Supplementary Materials

BioVR: a platform for virtual reality assisted biological data integration and visualization
Jimmy F. Zhang"", Alex R. Paciorkowski®, Paul A. Craig®, and Feng Cui'’

Thomas H. Gosnell School of Life Sciences, 2School of Chemistry and Materials Science, Rochester
Institute of Technology, One Lomb Memorial Drive, Rochester, NY 14623, USA *Departments of
Neurology, Pediatrics, Biomedical Genetics, and Neuroscience, University of Rochester Medical Center,
601 ElImwood Ave, Rochester, NY 14642, USA

Contents
SUppleMENtary FigQUIESo e e e 2
FIQUIE S . o 2
FIgUIE S . 3
FIgUIE S . o 4
FIgUIE SA 5
Supplementary Tables. e e 6
Table S . o 6
TablE S . . o 7
Table S3 . o 8
Table SA . . o 9
Supplementary Methods 10
Installation INStrUCLIONS. o o ot e e e e e e e e e e 10
System Requirements & Installation. e 10
INStallation INStTUCLIONS. . . . o v v o e et e e e e e e e e e e e e e e e e 11
C0dE EXCRIPES. . . v vttt e e 12
NUCIEOTIAR.CS. . . o v ot e e e e e e e 13
RESIAUE.CS. & v v vttt e e e e e 13
FASTAMOAEL.CS. . . .o 13

Qria2-viewer - C, Mac & Linux Stanalone <DX11 o

S @ T T T

Mierarchy

| © Inspector
Creste -
€ gria2-viewer-001

@ Fovercast Static =
Tag Ustagged 0
¥ Transform Go.

Posttion 02 Y0

» tewtPretab) 03
byt Rotation xo 278055403
Directional Light Scale 3 L £l
Nk ¥ o Tree Updater (Script) Go
HBaimanager ;
InteractionManager 4 :
WSt Manager
v b
» Hoverkit 8
» CurserRenderers i
¥ - ¥ Hover Cursor Follower (Script) Go

Cursors (HoverCursorDatabra| ©
< Laf Paim s
Follom Cursor Activel

» Objects To Activate

Follom Cursor Positead

Follom Cursor Rotatiad

Scale Using Cursor

Cursor Size Mulbplie T

KHovercast (Transform) o
(4] i :
%0 0 o
& project Console ¥ - ¥ Hovercast Interface (Script) o
Claar | Collps on Blay | Emer Pause 2 : = =
) inside Request?DBI). fom Container ARows (Transform) °
ITEeine ek taal Obiec Active Row Foot (Hoveriayouthrchon) | ©
) inside Request?DB). ne (Hover Layout Arc Row)
UnityEngine DebugiLag(Object) Ronvjnin Rent B e A bt
Open Ttam Gpenitem (Hoveritembatasel ©
Tite Item Taleitem (HoverltemDataText &
Back ltem Backtem (HavertemOatasele ©
15 Open v

inside RequestPDB().

Figure S1. Unity’s user interface.

Updates, Fetches Geometric, Styling, Rendering Information

Data Instance

Ul Updates,

User Interactions

Figure S2. The ideal MVC architecture involves complete separation of concerns.

Figure S3. Hover Ul v 2.0.0-alpha used in conjunction with Leap Motion Orion v3.0.0. The
menu is anchored to the user’s left hand. The index finger on the right hand acts as a cursor: it
generates a button pressed event for a particular button when it hovers over that button within a

set amount of time. The specific timing varies and can be set per button.

ull Rotation

Allow Two Handed-Sgalt

Figure S4. Rattus norvegicus Gria2 DNA sequence loaded into the DNA Panel. The Gria2 DNA
sequence (120,327 bp) was given in a FASTA format in which the start and end positions of the sequence
on Chromosome 2 (NC_005101) are provided in the header. As the user’s right index finger hovers over a
point on the panel, the nucleotide for that point is retrieved; it is displayed along with the position in rat

Chromosome 2 at which the nucleotide is located.

