 712 and 776 pass the cutoff in the endogenous HEK293 and K652 datasets,

respectively. Looking at overlaps, the endogenous datasets provide high-confidence validation for 56.2% (i.e., 239 proteins) of

the FLAG AP-MS interactors.

To compare the interactome observed in this study to the one reported by Dawson et al. (Dawson et al., 2011) in the absence of a

statistically defined list of interactors, we first queried from their Supplemental Dataset 3 the ‘‘enrichment over reference,’’ and the

‘‘SSM used for quantification,’’ where is SSM is the number of spectrum-to-sequence matches for individual biological replicate

that was reported by the authors. Then, the ‘‘enrichment over reference’’ was averaged across biological replicates while the SSM

were summed to provide a dataset that more closely resembled to the analysis we have employed in the current manuscript. The

compiled results of the proteins associated with BET proteins by both studies are now presented in Table S2B. Looking at the

interactors that were enriched by a non-stringent arbitrary cutoff averaged enrichment over reference of R 0.5 (and a minimal

SSM of 2), we find evidence for 106 of the 319 interactors reported in our DMSO treated FLAG AP-MS dataset (for BRD2,

BRD3 and BRD4; 33%).

Validation of Interactions by Immunoblotting
To validate selected protein-protein interactions, FLAG affinity purification was performed from two 150-mm plates of Flp-In T-REx

HEK293 expressing a BirA*-NLS-FLAG control or 33FLAG-BRD2, BRD3, BRD4 or BRDT treated with 500 nM JQ1 for 0, 10, 60 or

240 min as described above. Following the capture and washing of FLAG-tagged complexes, proteins were eluted directly in

50 mL of Laemmli buffer by incubating the samples at 65�C for 10 min. Samples were then centrifuged at �1000 3 g for 15 s and

placed on a magnetic rack. The supernatants were transferred to fresh tubes while avoiding the transfer of any beads. Samples

were further heated at 95�C for 5 min to fully denature proteins. For immunoblot analysis, 15 mL (1%) of input samples and 5 mL

(10%) of AP samples were resolved by SDS-polyacrylamide gel electrophoresis (Bio-Rad Criterion Precast Gels, 4%–12% Bis-

Tris, 1.0 mm, from Bio-Rad, CA), transferred to nitrocellulose, and blocked in TBS containing 5 mg/mL non-fat milk and 1% Tween

20 for 1 h at room temperature. Antibodies and the conditions in which they were used can be found in supplementary in the STAR

Methods and in Table S1C. Detection on filmwas performed by chemiluminescence using the LumiGLO reagent (Cell Signaling Tech-

nology; #7003; 1:20).

Interactome and Kac Literature Overlap Analysis
Custom downloads of all interactions for bait proteins were created using the BioGRID version 3.4.157 released on January 25th,

2018 (https://thebiogrid.org/). Bait-prey and prey-bait relationships were both considered in overlap analysis; for BioGRID, only

physical interactions were considered, and no other restriction were placed regarding experimental evidence. The complete acety-

lated lysine database was obtained from the PTMVar dataset (https://www.phosphosite.org/; June 2016 version).
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Protein Expression and Purification
Plasmids were transformed into competent E. coli BL21(DE3)-R3-pRARE2 cells (a phage-resistant derivative of the BL21(DE3)

strain), with a pRARE plasmid encoding rare codon tRNAs. Freshly grown colonies were cultured overnight in 2 3 lysogeny broth

(LB) supplemented with 50 mg/mL kanamycin and 34 mg/mL chloramphenicol at 37�C. One liter of pre-warmed terrific broth (TB)

was inoculated with 10 mL of the overnight culture and incubated at 37�C. At an optical density at 600 nm (OD600) of 2.5, the culture

was cooled to 18�C and expression was induced overnight at 18�C with 0.1 mM isopropyl-b-D-thiogalactopyranoside (IPTG). Cells

were then harvested by centrifugation (8700 3 g, 15 min, 4�C) in a Beckman Coulter Avanti J-20 XP centrifuge, and then re-sus-

pended in lysis buffer (50 mM HEPES, pH 7.5 at 20�C, 500 mM NaCl, 5% glycerol, 1 mM tris(2-carboxyethyl)phosphine (TCEP)

and 1:1000 (v/v) Protease Inhibitor Cocktail III (Calbiochem)). Cells were lysed three times at 4�C using a Basic ZModel Cell Disrupter

(Constant Systems Ltd, UK) and DNA was removed by precipitation on ice for 30 min with 0.15% (v/v) of polyethyleneimine (PEI).

Lysates were cleared by centrifugation (16,000 3 g for 1 h at 4�C, JA 25.50 rotor, on a Beckman Coulter Avanti J-20 XP centrifuge).

Supernatants were applied to nickel-nitrilotiacetic acid agarose columns (Ni-NTA, QIAGEN, 5 mL, equilibrated with 20 mL lysis

buffer). The columns were washed once with 30 mL of lysis buffer, then with 20 mL of lysis buffer containing 30 mM Imidazole. Pro-

teins were eluted using a step gradient of imidazole in lysis buffer (50, 100, 150, 2 3 250 mM imidazole in 50 mM HEPES, pH 7.5 at

25�C, 500 mM NaCl and 5% glycerol). All fractions were collected and monitored by SDS-polyacrylamide gel electrophoresis (Bio-

Rad Criterion Precast Gels, 4%–12% Bis-Tris, 1.0 mm, from Bio-Rad, CA.). One half of the eluted proteins was treated overnight at

4�Cwith TEV protease to remove the hexa-histidine tag (for crystallography and other biophysical experiments). The other half of the

proteins was kept with the hexa-histidine tag intact for use in SPOT assays. Both tagged and untagged proteins were further purified

by size exclusion chromatography on a Superdex 75 16/60 HiLoad gel filtration column (GE Healthcare Life Sciences) on an

ÄktaPrime plus system (GE/Amersham Biosciences). Recombinant BRD4 and BRD9 domains eluted as single symmetrical mono-

meric peaks. Samples were monitored by SDS-polyacrylamide gel electrophoresis and concentrated to 6–10 mg/mL in gel filtration

buffer (10 mM HEPES pH 7.5, 500 mM NaCl and 5% glycerol) using Amicon� Ultra (EMD Millipore) concentrators with a 10 MWCO

cut-off. Proteins were aliquoted into 100 mL fractions, flash frozen in liquid nitrogen and stored at �80�C until further use. Protein

handling was performed on ice or in a cold room.

Electro-spray Quadrupole Time of Flight Mass Spectrometry
Purified protein samples were diluted down to 1 mg/mL with 0.1% formic acid and 60 mL was injected on an Agilent 6530 QTOF

(Agilent Technologies - Palo Alto, CA) mass spectrometer with a Zorbax 5 mm 300SB-C3 column (Agilent Technologies - Palo

Alto, CA) to ascertain the correct intact mass of the proteins (15.084 kDa for cleaved BRD4/BD1, 17.549 kDa for BRD4/BD1 with

a hexa-His-tag; 15.036 kDa for the cleaved BRD4/BD2, 17.502 kDa for BRD4/BD2 with a hexa-His-tag; 12.926 kDa for BRD4/ETmut

with hexa-His-tag and 28.370 kDa for the cleaved BRD9 N terminus. Raw ion count data were deconvoluted using the Mass Hunter

WorkStation software, Qualitative Analysis Vs B.06.00 (Agilent Technologies, Palo Alto, CA). Theoretical molecular masses of wild-

type and mutant proteins were calculated using Expasy ProtParam (https://us.expasy.org/tools/protparam.html). The correct intact

mass (within 1Da) and purity was confirmed for all recombinant proteins.

SPOT Peptide Assays
Cellulose-bound peptide arrays were prepared using standard Fmoc solid phase peptide synthesis on a MultiPep-RSi-Spotter

(INTAVIS, Köln, Germany) according to the SPOT synthesis method provided by the manufacturer, as previously described (Picaud

and Filippakopoulos, 2015). Peptides were synthesized on amino-functionalized cellulose membranes (Whatman Chromatography

paperGrade 1CHR,GEHealthcare Life Sciences #3001-878) and the presence of SPOTed peptideswas confirmed by ultraviolet light

(UV, l = 280 nM). The assay was performed using hexa-His-tagged BRD4 recombinant domains (BRD4/BD1, BRD4/BD2, BRD4/ET

and BRD4/ETmut). Proteins bound to peptides were detected using HPR-conjugated anti-His antibody (Novagene, # 71841) and the

Pierce ECLWestern Blotting Substrate (Thermo Fisher Scientific, # 32106). Chemiluminescence was detected with an image reader

(FujifilmLAS-4000 ver.2.0), typically using an incremental exposure time of 5min for a total of 80min (or until saturationwas reached, in

the case of very strong signal). The dilution of HPRconjugated anti-His antibodywas adapted as a function of the strength of the signal

observed (from1:5000 for weak binders, to 1:50000 for strong binders) to limit the rapid decay of the emission signal during the chem-

iluminescence detection. Peptide locations on the arrays and their sequences are provided in Table S3.

