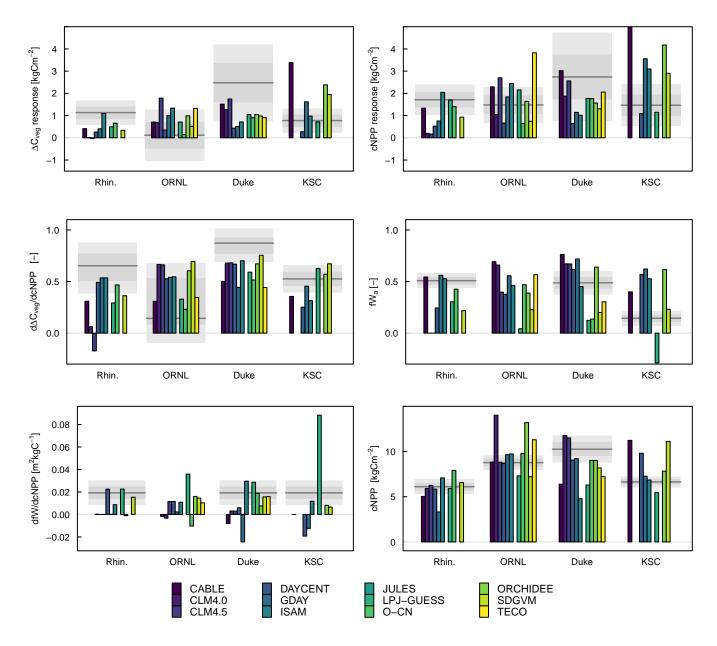
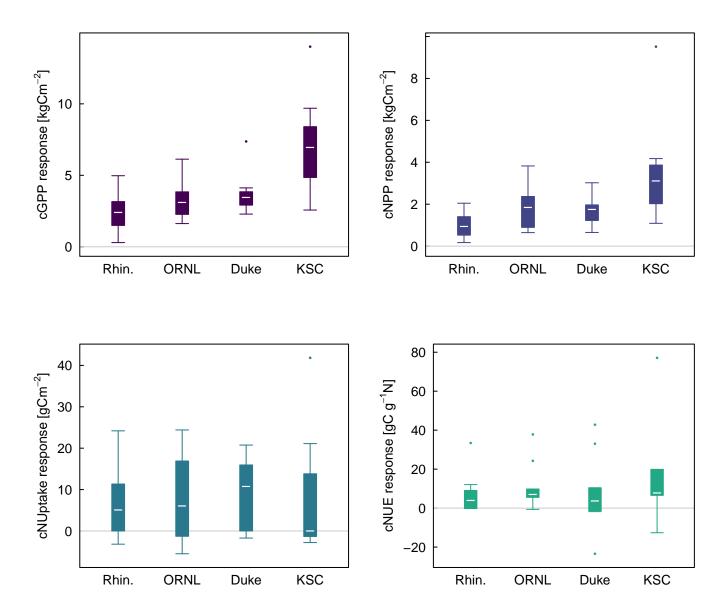

Supplementary Information for: Decadal biomass increment in early secondary successional woody ecosystems is increased by ${\rm CO}_2$ enrichment


Walker et al.

November 10, 2018


Supplementary Figures

Supplementary Figure 1: Same as Figure 1 but with extended CIs demonstrating strong overlap between Rhinelander and Duke relationships. Also shown are the median values of the boot-strapping which show agreement between the mixed-model fit to the data and the boot-strap median value at Rhinelander, Duke, and KSC, but not at ORNL. This indicates the need for more replicates to be confident in the relationship and ΔC_{veg} response at ORNL.

Supplementary Figure 2: As Figure 3 in the main document but individual model predictions of the ΔC_{veg} response to CO₂ enrichment (upper left); the two variables leading to the response—the cNPP response to CO₂ enrichment (upper right) and $\frac{d\Delta C_{veg}}{dcNPP}$ (middle left); and the three components of $\frac{d\Delta C_{veg}}{dcNPP}$ — fW_a (middle right), $\frac{dfW}{dcNPP}$ (bottom left), and cross-treatment mean cNPP (bottom right). Grey shaded areas represent the observations (dark grey lines represent observed means or regression parameters, light grey polygons represent the ±1 s.e.m. CI and the lighter grey polygons represent the 95 % CI).