Supplementary Table S1. Common objects in Unity and their uses.

Class

GameObject

Component

MeshFilter

MeshRenderer

Mesh

MonoBehaviour

Description

Base class for all entities
in Unity scenes.

Base class for
everything attached

to GameObjects.

Accessor class for Mesh
objects. Passing Mesh
info to MeshRenderer
for rendering.

The Mesh Renderer
takes the geometry
from the Mesh

Filter and renders it at
the position defined by
the object’s Transform
component.”
Represents a geometry,
e.g. a plane, cube, or
any other polyhedron.
Base class from which
all Unity scripts derive.

Contains

Empty, Transform
Component, other
Components, or
other GameObjects.
A reference to the
GameObject to which
the component is
attached.

Mesh object.

References to
Lighting, Material
objects used to
render geometry.

int[] triangle,
Vector3[] vertices,
Vector3[] normals,
Awake(), Start(),
Update() functions

Parent in Scene
Hierarchy

Other GameObijects,
Unity scene

Is attached to a
GameObject but has
no parent since it isn’t
represented in scene
hierarchy.

Is attached to a
GameObject, but has
no parent for the same
reason as Component.
Is attached to a
GameObject, but has
no parent for the same
reason as above.

Retreived via
MeshFilter.

Scripts which inherit
MonoBehaviour are
attached to
GameObject instances.

Parent in Object
Oriented
Inheritance
Object

Object

Component

Renderer >
Component

Object

Behaviour >
Component

Note: Instances of MeshFilter, MeshRenderer, and other classes are often refered to as a type of
Component when attached to a GameObject.

https://docs.unity3d.com/ScriptReference/GameObject.html
https://docs.unity3d.com/Manual/class-MeshFilter.html
https://docs.unity3d.com/Manual/class-MeshFilter.html
https://docs.unity3d.com/Manual/class-Transform.html

Supplemental Table S2. A summary of MonoBehaviour functions for enforcing game states.
These functions are helpful for maintaining the application state within the game loop.

public
Monobehaviour

functions
Awake ()

Start ()
Update ()
FixedUpdate ()
LateUpdate ()

OnGUI ()
OnDisable ()

OnEnabled ()

Call Frequency & Timing

Once, when the script instance is
being loaded.

Once, when the script is enabled,
before any Update() functions are
called

Every frame, after Start() is called

At certain framerate intervals, eg. at
frames 24, 48, 72, etc.

Every frame, after all Update()
functions are called.

Whenever a GUI event is fired

Called when component is disabled or
becomes inactive

Called when component is enabled or
becomes active

Role

“Used to initialize any variables or game
state before the game starts.”

Facilitates interactions between enabled
components. Other components may not be
enabled during Awake().

Implements change in state / behavior
Computationally expensive state changes

Ordering events

Handling GUI events
Teardown code and associated routines

Component initialization code

Supplementary Table S3. The complete hierarchical menu set is an instance of Hover Ul, and
open source project for VR interfaces.

e Gria2-Viewer Main Menu

o DNA
= Show
= Coding Region (CDS)
= Back
o RNA
= Show
= Consensus (MSA)
= Back
o AA

= Show on Model
= Consensus
= Back

o Homology

= Rattus norvegicus
= Homo sapiens
= Pan troglodytes

= Back
o User Input Variants
= Variant1
= Variant 2
= Variant 3

Note: Italics represent buttons which will be implemented in a future release.

Supplementary Table S4. Nucleotides in DNA and RNA Panels are represented by the colors
listed above.

Nucleotide | Color RGB

A Blue 68,155,255
T/U Yellow | 244,220,110
C Red 224,81,62

G Green | 83,209,131

Note: Each pixel can be set to a unique color using the Texture2d.SetPixel function. Thus, a sequence of n
nucleotides will generate n / textureWidth rows of textureWidth color squares. Each color square
represents the nucleotide at a unique sequence position.