Discovery of Histone-like Kac-X2-Kac Motifs Recognized by BET BRDs
We previously established that histone H4 peptides carrying two Kac linked by two residues, preferably with a glycine at the first po-

sition (for example, SGRG-Kac-GG-Kac-GLG in the H4 K5ac/K8ac sequence), exhibit strong binding toward BET BRDs, with both

Kac binding within the BRD cavity (Filippakopoulos et al., 2012). Furthermore, we hypothesized that flanking sequences contribute to

binding specificity on the basis of the differentially electrostatically charged rim regions surrounding the central Kac site (Figure S2A).

To further identify potential Kac-XX-Kac binding sites beyond histones, we interrogated all curated protein sequences found in the

Uniprot/SwissProt database (April 2017 version) using custom-made scripts in R (https://www.r-project.org/). We found 43,755

unique sequences in 13,660 proteins, encoding the 400 possible combinations of K-XX-K (where each X can be one of the 20 natu-

rally occurring amino-acids). However, only 2,112 of these peptides contain linkers that are found in the four core histones (we
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defined ‘‘histone-like’’ linkers as the 13 following XX combinations: GG, GS, DG, AA, AP, AV, AQ, AR, SA, VL, LN, TA, TP). We

synthesized all peptides from this set (2530, including redundant peptides, e.g., those found in splice variants) onto cellulose

SPOT arrays and further added a small set of non-histone-like linked K-XX-K peptides employing a DS linker (213 peptides) as

well as a small set of 91 K-GX-K peptides (from a total of 2521 possible unique K-GX-K sequences, cherry-picking sequences found

in nuclear proteins, transcription factors, and other signaling proteins). Short peptides (15-mers) containing potential Kac sites within

the above sequences were synthesized on cellulose SPOT arrays and screened against the BRD4 BRDs (BD1 and BD2). The results

are summarized in Tables S3C and S3D.

Discovery of Novel Kac Sequences Recognized by BET BRDs
Discovery of motifs containing Kac sequences was performed AP-MS data for each BET protein, with and without 60 min treatment

with the pan-BET BRD inhibitor JQ1, which blocks BRD-initiated Kac dependent interactions. Proteins that were present in the orig-

inal AP-MS set and were lost (log2 fold change % �2) upon 500 nM JQ1 treatment for 60 min were considered as potential Kac-

dependent interactors. Annotated Kac sites reported in the PhosphoSitePlus dataset (https://www.phosphosite.org/; June 2016

version) were identified using custom made scripts in R (https://www.r-project.org/). 15-aa sequences around central Kac epitopes

arising from this analysis were further analyzed: first the percentage of each amino-acid was calculated for each position, relative to

the central Kac, then the relative enrichment (i.e., ‘‘positional enrichment’’) of each amino acid was calculated at each position, taking

into account the total amount of each amino-acid in each set.

From the 124 proteins that were lost from the 3xFLAG-BRD4 AP-MS map following JQ1 treatment (ie those proteins that had no

spectral counts following 60min JQ1 treatment, Table S2E) 89 contained 456 annotated Kac-sites in PhosphoSitePlus (https://www.

phosphosite.org/). We identified across these sequences enrichment of His at�3, Phe at�2, Gly at�1, Tyr at +1, Ile or Arg at +2 and

Lys at +3. Motifs carrying two acetylated lysines separated by two amino acid linkers (Kac-XX-Kac, X: any amino-acid) were previ-

ously found to be recognized by BETBRDs (Filippakopoulos et al., 2012;Morinière et al., 2009), in agreement with the above analysis,

though the enrichment was modest. The strong enrichment of Kac-Y motifs in our analysis was further characterized structurally and

in solution.

The same analysis yielded 83 proteins (71 of which contain 425 annotated Kac-epitopes) for BRD2, 101 proteins (65 of which

contain 342 annotated Kac-epitopes) for BRD3 and 39 proteins (29 of which contain 114 annotated Kac-epitopes) for BRDT. The

identified Kac-containing sequences can be found in Tables S3F–S3I.

Extra-Terminal Domain Consensus Motif Discovery
Discovery of potential ET-specific motifs was performed on the AP-MS data of full-length 33FLAG tagged BETs, following the obser-

vation that several interacting partners exhibited little to no change in spectral counts (within a log2 fold change of ± 2, Table S2E)

following treatment with JQ1 (BRD2: 48; BRD3: 146; BRD4: 67; BRDT: 30). Focusing on BRD4, 12 of its interactors were recapitulated

in a pull-down employing recombinant BRD4/ET domain as bait, including BRD9 and WHSC1. Identification of linear motifs within

BRD9 and WHSC1 was performed as shown in Figure 5 and Figure S4 respectively (see also Tables S3K–S3AB). Interrogation of

the full-length sequences of the remaining proteins for motifs similar to those identified and verified for BRD9 (LKLVLKV) and

WHSC1 (IKLKI) was performed in R (https://www.r-project.org/) using custom made scripts. First, a minimal combination of both

BRD9 and WHSC1 motifs was constructed ([+]F(F/[+], where F is a hydrophobic residue, including Leu, Ile, Met and Val and [+] a

positively charged residue including Arg and Lys) to extract the maximum number of potential interaction. This uncovered 135 po-

tential sites within the 12 proteins common between FL-BRD4 and BRD4/ET, which were profiled on a cellulose SPOT array with

recombinant hexa-His-tagged BRD4/ET (Tables S3P–S3Q). Medium-strong SPOTs (i.e., with an intensity above 65% compared

to multiple hexa-His-controls) were considered potential ‘‘hits’’ and were further profiled with SPOT arrays and single amino acid

alanine scanning (i.e., in a given 18-mer, each position, from aa 2 to aa 17, was sequentially mutated to an alanine), and the resulting

17 peptides (1 wild-type and 16mutated sequences) were profiled against the recombinant hexa-his-tagged BRD4/ET domain (Table

S3R). Quantification of alanine-scanned membranes allowed us to define the contribution of each position to binding, with 100%

suggesting no change in binding compared to the wild-type sequence and 0% representing a total loss in binding. Interrogation

of the remaining 55 proteins that had largely invariant spectral counts following 60min treatment with JQ1 for similar motifs, identified

344 potential motifs in 51 proteins. SPOT evaluation of thesemotifs (Table S3S) followed by alanine-scanning of strong ‘‘hits’’ (Tables

S3T and S3U) resulted in a number of similar motifs bound to BRD4/ET. Notably, one of the 12 proteins common between FL-BRD4

and BRD4/ET AP-MS datasets (RPS26) did not yield any binding motif(s). However, a sequence scan of full-length RPS26 by SPOT

array (Figure S4; Table S3V) identified a peptide region, Residues 31-48) which was recognized by the wild-type but not the mutant

BRD4/ET domain, and alanine scanning of this region highlighted contribution to binding from a BRD9-like motif that included a

phenylalanine residue (KFVIK motif; Figure S4; Table S3W). Interrogation of the 67 relatively unchanged proteins (following 60 min

of JQ1 treatment) for a [+]F(F/[+]) motif (where F now included Phe in addition to Leu, Val, Ile and Met) identified an additional 93

potential binding sites. SPOT evaluation of these sites followed by alanine scanning of very strong hits (i.e., with intensity > 85%

compared to control peptides) resulted in similar motifs to those identified for BRD9 and WHSC1 (Tables S3X–S3Z).

Manual sequence alignment using all alanine quantifications, allowed the assembly of sequences that were used to construct the

five resulting motifs (BRD9-like: fn-(F/[+])FF(F/[+])-fc; WHSC1/L1-like: fn-F[+]F[+]-fc; CM1: fn-[+]x[+]-fc; CM2: fn-[+](H)-fc; and
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CM3: fn-[+]-fc) summarized in Table S3AA. LOGOs presented in Figures 5 and S5 were generated using WebLogo (http://weblogo.

berkeley.edu). Identified and verified sequences are summarized in Table S3AB. Please note that at the time of submission of

this work, some of the peptide sequences investigated were found to be ‘‘outdated’’ when comparing against the 2018 version of

UniProt – these have been annotated in Tables S3P, S3S, S3X, S3AA, and S3AB.