Supplementary Figure 3: Model ensemble predictions of the absolute response to CO_2 enrichment of cumulative GPP; cumulative NPP, cumulative nitrogen uptake; and cumulative nitrogen use efficiency calculated as cNPP/cNUP. The white bar is the median, the box the inter-quartile range, whiskers the range of data within four times the IQR, and dots are outliers.

Supplementary Tables

Supplementary Table 1: BiomassCO2 model selection

response	fixed effects	random group	random effects	AICc	method
$ \Delta C_{veg} \Delta C_{veg} \Delta C_{veg} \Delta C_{veg} $	(Intercept) (Intercept), co2ELE (Intercept), co2ELE (Intercept), co2ELE	site site site site	(Intercept) (Intercept) (Intercept), co2ELE (Intercept)	108.8 98.0 100.0 97.0	ML ML ML REML
ΔC_{veg}	(Intercept), co2ELE	site	(Intercept), co2ELE	98.7	REML

Supplementary Table 2: meanNPP model selection

response	fixed effects	random group	random effects	AICc	method
NPP	(Intercept)	site	(Intercept)	-24.8	ML
NPP	(Intercept), eCO2	site	(Intercept)	-42.2	ML
NPP	(Intercept), eCO2	site	(Intercept), eCO2	-39.3	ML
NPP	(Intercept), eCO2	site	(Intercept)	-34.7	REML
NPP	(Intercept), eCO2	site	(Intercept), eCO2	-31.7	REML

Supplementary Table 3: Biomass model selection

response	fixed effects	random group	random effects	AICc	method
ΔC_{veg}	(Intercept)	site	(Intercept)	108.8	ML
ΔC_{veg}	(Intercept), cNPP, eCO2, cNPP:eCO2	site	(Intercept)	67.5	ML
ΔC_{veg}	(Intercept), cNPP, eCO2	site	(Intercept)	65.5	ML
ΔC_{veg}	(Intercept), eCO2	site	(Intercept)	98.0	ML
ΔC_{veq}	(Intercept), cNPP, age ¹ , cNPP:age	site	(Intercept)	63.5	ML
ΔC_{veq}	(Intercept), cNPP, age, cNPP:age	site	(Intercept), cNPP	66.1	ML
ΔC_{veg}	(Intercept), cNPP, age	site	(Intercept)	64.8	ML
ΔC_{veg}	(Intercept), cNPP, age	site	(Intercept), cNPP	62.6	ML
ΔC_{veg}	(Intercept), cNPP	site	(Intercept)	63.2	ML
ΔC_{veg}	(Intercept), cNPP	site	(Intercept), cNPP	60.2	ML
ΔC_{veg}	(Intercept), cNPP	site	(Intercept)	65.9	REML
ΔC_{veg}	(Intercept), cNPP	site	(Intercept), cNPP	61.1	REML

¹ Age since disturbance.

Supplementary Table 4: WoodAllocation model selection

	Supplementary rable 4. W	voodrinocation	model selection		
response	fixed effects	random group	random effects	AICc	method
fW	(Intercept)	site	(Intercept) (Intercept) (Intercept) (Intercept)	-73.6	ML
fW	(Intercept), eCO2, cNPP, eCO2:cNPP	site		-77.0	ML
fW	(Intercept), eCO2, cNPP	site		-80.2	ML
fW	(Intercept), eCO2	site		-79.4	ML
fW	(Intercept), cNPP	site	(Intercept)	-82.3	ML
fW	(Intercept), cNPP	site	(Intercept), cNPP	-78.4	ML
fW	(Intercept), cNPP	site	(Intercept)	-70.9	REML
fW	(Intercept), cNPP	site	(Intercept), cNPP	-66.9	REML

Supplementary Table 5: ORNLWoodAllocation model selection

response	fixed effects	parameter	\mathbf{se}	t	P(t)		F	dfn	dfd	P(F)	R2	AICc
fW	(Intercept) $co2ELE$	0.6 -0.1		15.3 -0.9	$0.0 \\ 0.4$	***	0.843	1	3	0.426	0.22 (-0.04)	15.2

Supplementary Table 6: ORNLRootAllocation model selection

response	fixed effects	parameter	se	t	P(t)		F	dfn	dfd	P(F)	R2	AICc
fFR	$_{\rm co2ELE}^{\rm (Intercept)}$	0.1 0.1			$0.1 \\ 0.3$	٠	1.59	1	3	0.296	0.35 (0.13)	15.4