Excerpts from Documentation

The following is an excerpt of installation instructions from the documentation for Gria2-Viewer. The
complete documentation can be found at https://github.com/imyjimmy/gria2-viewer.

System Requirements & Installation

Hardware
Minimum Specs

e VR-Capable PC
o Graphics Card: NVIDIA GTX 1050 Ti / AMD Radeon RX 470 or greater

o Alternative Graphics Card: NVIDIA GTX 960 4GB / AMD Radeon R9 290 or
greater

o CPU: Intel i3-6100 / AMD FX4350 or greater
o Memory: 8GB+ RAM
o Video Output: Compatible HDMI 1.3 video output
o USB Ports: 1x USB 3.0 port, plus 2x USB 2.0 ports
e Oculus Rift CV1 (DK2 not tested)
e Leap Motion Controller

Recommended PC Specs

e Graphics Card: NVIDIA GTX 1060 / AMD Radeon RX 480 or greater

e Alternative Graphics Card: NVIDIA GTX 970 / AMD Radeon R9 290 or greater
e CPU: Intel i5-4590 equivalent or greater

¢ Memory: 8GB+ RAM

e Video Output: Compatible HDMI 1.3 video output

e USB Ports: 3x USB 3.0 ports, plus 1x USB 2.0 port

e OS: Windows 10

Exact PC Specs Used
The Gria2-Viewer project is tested on the following hardware:

o Eluktronics P650RP6 Premium VR Ready Gaming Laptop
o Graphics Card: 6GB GDDR5 NVIDIA GeForce GTX 1060

e CPU: Intel Core i7-6700HQ Quad Core

e Memory: 8GB DDR4 RAM

e Storage: 128GB Performance SSD + 1TB HDD

e OS: Windows 10 Home

10

https://github.com/imyjimmy/gria2-viewer

e Full HD 15.6" IPS

Software*

e OS: Windows 8.1 or newer
e Leap Motion Software Modules:

o

o

o

o

SDK: 3.2.0+45899 (Orion) Download Here

Core Assets: 4.1.5 Download Here

Interaction Engine v0.3.0 Download Here
Hands Module 2.1.0 Download Here

e Oculus SDK 1.11.0 Download Here
e Hover UIKit 2.0.0 beta Download Here

*Software must be exact versions!!

Other software includes: git and your favorite text editor.

Installation Instructions

Components should be installed in the following order:

AR .

Unity

Plug in and install Oculus device
Oculus SDK

Attach Leap Motion sensor to Oculus Headset; install Leap Motion Software
Download Gria2-Viewer from github here and open Assets/gria2-viewer-

001.unity with Unity

© o N o

Leap Motion SDK

Leap Motion Core Assets

Leap Motion Hands Module

. Leap Motion Interaction Engine

10. Hover UI Kit

At each of these installations it is highly recommended that you make a bare-
bones Unity project to test that the components have been added. Use the provided
instructions from each of the software vendors. Requires working knowledge of git

and preferably bash for Windows.

11

https://developer.leapmotion.com/releases/?category=orion
https://developer.leapmotion.com/releases/core-asset-415
https://developer.leapmotion.com/releases/interaction-engine-030
https://developer.leapmotion.com/releases/hands-module-210
https://developer.oculus.com/downloads/package/oculus-platform-sdk/1.11.0/
https://github.com/aestheticinteractive/Hover-UI-Kit/releases/tag/v2.0.0B
https://github.com/imyjimmy/gria2-viewer

Code Excerpts

Nucleotide.cs

/*
* @imyJimmy

*/

namespace VRModel .Monomer

using UnityEngine;
using System;

using System.Collections;
using System.Collections.Generic;

public enum Nuc {A,T,C,G,X};

alignment skips.

public class Nucleotide {

public static readonly Dictionary<Nuc,
Dictionary<Nuc, string>

{Nuc

{Nuc.