Custom Peptide Synthesis
Peptides (wild-type ormodified) used in biophysical or crystallographic experiments were synthesized by the TUFTSCore Facility, on

a 0.1 mmol scale with one round of HPLC purification. Peptides were re-suspended into water or buffer (50 mM HEPES pH 7.5,

150 mM NaCl) based on their overall charge. All peptide solutions were then further purified using PD MiniTrap G-10 columns (GE

Healthcare Life sciences) according to themanufacturer’s instructions, to remove any remaining chemical residuals from the synthe-

sis. Peptide details are summarized in Table S1E.

Isothermal Titration Calorimetry
Experiments were performed on an ITC200 titration micro-calorimeter (MicroCal, LLC, GE Healthcare) equipped with a washing

module, with a cell volume of 0.2003 mL and a 40 mL micro-syringe. Experiments were performed at 15�C with stirring at

1000 rpm, in ITC buffer (50 mM HEPES pH 7.5 at 25�C, 150 mM NaCl). The micro-syringe was loaded with a solution of peptide

sample (1226 - 1433 mM, in ITC buffer) and was carefully inserted into the calorimetric cell which was filled with protein (0.2 mL,

36 - 59 mM) in ITC buffer. Following baseline equilibration an additional delay of 60 s was applied. All titrations were conducted using

an initial control injection of 0.3 mL followed by 38 identical injections of 1 mL with a duration of 2 s (per injection) and 120 s intervals

between injections. The titration experiments were designed as to ensure complete saturation of the proteins before the final injec-

tion. The heat of dilution for the peptides were independent of their concentration and corresponded to the heat observed from the

last injection, following saturation of ligand binding, thus facilitating the estimation of the baseline of each titration from the last in-

jection. The collected data were corrected for peptide heats of dilution (measured in separate experiments by titrating the peptides

into ITC buffer) and deconvoluted using theMicroCal Origin software to yield enthalpies of binding (DH) and binding constants (KB) as

previously described (Filippakopoulos et al., 2012). Thermodynamic parameters were calculated using the basic equation of thermo-

dynamics (DG = DH - TDS = -RTlnKB, where DG, DH and DS are the changes in the free energy, enthalpy, and entropy of binding,

respectively). In all cases a single binding site model, supplied with the MicroCal Origin software package was employed. Heat

capacities (DCp) for H4 (K5ac/K8ac) and SRPK1 (K585acY) peptides were calculated in Origin Pro (v.9.4 OriginLab Corporation)

from the slope of linear least-square fitted DH/T plots. Thermodynamic parameters are listed in Tables S4A and S4B and peptide

sequences are listed in Table S1E.

Sedimentation Velocity Analytical Ultracentrifugation
SV experiments were performed on a Beckman Optima XL-I Analytical Ultracentrifuge (Beckman Instruments, Palo Alto, CA) equip-

ped with an AnTi-50 rotor and cells with double sector centerpieces. Protein samples were studied at a concentration of 50-60 mM in

50mMHEPES pH 7.5 at 25�C, 100mMNaCl at 4�C, employing a rotor speed of 40,000 rpm. Radial absorbance scanswere collected

using absorbance optics at 280 nm in continuous scan mode, in 2 min intervals with a redial step size of 0.003 cm. Aliquots (300 mL)

were loaded into the sample channels of double channel 12 mm centerpieces, and 310 mL of buffer was loaded into the reference

channels. Data were analyzed using the SEDFIT (v.15.01b, Schuck, 2000) software package whereby differential sedimentation

coefficient distributions (c(s) distributions) were obtained by direct boundary modeling to Lamm Equation solutions. Sedimentation

coefficients (s) were obtained by integration of individual peaks in the calculated c(s) distributions, after fitting of the frictional ratio

(f/fo), allowing these distributions to be corrected for the effects of diffusion. The software package SEDNTERP (version 1.08) was

used to convert the obtained sedimentation coefficient values to equivalent values in water at 20�C, taking into account the solvent

density (1.00802 g/mL), viscosity (1.5673 10�2 poise), and partial specific volume (calculated in Table S4C) of each protein construct

tested. Translational frictional ratios were calculated from the s20,w values using the following equation:
�
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whereM is the molecular weight, v is the partial specific volume,NA is Avogadro’s number and sow,20 is the sedimentation coefficient

corrected to the standard conditions of density, r0, and viscosity, h0, of water at 20�C, and extrapolated to infinite dilution.

ALPHAScreen Assay
The assay was performed as previously described (Filippakopoulos et al., 2010) with minor modifications from the manufacturer’s

protocol (PerkinElmer, USA). All reagents were diluted in 50 mM HEPES, 250 mM NaCl, 0.1% BSA, pH 7.4 supplemented with

0.05% CHAPS and allowed to equilibrate to room temperature. A 11-point 1:2 serial dilution of the ligands was prepared over the

range of 5 mM – 4.88 nM and 4 mL transferred to a low-volume 384-well plate (ProxiPlateTM-384 Plus, PerkinElmer, USA). BRD4/

BD1 protein and the biotinylated SRPK1 peptide: RKLIVAG-Kac-YSKEFFTKKGDLK(Biotin)-OH (TUFTS, USA) were mixed and

pre-incubated for 30 min at room temperature, before addition of 8 mL of the protein/peptide mix to the plate. The amount of

protein and peptide used was calculated in order to have a final concentration BRD4/BD1 and SRPK1 peptide of 1.6 mM and
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0.8 mM respectively in the 20 mL reaction volume. The plate was sealed and incubated at room temperature for another 30 min before

the addition of 4 mL of streptavidin-coated donor beads (25 mg/mL) and 4 mL nickel chelate acceptor beads (25 mg/mL) under low light

conditions. The plate was foil-sealed to protect the reaction mixture from light, incubated at room temperature for 60min and read on

a PHERAstar FS plate reader (BMG Labtech, Germany) using an AlphaScreen 680 excitation/570 emission filter set. IC50 values were

calculated in Origin Pro (v.9.4 OriginLab Corporation) after normalization against corresponding DMSO controls and are given as the

final concentration of compound in the 20 mL reaction volume.

Crystallization
The purified BRD4/BD1 protein buffer was exchanged with 10 mM HEPES pH7.5, 150 mM NaCl and 2% (w/v) glycerol, on an Äkta

pure system using a Sephadex 10/300 GL column (GE/Amersham Biosciences). BRD4/BD1 protein (5 - 10 mg/mL) was then incu-

bated on ice for 30 min with 2 - 5 mM final peptide. Peptide/protein mixtures were set up for crystallization using a mosquito crys-

tallization robot (TTP Labtech, Royston UK). Coarse screens were typically setup onto Greiner 3-well plates using three different drop

ratios of precipitant to protein per condition (100+50 nL, 75+75 nL and 50+100 nL). Initial hits were optimized using Greiner 1-well

plates and scaling up the drop sizes in steps. All crystallizations were performed using the sitting drop vapor diffusion method at

4�C. Crystals of BRD4/BD1 with an E2F1 peptide (H114-PG-Kac-GV-Kac-SPGEKSRY-E129 – Kac-XX-Kac motif) were grown by

mixing 50 nL of the protein (12 mg/mL in 10 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol) with 100 nL of reservoir solution con-

taining 20.0%PEG3350, 10.0% ethylene glycol and 0.2MNaCHO. Crystals of BRD4/BD1with a GATA1 peptide (A309-SG-Kac-GK-

Kac-KR-G318-Y – Kac-XX-Kac motif) were grown by mixing 50 nL of the protein (12 mg/mL in 10 mMHEPES pH 7.5, 500 mM NaCl,

5%glycerol) with 100 nL of reservoir solution containing 30.0%PEG1000 and 0.1MSPGpH 8.0. Crystals of BRD4/BD1with an ATRX

peptide (H1027-FP-Kac-GI-Kac-QI-K1036-Y – Kac-XX-Kac motif) were grown by mixing 100 nL of the protein (8 mg/mL in 10 mM

HEPES pH 7.5, 500mMNaCl, 5% glycerol) with 50 nL of reservoir solution containing 20.0%PEG6000, 10.0% ethylene glycol, 0.1 M

HEPES pH7.0 and 0.2MLiCl. Crystals of BRD4/BD1with a POLR2A peptide (S772-GA-Kac-GS-Kac-IN-I781-Y – Kac-XX-Kacmotif)

were grown by mixing 75 nL of the protein (8 mg/mL in 10 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol) with an equal volume of

reservoir solution containing 20.0% PEG6000, 10.0% ethylene glycol, 0.1 M HEPES pH 7.0 and 0.1 MMgCl2. Crystals of BRD4/BD1

with a TOP2A peptide (G1198-KA-Kac-GK-Kac-TQ-M1207-Y – Kac-XX-Kac motif) were grown by mixing 75 nL of the protein

