Expanded View Figures

Figure EV1. Lgr5-negative/Krt19⁺ and Atoh1⁺ cells show colonic epithelium renewal capacity in homeostasis and injury.

- Illustration of experimental protocol outlining DT treatment of Krt19^{BAC-CreERT2};ROSA^{tdTomato};Lgr5^{DTR-GFP} mice. А
- B, C In control conditions and after Lgr5⁺ stem cell ablation, Krt19⁺ cells form crypt ribbons and give rise to new Lgr5⁺ stem cells (N = 2 per time point). D Illustration of experimental protocol outlining DT treatment of Krt19^{BAC-CreERT2} or Atoh1^{CreERT2} mice.
- E, F Rare proliferating Krt19⁺ or Atoh1⁺ cells (insets, arrowheads) are found in the transit-amplifying zone of control crypts, and none are present at the bottom of crypts. At d4 of DT treatment, more proliferating Krt19⁺ or Atoh1⁺ cells (insets, arrowheads) are found in the transit-amplifying zone and the crypts are devoid of proliferating cells. By d8 of DT treatment, proliferating Atoh1⁺ cells (insets, arrowheads) are found at the bottom of crypts.

Data information: Scale bars (B, E) = 45 μ m; scale bars (F) = 50 μ m. Data are represented as mean \pm SEM.

В

D Krt19^{Bac-CreERT2};Rosa26^{tdTomato};Lgr5^{DTR-GFP} or Atoh1^{CreERT2};Rosa26^{tdTomato};Lgr5^{DTR-GFP}

Figure EV1.

Figure EV2. Krt19-expressing cells include multiple secretory cell types in the colon and small intestine.

- A Illustration of experimental protocol outlining tamoxifen induction of Krt19^{BAC-CreERT2};ROSA26^{tdTomato} mice.
- B Immunofluorescence staining showing co-localization of Krt19⁺ cells with ChgA⁺, Dclk1⁺, and Muc2⁺ secretory cells in the small intestine and colon (arrowheads).
- C Illustration of experimental protocol outlining DSS-induced colitis in wild-type mice.
- D Effects of DSS colitis on RNA expression levels of various secretory (*Prox1, Neurog3, Bmi1*) cell markers. *Neurog3* expression is significantly increased acutely post-DSS (d5), whereas *Prox1* expression is significantly increased during late recovery (d19). *Bmi1* expression is not affected by DSS colitis.

Data information: Scale bars (B) = 100 μ m. Data are represented as mean \pm SEM analyzed by one-way ANOVA. *P \leq 0.05, ***P \leq 0.0001.

A Krt19Bac-CreERT2;Rosa26tdTomato

В

Figure EV2.

Figure EV3. Atoh1⁺ cells show rare renewal capacity in homeostasis, yet post-injury Atoh1⁺ cells acquire stemness.

A, B Occasionally, $Atoh1^+$ cells are able to form crypt ribbons that persist up to 30 days after lineage labeling in homeostasis (N = 4 per condition). C Following DT ablation of $Lgr5^+$ cells, the majority of crypts are renewed and maintained by $Atoh1^+$ lineage.

Data information: Scale bars (A) = 100 μ m; scale bars (C) = 500 μ m. Data are represented as mean \pm SEM using one-way ANOVA. *** $P \leq 0.0001$.

Figure EV4. Small intestinal Atoh1⁺ cells show renewal activity following injury in vitro.

A Illustration of experimental protocol outlining 4-OHT induction and irradiation of Atoh1^{CreERT2};ROSA26^{tdTomato} small intestinal organoids.

- B Atoh1-tdTomato⁺ cells within crypts and villus regions of unirradiated organoids are scattered among tdTomato-negative cells. After irradiation-induced damaged, Atoh1-tdTomato⁺ cells are able to acquire stemness and give rise to fully labeled crypts.
- C After radiation-induced damage, 25% of organoids show robust lineage labeling (N = 3 control; N = 4 irradiated; n = 3 technical replicates per condition).
- D Illustration of experimental protocol outlining 4-OHT induction of Atoh1^{CreERT2};ROSA26^{tdTomato} small intestinal organoids.
- E, F Pre-passage organoids contain sporadic Atoh1-tdTomato⁺ cells interspersed between non-labeled cells. Post-passaging, fully labeled spheroids develop into fully labeled organoids (N = 3; n = 3 technical replicates per condition).

Data information: Scale bars (B, E) = 100 μ m. Data are represented as mean \pm SEM analyzed by Student's t-test. ** $P \leq$ 0.01.

Pre-passage Post-passage

Figure EV5. Atoh1⁺ colonic progenitor cells show renewal capacity post-stress induced passaging in vitro.

A Illustration of experimental protocol outlining 4-OHT induction of *Atoh1*^{CreERT2};ROSA^{tdTomato} colonic organoids.

B, C Pre-passage colonic organoids exhibit lineage labeling of $Atoh1^+$ cells that is limited to single cells. Following passage, $Atoh1^+$ progenitors give rise to fully labeled colonic organoids (N = 3; n = 3 technical replicates per condition).

Data information: Scale bars = 100 μ m. Data are represented as mean \pm SEM analyzed using Student's t-test. ***P \leq 0.0001.