{Nuc.

{Nuc.

{Nuc.
}i

B

r

4

r

OO NON=!

r

{

"A" }
"T" }
"C" }
"G" }

u_u}

r

r

r

r

//X 1s used to mark where MSA

string> nucStr

public static readonly Dictionary<string, Nuc> strNuc
Dictionary<string, Nuc> {
Nuc.A}
Nuc.T}
Nuc.C}
Nuc.G}
Nuc.X}

{"an,
(T,
e,
{"G",
=,

) 2

4

4

4

r

public static readonly Dictionary<Nuc,

defaultColor = new Dictionary<Nuc,

{Nuc.

{Nuc.

{Nuc.

{Nuc.

{Nuc.
ki

A,
4
14

14

X HOQ

14

new
new
new
new
new

Color32(
Color32(
Color32(
Color32(
Color32(

Color32> {

Color32>

68,155,255,255) },
224,81,62,255) },
244,220,110,255) },
83,209,131,255) },
99,99, 99,255) }

public static Nuc charToNuc (char c) {

return strToNuc (Char.ToString(c)) ;

}

public static Nuc strToNuc (string x)

try {

12

{

new

new

return (Nuc) Enum.Parse (typeof (Nuc), x);

}
catch {

throw new Exception|();
}

public static string NucToStr (Nuc n) {
return n.ToString () ;

}
}

Code Excerpt 1: Nucleotide.cs defines nucleotide enums, their color schemes under certain conditions, and the mappings between
strings and enums. The namespace VRModel was used due to a conflict with an existing namespace Model.

13

Residue.cs

//Q@imyjimmy

namespace VRModel {
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class Residue {
public string name { get; set; }

public List<int> triangles { get; set; }
public List<Color32> colors { get; set; }
public List<int> wvertices { get; set; }
public List<int> normals { get; set; }

//1f Splitting.cs separates the protein into more than 1
mesh,

//the mesh number list refers to the mesh numbers in which
the residue is represented.

//colors, verts, normals and triangle indices are all reset
with respect to the current mesh.

// (I think)

public List<int> meshIndices { get; set; }

}

}

Code Excerpt 2: PDB data is parsed and converted to meshes called Ribbons. Residue.cs keeps track of which vertices, triangles,
colors and normal belong to a given amino acid. A list of type List<Residue> allows for the mapping of residue sequence
information to the specific set of vertices that represent the given residue. Due to vertex limits, some amino acids may span
multiple geometries (Ribbons). List<int> meshIndices lists all of the indices corresponding to the List<mesh> index in which
they can be found. Most Residue instances list one int in meshindices because splitting the ribbon geometry into two only occurs
when the upper vertex limit for a particular mesh is reached.

14

FASTAModel.cs

//author: @imyJjimmy
//loads fasta files.

namespace VRModel .Monomer {
using UnityEngine;
using System.Collections;
using System.Collections.Generic;
using System.IO;
using System.Text.RegularkExpressions;
// using UI;

public class FASTAModel {

public Dictionary<string, string[]> data; //key:
">NM 001001775.3"
//note: DNAModel key
contains: complement, indexStart, indexEnd, etc.
//value : [descr, sequence]
//Q@todo: [descr,
indexStart, indexEnd, sequence]
//value example: ["Gallus
gallus glutamate ionot...subunit 2 (GRIA2),...mRNA",
// ATTATCCC...]
//public string niceName;
public Dictionary<string, string> niceName;

public FASTAModel () {
data = new Dictionary<string, string[]>();
niceName = new Dictionary<string, string>();

}

Code Excerpt 3: FASTAModel.cs parses FASTA files and distributes their data among the data Dictionary instance. An example
entry in data would be: { “>NM_001001775.3” => [“Gallus gallus glutamate ionotropic receptor subunit 2 (GRIA2), mRNA”,
“ATTATCCAT...”]}

15