(8 mg/mL in 10 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol) with an equal volume of reservoir solution containing 20.0%

PEG3350, 10.0% ethylene glycol and 0.2 M NaI. Crystals of BRD4/BD1 with an H3 K9ac/K14ac peptide (K4-QTAR-Kac-STGG-

Kac-APRK-Q20-Y – Kac-XXXX-Kac motif) were grown by mixing 50 nL of the protein (10 mg/mL in 10 mM HEPES pH 7.5,

500 mM NaCl, 5% glycerol) with 100 nL of reservoir solution containing 0.20 M LiCl, 0.1 M Tris-HCl pH 8.0, 20.0% PEG 6K and

10.0% ethylene glycol. Crystals of BRD4/BD1 with an H3 K9ac/pS10/K14ac peptide (K4-QTAR-Kac-pS-TGG-Kac-APRK-

Q20-Y – Kac-XXXX-Kac motif) were grown bymixing 75 nL of the protein (9 mg/mL in 10mMHEPES pH 7.5, 500mMNaCl, 5% glyc-

erol) with 75 nL of reservoir solution containing 0.20 M Na(CH3COO), 0.1 M BTProp pH 7.5, 20.0% PEG 3350 and 10.0% ethylene

glycol. Crystals of BRD4/BD1 with a BAZ1B peptide (F217-LPH-Kac-YDVK-L226 – KacY motif) were grown by mixing 50 nL of the

protein (9 mg/mL in 10 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol) with 100 nL of reservoir solution containing 0.1 M bis-tris-

propane pH 8.5, 0.02 M sodium/potassium phosphate, 20.0% PEG3350 and 10.0% ethylene glycol. Crystals of BRD4/BD1 with

an SRPK1 peptide (V582-AG-Kac-YS-Kac-EF-F591-Y – KacY motif) were grown by mixing 50 nL of the protein (5.3 mg/mL in

10 mM HEPES pH 7.5, 500 mM NaCl, 5% glycerol) with 100 nL of reservoir solution containing 0.1 M PCB pH 7.0 and 30.0%

PEG 3350. In all cases crystals appeared within several days from sitting drop plates at 4�C.

Data Collection and Structure Determination
Prior to data collection, all crystals were transferred to a solution consisting of the precipitation buffer supplemented with ethylene

glycol and subsequently flash frozen in liquid nitrogen. Data were collected at Diamond Lightsource on beamline I24 at a wavelength

of 0.9686 Å (BRD4/BD1 complexes with H3 K9acK14ac, H3 K9ac/pS10/K14ac and POLR2A K775ac/K778ac), beamline I02 at a

wavelength of 0.97949 Å (BRD4/BD1 complexes with SRPK1 K585ac/K588ac, ATRX K1030ac/K1033ac and GATA1 K312ac/

K315ac) or beamline I03 at a wavelength of 0.97625 Å (BRD4/BD1 complexes with BAZ1B K221ac, TOP2A K1201ac/K1204ac,

E2F1 K117ac/K120ac and SIRT7 K272ac/K275ac). Data processing was carried out using the CCP4 suite (v.6.5 & v.7.0 Winn

et al., 2011). Data were integrated with XDS (Kabsch, 2010) and scaled with SCALA (v.3.3.2) or AIMLESS (v.0.7.3, CCP4 v.7). Initial

phases were calculated by molecular replacement with PHASER (v.2.5, CCP4 v.7) using the known model of BRD4/BD1 (PDB:

2OSS). Automated model building with ARP/wARP (Perrakis et al., 1999) resulted in >90% complete models. Refinement was

performed with REFMAC after several rounds of manual rebuilding with COOT. The quality of the final models was validated with

the MOLPROBITY server (http://molprobity.biochem.duke.edu/). Hydrogen atoms were included in late refinement cycles. Data

collection and refinement statistics can be found in Table S5.

Small Angle X-Ray Scattering
SAXS data were collected at Diamond Light Source beamline B21 using an in-line HPLC connected to a Shodex KW404-4F column in

a buffer containing 20 mM HEPES pH 7.5, 150 mM NaCl, 2% glycerol and 0.5 mM TCEP and a flow rate of 0.16 mL/min. Scattering

data were collected in continuous mode and initial data reduction was performed in the DAWN software suite (Basham et al., 2015),

with background subtraction and averaging of 1D profiles performed using the ScÅtter suite (www.biosis.net). The ATSAS suite
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(v.2.8, Franke et al., 2017) was used to first calculate distance (pair) distribution functions (p(r)) with GNOM, which were subsequently

used as input to DAMMIN for ab initio shape determination. The results from 23 separate DAMMIN runs in fast mode were aligned

using SUPCOMB and an averagedmodel was created in DAMAVER, which was used as input to a final round of shape determination

using DAMMIN in slow mode. The initial DAMMIN models showed low divergence with mean values of normalized spatial discrep-

ancy (NSD) of 0.714 (BRD2), 0.613 (BRD3), 0.619 (BRD4) and 0.619 (BRDT), and the final models show good agreement with the data

with c2 values of 1.16 (BRD2), 1.28 (BRD3), 1.05 (BRD4) and 0.92 (BRDT). Docking of the first and second bromodomains into the

bead models was performed manually in PyMOL using PDB: 2OUO (BRD4/BD2) with the constraints of the C terminus of the first

bromodomain and the N terminus of the second bromodomain pointing toward the center of the molecule.

Confocal Microscopy for Co-localization Using the LacO Array
U-2 OS-LacO cells were transfected with the indicated combinations of plasmids using FuGENE6 according to the manufacturer’s

protocol and incubated for 24 h. Transfected cells were plated into an 8-well imaging chamber (Miltenyi Biotec, cat.# 130-098-273).

After 24 h, cells were fixed with 4% paraformaldehyde (PFA) in PBS for 10 min at room temperature. Cells were then washed three

times with PBS and mounted with mounting medium (90% glycerol and 10% 20 mM TRIS-HCl pH 8.0). All images were obtained

using a Zeiss LSM 710 scan-head (Zeiss GmbH, Jena, Germany) coupled to an inverted Zeiss Axio Observer Z1 microscope

equippedwith a high-numerical-aperture (N. A. 1.40) 633 oil immersion objective (Zeiss GmbH, Jena, Germany). A 488 nm excitation

laser and a 494-555 nm emission filter were used to detect GFP fluorescence. A 594 nm excitation laser and a 598-700 nm emission

filter were used to detect mCherry fluorescence.

LacO Array High Content Analysis
U-2 OS-LacO cells were transfected with the indicated combinations of plasmids using FuGENE6 according to the manufacturer’s

protocol and incubated for 24 h. Transfected cells were plated onto a CellCarrier-96 Black plate (PerkinElmer, cat.# 6005558). After

24 h, cells were treated with 1 mg/mL Hoechst 33342 solution (Thermo Fisher, cat.# H3570) for 20 min and were fixed with 4% PFA in

PBS for 10 min at room temperature. Cells were washed three times with PBS and mounted with mounting medium. All images were

obtained with an Operetta high-content imaging system (PerkinElmer) using a 40 3 objective lens. Hoechst, GFP, and mCherry

signals were acquired with a standard filter set originally equipped with the Operetta instrument. At least 100 field images per well

were acquired. Data were analyzedwith the ‘‘find spots’’ algorithm of Harmony analysis software (version 4.1, PerkinElmer). Numbers

of mCherry dots, GFP dots and co-localized dots in the nuclear (Hoechst positive) region were automatically counted without bias.

Error bars represent the standard deviation from three independent experiments.

Live-Cell Imaging of BET Responses to JQ1 Treatment
U-2 OS cells were seeded onto 8-well LabTek II imaging chambers (ThermoFisher) in complete media with 1 mg/mL tetracycline and

grown for 24 h to allow expression of GFP-tagged protein. Before imaging, the media was replaced with 200 mL of phenol red-free

DMEMsupplementedwith 10%FBS, 1mMsodium pyruvate, and 13Glutamax (all Life Technologies). Images stackswere acquired

on an imaging system (DeltaVision Elite, GE Healthcare). Cells were imaged at 37�C in 5% CO2 at 603 , 1.42NA, with 23 2 binning.

Image Z stacks of 24 mmwere aquired at 2 mm intervals over 2 - 5 min as indicated. 20 s after the start of data acquisition, 100 mL of

warmmedia containing 1.5 mMJQ1was added to each cell chamber manually for a final concentration of 500 nM. The exposure time

was 10 ms at 32% for GFP-tagged bait protein. Z stacks were collected, deconvolved using softWoRx (v5.0, Applied Precision) and

displayed as maximum intensity projections (pixel size 0.1075 mm). Images were cropped in ImageJ (National Institutes of Health).

For all quantitatively compared images, identical imaging conditions (including exposure times) were used, and maximum intensity

projections of Z stacks were analyzed.

Immunofluorescence Microscopy of Nucleolar Proteins
HeLa cells were seeded on coverslips at low density in Opti-MEM medium and then transfected with the appropriate siRNA using

Lipofectamine RNAiMAX as per the manufacturer protocol, see STARMethods and Table S1C for details. 48 hr later, cells were fixed

with 3.7% paraformaldehyde/PBS and permeabilized in 0.3% Triton X-100 in PBS. Mouse anti-BRD3 antibody (1:100; ab50818,

Abcam) and anti-TCOF1 (1:500; HPA038237; Sigma-Aldrich) were used to identify BRD3 and TCOF1, respectively. Proteins were

visualized with goat anti-mouse or anti-rabbit coupled to Alexa Fluor 488 or 555 antibodies (1:1,000; A11001, A11008, A21422,

A21428; Invitrogen). DNA was detected with DAPI staining. Immunofluorescence was observed by confocal microscopy on a Nikon

Eclipse C1si instrument.

Quantitation of Ribosomal RNA by Immunofluorescence
U-2 OS cells were seeded into 12-well plate containing coverslips in complete media with varied level of tetracycline (0, 100 or

1000 ng/mL) and grown for 48 h to allow expression of GFP tagged protein. Cells were then treated or not with 500 nM JQ1 and

then subsequently fed 5-ethyl uridine (5-EU) for 1 h. Cells were then fixed with 4% paraformaldehyde (PFA) in PBS for 15 min at

room temperature and then stained for BRD3 and fibrillarin (see Table S1C for antibody details). Nascent RNA was labeled using

the Click-iT RNA Alexa Fluor 594 imaging kit (Catalogue # C10330; Molecular probes, Thermo Fisher Scientific) as per the supplier’s

instructions. Cells were imaged as above and ribosomal RNA (rRNA) was defined by generating a mask of the 5-EU signal overlap
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with fibrillarin. For all quantitatively compared images, identical imaging conditions (including exposure times) were used, and

maximum intensity projections of Z stacks were analyzed using customMATLAB scripts. Cell population intensities were compared

across different treatments using the two-tailed Student’s t test.

ChIP-qPCR
ChIPwas performed as described above from 23 15 cmplates of U-2 OS cells at�75%confluence following inductionwith different

concentrations of tetracycline and treatment with 500 nM JQ1 for 1 h as indicated. For each sample, 2% of the resulting eluate

(1/50 mL) was used for each PCR reaction. qRT-PCR was performed using a 7500 Real-time PCR machine (Applied Biosystems;

Thermo Fisher Scientific) using Power SYBR Green PCR Master Mix, as per the manufacturer’s instructions. Primers used for

qRT-PCR are listed in Table S1C.

Chromatin Immunoprecipitation
Flp-In T-REx U-2 OS cells stably expressing GFP tagged BRD3 WT or a (BD1:2)mut construct were grown in two 15 cm plates to

�75% confluence and induced with 1 mg/mL tetracycline for 48 h. Cells were then washed with PBS and crosslinked with 1% form-

aldehyde in PBS for 15 min at room temperature before quenching the reaction with 125 mM glycine in PBS for 5 min at room tem-

perature. Cells were then pelleted and frozen at�80�C until ChIP was performed as described previously (Schmidt et al., 2009) using

7 mg of anti-GFP (ab290, Abcam) antibody. Next, ChIP DNAwas prepared for Illumina sequencing by blunt-end repair, dA-tailing, and

ligating Illumina adaptors using the NEBNext DNA library preparation kit (NEB, #E6040L). The libraries were PCR amplified by 16 cy-

cles using multiplexing index primers (NEB, #E7335L), size selected (200-350 bp, PippinPrep 2% gel, Sage Science) and quantified

with 2100 Bioanalyzer (Agilent). Input control DNA (220 ng) extracted from sonicated cell lysates of each sample were processed in

parallel. For each library 50 bp reads were sequenced with the HiSeq2500 (Illumina).

ChIP-Seq Data Analysis
For GFP-BRD3 ChIP-seq experiments, 50bp single-end reads were obtained. Fastq files of other U-2 OS ChIP-seq datasets were

downloaded through ArrayExpress (E-GEOD-44672, Walz et al., 2014). Fastq files of TCOF1 ChIP-seq and the corresponding input

in HeLa cells were obtained fromGSE89420 (Calo et al., 2018). Raw reads were first trimmed using Trimmomatic (v.0.36) with default

parameters. As reads from E-GEOD-44672 are only 33bp in length they were not trimmed. Reads were then aligned to the human

genome (hg19) using bwa (v.0.7.8, Li and Durbin, 2009) with default parameters. Uniquely mappable reads and reads that do not

map to the ENCODE hg19 blacklist regions (see Key Resources Table) were used for all downstream analyses. ChIP-seq browser

tracks were generated using BigWig files that were visualized on the UCSC genome browser.

To analyze protein binding on rDNA regions, reads were mapped to a customized genome where the human rDNA sequences

were added as a separate chromosome on to the human genome fasta file. Reads that mapped to rDNA were extended to

150bps and their coverage across rDNA regions were generated with the bedtools genomecov function. R package ‘‘Sushi’’

(v.1.16, Phanstiel et al., 2014) was used to visualize ChIP-seq signals on the rDNA region. The rDNA structure is annotated

based off GenBank. Read counts at each position were normalized to total library counts (RPM: reads per million mapped

reads) and normalized input read counts were subtracted. A correlation heatmap was generated based on the Spearman cor-

relations between each pairs of samples on the rDNA region with 1bp resolution. Positions were no reads bind to in all samples

were excluded.

SRA files of published datasets (BRD4 in mESCs: GSE69140; CHD4 in mESCs: GSE61188; BRD4 in mouse leukemic cells:

GSE52279; BRD9 in mouse leukemic cells: GSE79360) were obtained from NCBI’s Gene Expression Omnibus using the SRA toolkit

(v.2.9.0) and were mapped to the mouse reference genome (mm9) with bowtie2 (v.2.2.3.4.1) using default parameters.

ChIP-Seq Peak Calling
Filtered aligned reads from biological replicates were pooled and used for peak calling. Peak calling was performed using MACS2

(version 2.1.0 20151222) with the parameters ‘‘–broad–broad-cutoff 0.01–fe-cutoff 2.’’

ChIP-Seq Promoter Enrichment
The average ChIP-seq signal of BRD3 WT and BRD3 (BD1:2)mut across all refGene gene bodies were generated using ngs.plot

(v.2.6.3). For the visualization of published datasets for BRD4, CHD4 and BRD9, genome ChIP-seq profiles were generated using

bamCoverage from deepTools v.2.0 and heatmaps were generated with computeMatrix/plotHeatmap from deepTools v.2.0 or

ngs.plot.

ChIP-Seq Signal Density Heatmap
Read density of ChIP-seq experiments around peak centers were calculated using seqMINER (v.1.3.3) with reads extended to

150bp. Read counts were averaged for every 50bp for 5kb up/downstream of peak centers. This count matrix was then exported,

processed, and visualized in R (https://www.r-project.org/). For each library, read counts were scaled to 10 million. Next, corre-

sponding input reads were subtracted. Peaks were separated into ‘‘WT only,’’ ‘‘WT and (BD1:2)mut shared’’ and ‘‘(BD1:2)mut only’’

as previously described, and were ranked based on the sum of WT read counts. To compare ChIP signals of different factors,
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Spearman correlation coefficients were calculate based on the sum of normalized read counts around the center ± 5kb) of each WT

only peak.

Chromatin State Segmentations
Chromatin states were generated using ChromHMM (Ernst and Kellis, 2012) with 10 states included in the model. Merged BRD3WT

and (BD1:2)mut ChIP-seq reads, as well as ChIP-seq reads of H3K27ac, H3K4me3, and H3K4me1 (obtained from GSE44672) were

used as inputs.

BET Protein Essentiality Analysis in Cancer Cells
Previously reported CERES scores for BRD3, BRD4, PTEN and POLR2A in 342 cancer cell lines (Meyers et al., 2017) were extracted

from the Supplemental data and represented as Violin Plots within R (https://www.r-project.org/).

QUANTIFICATION AND STATISTICAL ANALYSIS

Proteomics Quantification and Statistical Analysis
Details of the peptide/protein identification software and interaction proteomics scoring with the statistical tool SAINTexpress

version 3.3 (Teo et al., 2014) are provided above.

Quantification and Statistical Analysis of Microscopy Data
Quantification of the different types of fluorescencemicroscopy images was performed with vendor-specific software and/or custom

MATLAB scripts and is described in the respective sections. Standard statistical tools (e.g., two-tailed Student’s t test) were used to

evaluate the data.

ChIP-qPCR Quantitation
ChIP-qPCR fold enrichment was first computed by performing a background (non-specific rabbit antibody) deletion and subse-

quently computing the fold increase in signal relative to the background signal. Triplicate measurements were taken for each data

point and error bars represent the standard error of the mean.

ChIP-Seq Peak Overlap
Overlapping of peakswas performed using the bedtools ‘‘intersectBed’’ function. A consensus peak set was first generated bymerg-

ing overlapping peaks with the ‘‘merge’’ function implemented in bedtools. This consensus peak set was then overlapped with peaks

called in both the BRD3 WT and BRD3 (BD1:2)mut samples and classified into ‘‘WT only,’’ ‘‘WT and (BD1:2)mut shared’’ and

‘‘(BD1:2)mut only.’’ Significance of overlap (p < 10�6) was tested with GAT (Heger et al., 2013) with 106 permutations, using BRD4

peaks (segments) onto CHD4 or BRD9 peaks (annotation) within open chromatin regions determined as DnaseI sites (workspace)

obtained from the Encode project (see Key Resources Table).

DATA AND SOFTWARE AVAILABILITY

Data Deposition
Crystal structures have been deposited in the Protein Data Bank (http://www.pdb.org), Small-angle scattering data and models in

SASBDB (http://www.sasbdb.org), mass spectrometry data to the ProteomeXchange partner MassIVE (http://massive.ucsd.edu)

and ChIP-seq data at ArrayExpress (http://www.ebi.ac.uk/arrayexpress; accession E-MTAB-5670).

The accession numbers for the mass spectrometry data reported in this paper are MassIVE: MSV000081006, MSV000081001,

MSV000080981, MSV000080986, MSV000080988, MSV000082857, MSV000082859 (https://massive.ucsd.edu). Additional files

include the complete SAINTexpress outputs for each dataset as well as a ‘‘README’’ file that describes the dataset composition

and the experimental procedures are associated with each accession number. Accession numbers for the coordinates and structure

factors reported in this paper are PDB (http://www.rscb.org): 5NNC; 5NND; 5NNE; 5NNF; 5NNG; 6G0P; 6G0O; 6G0Q; 6G0R; and

6G0S. Small-angle X-Ray scattering data and models reported in this paper are SASD: SASDCT2; SASDCS2; SASDCR2; SASDCU2

(https://www.sasbdb.org). ChIP-seq data reported in this paper were deposited with as E-MTAB-5670 at ArrayExpress (https://

www.ebi.ac.uk/arrayexpress). All original source files (SPOT arrays, microscopy images and western blots) have been deposited

to Mendeley Data and are available at https://data.mendeley.com/datasets/ under ascensions xtb4mkvf8f/1, jb4jjxsbb7/1 and

fzvwgpjx88.1.

ADDITIONAL RESOURCES

The scored interactions associated with quantitative values are available for browsing and searching at https://prohits-web.

lunenfeld.ca (project ‘‘BET rewiring’’).
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Supplemental Figure S1 (supporting Figures 1 & 2) – BET interactome survey using affinity 
purification coupled to mass spectrometry (AP-MS) and its modulation following JQ1 treatment (A) 
Bar graph showing the number of significant interaction partners detected for each BET protein 
using AP-MS with a SAINTexpress FDR ≤ 1%. Interaction partners previously found in BioGRID 
(version 3.4.157, released on January 25th, 2018) are shown in pink while novel partners are in 
grey. (B) Venn diagram showing the overlap between significant interaction partners 
(SAINTexpress FDR ≤ 1%) for each BET protein by AP-MS. (C) Endogenous IP-MS validation of 
the BET interactome in HEK293 (top) and K562 (bottom) cells. Relative spectral count 
contributions of individual BET proteins to selected protein complexes or protein families, shown in 
pie charts. The relative abundances of selected protein complexes before and after JQ1 treatment 
are represented by the radius of the pie chart. BET proteins are color-coded as annotated in the 
inset. (D) Dot plot of selected interaction partners associated with BRD2, BRD3, BRD4 or BRDT 
after 500 nM JQ1 treatment for 0, 10, 60 or 240 min. Inner circle colour intensity represents the 
average spectral counts, the circle size represents the relative prey abundance across all samples 
shown and the circle outer edge corresponds to the SAINT FDR. Selected protein complexes or 
functional classes are indicated (See Figure 2C for other examples). (E) Validation of a subset of 
protein-protein interactions depicted in Figure 2C by immunoprecipitation coupled to 
immunoblotting. Vector (BirA*-NLS-FLAG) is a cell line expressing a nuclear-localized FLAG-BirA* 
construct, used here as a negative control. BET proteins (BRD2/3/4/T) are expressed as 3xFLAG-
constructs. See STAR methods and Table S1C for antibody details and Tables S2 for AP-MS 
details. 
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Supplemental Figure S2 (supporting Figure 3) – BET BRDs recognize acetyl lysines in non-
histones proteins with a histone-like structural template. (A) Surface map of the first and second 
bromodomains of BRD4 showing the electrostatic potential. (B) Summary of the SPOT array 
results for BRD4/BD1 and BD2 binding to Kac-GX-Kac sequences, carrying a flexible glycine linker 
at X1, presented in Table S3C & S3D. (C) In solution evaluation of BRD4/BD1 and BRD4/BD2 
binding to E2F1 and ATRX Kac-XX-Kac peptides by isothermal titration calorimetry (ITC). Raw 
injection heats for titrations of peptides into a solution of BRD4/BD1 or BRD4/BD2 are shown in the 
left panels. The right panels show the normalized binding enthalpies corrected for the heat of 
peptide dilution as a function of binding site saturation (symbols as indicated in the figure). Solid 
lines represent a nonlinear least squares fit using a single-site binding model. Titrations were 
performed in 50 mM HEPES pH 7.5 (at 25°C), 150 mM NaCl and 15°C while stirring at 1,000 rpm. 
(E2F1: KD = 45.8 μM and 34.8 μM for BD1 and BD2 respectively. ATRX: KD = 87.7 μM and 25.31 
μM for BD1 and BD2 respectively). (D) ITC evaluation of BRD4/BD1 and BRD4/BD2 binding 
GATA1 and TOP2A Kac-XX-Kac peptides. Experiments were conducted and are presented as in 
(C). GATA1: KD = 24.6 μM and 62.9 μM for BD1 and BD2 respectively. TOP2A: KD = 19.5 μM and 
63.3 μM for BD1 and BD2 respectively. (E) Binding detail of an E2F1 Kac-XX-Kac peptide 
(K117ac/K120ac, shown in brown) with BRD4/BD1 and comparison to an H4 K5ac/K8ac peptide 
(shown in blue). The surface of BRD4/BD1 is shown in grey with the conserved asparagine (N140) 
highlighted in purple and the bulky tryptophan (W81) that caps the cavity highlighted in magenta. 
The peptide inserts in the cavity with K117ac directly engaging N140, while K120ac engages via a 
water-mediated bridge to K117, stabilizing the interaction. This is the same structural template 
observed in the case of the H4 K5ac/K8ac peptide. The inset shows the high resolution 2FcFo map 
of the peptide contoured at 2σ and highlights the topology with respect to N140 and W81. (F) 
Binding details of a GATA1 Kac-XX-Kac peptide (K312ac/K315ac, shown in magenta) with 
BRD4/BD1 and comparison to an H4 K5ac/K8ac peptide (shown in blue). Binding details are 
presented as in (E). (G) Binding details of an ATRX Kac-XX-Kac peptide (K1030ac/K1033ac, 
shown in salmon) with BRD4/BD1 and comparison to an H4 K5ac/K8ac peptide (shown in blue). 
Binding details are presented as in (E). (H) Binding details of a POLR2A Kac-XX-Kac peptide 
(K1201ac/K1204ac, shown in green) with BRD4/BD1 and comparison to an H4 K5ac/K8ac peptide 
(shown in blue). Binding details are presented as in (E). (I) Binding details of a TOP2A Kac-XX-Kac 
peptide (K1201ac/K1204ac, shown in yellow) with BRD4/BD1 and comparison to an H4 K5ac/K8ac 
peptide (shown in blue). Binding details are presented as in (D).  
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Supplemental Figure S3 (supporting Figure 4) – BET BRDs can recognize acetyl lysines using 
different modes of binding (A) Binding detail of a SIRT7 Kac-XX-Kac peptide (K272ac/K275ac, 
shown in purple) with BRD4/BD1. While K272ac initiates a contact to N140, Y277 stabilizes the 
interaction via direct hydrogen bonding to K272 and K275ac does not insert within the cavity. The 
peptide 2FcFo high resolution map contoured at 2σ is shown. (B) Comparison of acetylated H3 
and H4 binding onto BRD4/BD1. Both peptides insert an acetylated lysine in the BRD Kac 
recognition cavity between W81 and N140. While in H4 a second Kac sterically fills the cavity 
(K8ac), the H3 peptide adopts an inverted conformation, with the C-terminus close to N140 and the 
N-terminus close to W81, K9ac packing next to W81 and K14ac inserting into the cavity 
(resembling K5ac in H4 from PDB: 3UVW). The peptide backbone (A7 through G13) adopts a 
helical turn substituting the K8ac insertion into the cavity, while positioning S10 and T11 in a way 
that allows binding upon phosphorylation of S10 but not of T11. (C) In solution evaluation of 
BRD4/BD1 and BRD4/BD2 binding to a histone H3 peptide acetylated at K9 and K14 and a SIRT7 
peptide acetylated at K272ac and K275ac by isothermal titration calorimetry (ITC). Raw injection 
heats for titrations of peptides into a solution of BRD4/BD1 or BRD4/BD2 are shown in the left 
panels. The right panels show the normalized binding enthalpies corrected for the heat of peptide 
dilution as a function of binding site saturation (symbols as indicated in the figure). Solid lines 
represent a nonlinear least squares fit using a single-site binding model. All ITC titrations were 
performed in 50 mM HEPES pH 7.5 at 25°C, 150 mM NaCl and 15°C while stirring at 1,000 rpm. 
(D) Relative enrichment of amino acids surrounding a central annotated Kac site found in Kac-
dependent (and JQ1-sensitive) BRD4 interactions extracted from the AP-MS data. The boxed 
positions represent the highest enrichment for a particular row compared to every other position in 
the same row. Lysine enrichment at +3 is in agreement with our previously determined Kac-XX-
Kac binding motif for BETs (Filippakopoulos et al., 2012), though here it does not seem to drive the 
interactions. Enrichment of tyrosine at +1 (Kac-Y motif) represents sequences found in histone H1 
as well as other proteins (such as BAZ1B). (E) Comparison of BRD4/BD1 complex with an 
acetylated BAZ1B K221ac peptide to one with H4 K5ac/K8ac (PDB: 3UVW). The BAZ1B peptide 
defines a vector perpendicular to the H4 backbone, while initiating contact with N140 via K221ac 
(shown in a). Side-chain rotations of single residues (D144, I146, L148 highlighted in yellow in 
panel b) on the surface of BRD4/BD1 result in remodelling of the exposed BRD4/BD1 surface, 
allowing insertion of a 310 helix from BAZ1B into the Kac cavity, with Y222 mimicking K8ac. Panel c 
shows a cartoon representation of the side-chain rotations of D144, I146 and L148 (in yellow as 
sticks with translucent surfaces) compared to the H4 complex (residues shown as white sticks). (F) 
ITC validation of SRPK1 K585ac/K588ac (carrying a Kac-Y motif) binding to BRD4 BRDs and 
comparison to a histone H4 K5ac/K8ac peptide. Data are represented as in (C) and titrations were 
performed in 100 mM Na3PO4 pH 8.0, 150 mM NaCl at 15°C while stirring at 1,000 rpm. Both 
peptides show the same affinity for BRD4/BD1 (KD = 9.9 μM) while BRD4/BD2 shows weaker 
binding (KD = 113.6 μM and 29.7 μM for H4 and SRPK1 respectively). (G) JQ1 competition for the 
Kac binding cavity of BRD4/BD1. The complexes of BRD4/BD1 with JQ1 (yellow, top; PDB: 
3MXF), H4 (carrying 2xKac sites, K5ac/K8ac, blue, middle; PDB: 3UVW) and SRPK1 (carrying a 
KacY motif, orange, bottom) are shown on the left. ALPHA-Screen™ competition assay 
demonstrating competitive displacement of an H4 K5ac/K8ac (blue) peptide and an SRPK1 KacY 
peptide (orange). JQ1 inhibits the BRD4/BD1 interaction with H4 and SRPK1 with IC50 values of 
78.5 and 132 nM respectively. (H) Thermodynamic analysis of BRD4/BD1 interactions with H4 and 
SRPK1 peptides. The van’t Hoff plot of the dissociation constant (KD) as a function of reverse 
temperature (T-1) shows the characteristic pattern of endothermic (H4) and exothermic (SRPK1) 
reactions. The dotted lines represent a least square linear fit. The inset shows thermodynamic 
parameters extracted from fitted ITC data in. While both interactions are characterized by negative 
free energy changes, increasing temperature results in more negative enthalpies offset by more 
positive entropic contributions (H4, left) and decreasing enthalpies assisted by decreasing entropic 
contributions (SRPK1, right).  (I) Small angle X-Ray diffraction of tandem BET BRDs. The pairwise 
distance distribution function (P(r)) exhibits the characteristic shape of an elongated particle with a 
long flexible linker. The inset shows experimental scattering patterns (log(I) y-translated) from 
tandem BET BRDs. The dotted black line shows the fit computed from the best representative 
randomly generated model. 
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Supplemental Figure S4 (supporting Figure 5) – The extra-terminal (ET) domain binds to 
specific short linear motifs. (A) Sequence alignment of the BET ET domains. Secondary structure 
prediction identified a helix (α4) following the three helices found on the previously described ET 
domain (Lin et al., 2008) which is not present in BRD4. All BET ET domains are followed by a 
serine-glutamate-aspartate (SEED) rich region. (B) Modular architecture of BRD9 with domain 
boundaries indicated (top). Recovery of endogenous BETs and selected BRD9 interaction partners 
in AP-MS analysis of 3xFLAG-tagged BRD9 deletion constructs expressed in HEK293 cells (see 
Table S2G for a complete list of high-confidence interactors and the legend inset for details). (C) 
In-solution characterization of BRD4/ET and N-terminal BRD9 (residues 2–241) by interaction 
sedimentation velocity (SV) analytical ultracentrifugation (AUC). Sedimentation velocity plots of the 
normalized differential sedimentation coefficient distribution (c(s)), versus the apparent 
sedimentation coefficient corrected to water at 20°C, (s20,w) are shown in the main panel, together 
with the normalized differential molecular weight distribution (c(M)) versus the system mass (M, 
shown in the inset). Both BRD4/ET and BRD92-241 sediment as monomers in solution, and 
associate as demonstrated by mixing different molar ratios of BRD4/ET with BRD92-241, suggesting 
weak association (higher molar ratio of ET shifts the equilibrium towards the complex). 
Experiments were conducted in 50 mM HEPES, pH 7.5, 100 mM NaCl at 4°C. (D) BRD9 disorder 
prediction using GlobPlot (http://globplot.embl.de/). The ET interaction motif is located on the N-
terminal disordered portion of the protein. (E) Mapping of the previously reported WHSC1L199-267 
interaction with BRD4/ET (Shen et al., 2015) using a peptide SPOT array (15 aa window, 2 aa 
overlap), identified a motif in the 146–163 region which was further profiled by alanine-scanning 
using SPOT arrays (bottom) to reveal residues important for the  WHSC1L199-267-BRD4/ET 
interaction, defining the “WHSC1L1-like” ET-interaction motif. Sensitive positions are highlighted 
(yellow, hydrophobic; blue, positively charged). (F) SPOT peptide array spanning BRD9-like and 
WHSC1/L1-like motifs identified in the 12 proteins shown in Figure 5A. Representative peptides 
were further subjected to alanine-scanning to determine the specific contribution from each amino 
acid position to peptide binding (right panel). Sensitive positions are highlighted (yellow: 
hydrophobic; blue: positively charged; red: negatively charged). (G) Mapping of the RPS26 
interaction with BRD4/ET using a peptide SPOT array (15 aa window, 3 aa overlap), identified a 
motif in the 31-48 region which was only recognized by BRD4/ETWT and not BRD4/ETmut. This 
region was further profiled by alanine-scanning using SPOT arrays (bottom) to reveal residues 
important for the RPS26 -BRD4/ET interaction, which included a Phe residue (instead of 
Leu/Ile/Val/Met) within a “BRD9-like” motif. Sensitive positions are highlighted as in (E). 
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Supplemental Figure S5 (supporting Figure 5) - Specific short linear motifs for extra-terminal 
(ET) domain binding are necessary for interactions in cells (A) Potential non-specific ET-interacting 
motifs enriched from AP-MS BRD4 interacting partners identified in SPOT arrays and verified with 
alanine scanning. The three charged-like motifs (CM1: fn- [+]x[+]-fc; CM2: fn- [+](H)-fc; and CM3: 
fn-[+]-fc , where Φ is one of M,L,V,I,F and [+] is K or R) identified (shown in LOGO format) exhibit 
high dependency on the charged residues (shown in the relative contribution of each residue to 
binding, as determined in alanine scanning experiments and depicted as red bars at the top of 
each graph). (B) Verification of ET-binding motifs employing SPOT arrays and alanine scanning. 
Interactions revealed with the recombinant BRD4/ET domain (WT, top membrane and 4K mutant, 
lower membrane) demonstrate the non-specific character of the charged motifs (CM1, CM2 and 
CM3 shown in A), in contrast to the specific BRD9-like and WHSC1/WHSC1L1-like motifs. (C) 
Validation of specific interactions between the BRD4/ET domain and the WHSC1L1 SLiM in cells 
employing a LacO/LacR chromatin immobilization assay. U-2 OS cells with a stably integrated 256 
LacO array, were transfected with FL-mCherry-BRD4 (WT or ΔET) and FL-GFP-WHSC1L1 (WT or 
mutant). BRD4 localizes on the LacO array (red dots) together with FL-GFP- WHSC1L1WT (green 
dots, left); overlap is shown in the merge panel (yellow dots). Deletion of the entire ET domain (AA 
589–676) results in loss of the interaction (left, lower panel), as does deletion of the ET-motif within 
WHSC1L1 (GFP-WHSC1L1del, lacking amino acids 143–161, middle panels), or mutation of this 
motif (K154A/L155A/K156A, GFP- WHSC1L1mut, right panels). (D) LacO/LacR validation of ET-
specific interactions in cells between BRD4 and ZNF592. U-2 OS cells with a stably integrated 256 
LacO array were transfected with FL-mCherry-BRD4 (WT or ΔET) and FL-GFP-ZNF592 (WT or 
mutant). BRD4 localizes on the LacO array (red dots) together with GFP-ZNF592WT (green dots, 
left). Deletion of the ET domain (amino acids 589–676) results in loss of the interaction (left, lower 
panel), as does deletion of the ET-motif within ZNF592 (GFP- ZNF592del, lacking amino acids 364–
379 middle panels), or mutation of this motif (K374A/V375A/R376A, GFP-ZNF592mut, right panels). 
(E) High content analysis (Operetta 96-well plate format) confirmed these observations in the case 
of full-length GFP-tagged BRD9, WHSC1L1 and ZNF592 (WT or mutant proteins with an ET-motif 
deletion or mutation as in (D) following co-localization with mCherry- and LacR-tagged BRD4 (WT 
or ΔET). In each experiment 50-300 cells were monitored. (F) Patient mutations from the Cancer 
Genome Atlas (TCGA; https://cancergenome.nih.gov) mapped onto the NMR structure of the 
BRD4/ET domain (PDB ID: 2N3K). Residues found mutated in at least 2 (beige spheres) or 3 (red 
spheres) BET proteins are shown. 
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Supplemental Figure S6 (supporting Figure 6) - BRD inhibition impacts the cellular localization 
of BET proteins and interactions with proteins and DNA. (A) HeLa cells transfected for 48 h with 
indicated siRNAs (see Table S1C for all siRNA details) were treated with DMSO or 500 nM JQ1 for 
1 h prior to fixing and staining with antibodies targeting BRD3 and TCOF1 and with DAPI. (B) Dot 
plot of selected interaction partners associated with BRD3 proteins (WT, BD1mut, BD2mut or 
(BD1:2)mut detected by BioID with and without 500 nM JQ1 treatment for 24 h (see legend inset). 
See Table S2M for complete results. (C) Bar graph displaying the background-subtracted spectral 
counts for TCOF1 as a BioID hit for the indicated constructs and conditions. (D) Heatmap showing 
the normalized ChIP-seq signal intensity of merged replicates of BRD3-WT and BRD3 (BD1:2)mut. 
ChIP-seq data from U-2 OS cells for H3K4me3, H3K27Ac and H3K4me1 as previously reported 
(arrayExpress ID E-GEOD-44672, (Walz et al., 2014)). After intersecting ChIP-seq peaks, BRD3 
binding sites were classified as “WT only”, “WT shared with (BD1:2)mut” and “(BD1:2)mut”. Within 
each category, binding sites were rank-ordered based on the intensity of BRD-WT ChIP-seq 
signal. ChIP-seq signal at +/- 5 kb around the centres of BRD3 binding sites was averaged in 50 
bp bins. Colour intensity represents the normalized ChIP-seq read counts (read counts are 
normalized to 10 million per library).  (E) A heatmap showing the emission parameters where each 
row represents a different state, the first five columns (left to right) represent different factors. 
States are annotated on the graph. For the first five columns, the darker the color, the higher the 
probability of observing the factor in the corresponding state (observation frequency (%)). The 
second last columns (“Genome”) represents the percentage of genome each state overlaps. The 
last column (TSS +/- 2 kb) represents the fold enrichment of each state for regions 2 kb +/- from 
TSSs. The same color scale applies to the whole heatmap. (F) Genome browser view showing the 
ChIP-seq signal of BRD3, (BD1:2)mut, TCOF1, H3K27ac (active promoters and enhancers), 
H3K4me1 (enhancers) and H3K4me3 (promoters) at the rDNA locus. The structure of the rDNA 
locus is shown on the top (as per Figure 6D). X axis: relative genomic location on the rDNA loci; y 
axis: normalized counts (normalized to 10 million reads for each library). (G) Correlation heatmap 
of signal of different factors on the rDNA locus. Colour intensity presents Pearson correlation 
coefficient. Hierarchical clustering was performed based on the pair-wise correlation coefficients.  
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Supplemental Figure S7 (supporting Figure 7) - BRD3 impacts rRNA production and cell 
proliferation. (A) Quantitative immunofluorescence of U-2 OS cells treated with the indicted 
concentrations of tetracycline (to induce BRD3 (BD1:2)mut expression) or JQ1 was performed as 
per Figure 7B. The 5-EU signal overlapping with the fibrillarin signal (i.e. nucleolar RNA) was 
quantified in > 400 cells for each experimental condition. P values were calculated using the two-
tailed Student t-test statistic and are represented so that P < 0.001, “***”. (B) ChIP-qPCR of 
endogenous BRD4 (left) and GFP-BRD3 (right) to the MYC promoter in GFP-BRD3 U-2 OS cells 
treated with increasing amounts of tetracycline or 500 nM JQ1. The x-axis represents the 
normalized fold enrichment over the signal obtained from rabbit isotype IgG control purifications. 
Data represent the mean ± SEM for each of the two biological replicates analysed across three 
technical replicates. P values were calculated using Student’s t-test. ***, P < 0.001; **, P < 0.01; *, 
P < 0.05; ns, not significant. (C) Close-up view of gene tracks showing BRD3 (green track) and 
BRD3 (BD1:2)mut (orange track) occupancy across the BRD2 and BRD4 gene loci. The y-axis 
represents the number of reads aligned to each genomic position. (D) Protein levels as detected by 
immunoblot in Flp-In T-REx HEK293 cells expressing 3×FLAG-tagged BRD2, BRD3, BRD4 or an 
NLS-BirA*-FLAG control induced with 1000 ng/mL tetracycline for 24 h (see STAR methods and 
Table S1C). (E) Protein levels as detected by immunoblot in Flp-In T-REx U-2 OS cells expressing 
GFP-tagged BETs induced with indicated concentrations of tetracycline for 48 h. Black arrows 
indicate endogenous BET while red arrows indicate GFP-tagged BETs. (F) Venn diagrams 
showing overlap of BRD4 and CHD4 ChIP-seq peaks in mouse embryonic stem cells (top) or 
BRD4 and BRD9 in mouse AML cells (bottom). Signal densities are shown on the right panels, for 
enrichment of CHD4 peak density around ±3 kb of BRD4 identified peaks in mESCs, as well as 
enrichment of BRD4, BRD9 and FLAG-BRD9 signal densities ±3 kb around BRD4 identified peaks 
in mouse AML cells. The signal scale is shown in the inset. Published data were used from GEO 
sets: 1:  GSE69140; 2:GSE61188; 3: GSE52279; 4,5: GSE79360 as indicated in the inset. (G) 
Kaplan–Meier survival curves of 1928 patients with lung cancer from cohort studies CAARRAY, 
GSE14814, GSE19188, GSE29013, GSE30219, GSE31210, GSE3141, GSE31908, GSE37745, 
GSE43580, GSE4573, GSE50081, GSE8894 and TCGA were generated using KM plotter 
(http://kmplot.com/) for BRD3 (left) and BRD4 (right).  
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