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Materials and Methods 
Mineral preparation. Mineral samples were obtained from Ward’s Science (Rochester, 
NY, USA; magnetite: #470025-672, pyrite: #470206-112, pyrrhotite: #470025-750, 
calcite: #470025-512, apatite: #470226-354). Pyrite, pyrrhotite, and magnetite were 
ground mechanically using a jaw crusher and disk mill sieved to exclude grains smaller 
than 75 µm and greater than 150 µm and acid-washed as described in.1 Briefly, the 
samples were sonicated in 95% ethanol 8–10 times, soaked in 0.1 M nitric acid for 1 
minute, and then rinsed thoroughly with nanopure water with a final 95% ethanol wash to 
prevent re-oxidation. The grains were then allowed to dry completely in an anaerobic 
chamber. Removal of the oxidized layers was verified by measuring the amount of sulfate 
released using ion chromatography. Calcite and apatite were ground by hand in a pestle 
and mortar (calcite, apatite) and sieved to remove particles under 75 µm.  
 
RNA preparation. All the random RNAs and the X, Y, and Z RNA fragments were 
purchased from Tri-Link Biotechnologies (San Diego, CA, USA). The W fragment and 
the WXYZ product (size marker) were prepared through run-off in vitro transcription as 
described previously.2 For quantification, random RNAs and the W fragment were 5´-
labeled with γ32P•[ATP] using T4 polynucleotide Kinase (NEB). 
 
RNA adsorption onto mineral surfaces. Typically, 0.6 μM of each length-class of 
random RNA and their 32P-labeled fraction (≤0.005 μM each) were incubated in 10 μL 
buffer (100 mM MgCl2, 30 mM EPPS, pH 7.0) in the presence or absence of 0.2 mg of 
one type of mineral particle at 22 ºC (room temperature) for 2 h. In a subset of 
experiments, a 10-fold higher concentration (6 µM) was used instead. The RNAs were 
heated to 65 ºC for 2 min and cooled to room temperature just before use. The incubation 
time (2 h) was more than sufficient for the RNA length distribution on mineral surfaces 
to equilibrate (Fig. S7). After incubation, an aliquot of reaction solution was centrifuged 
(6,000 rpm, 30 sec) to remove as much supernatant as possible. An aliquot of the 
supernatant was put in nine volumes of stripping buffer (50% formamide, 8 M urea, 50 
mM EDTA, pH 8.0, 0.025% bromophenol blue). Mineral particles were quickly washed 
with >300-fold wash solution (100 mM MgCl2, 30 mM EPPS, pH 7.0) and centrifuged 
(6,000 rpm, 30 sec) to remove unbound RNAs. After the removal of wash solution, 
mineral particles were mixed with 50 μL of the stripping buffer per 0.2 mg minerals and 
incubated for 30 min at 22 ºC and 3 min at 80 ºC. The supernatant and stripped RNA 
solutions were subjected to polyacrylamide gel electrophoresis. Samples were heated to 
80 ºC for 2 min, cooled on ice for 1 min, loaded onto a 15% polyacrylamide / 8 M urea 
denaturing gel in 1X TBE buffer, and electrophoresed at 900–1000 V for approximately 2 
h. Gels were visualized by phosphorimaging on a Typhoon Trio+ imager (GE 
Healthcare), and band intensities were quantified using the ImageQuantTM TL software 
(GE Healthcare). 
 
Self-assembly reaction with hydroxyapatite. The standard reaction mixture (20 μL) 
contained 2 μM W, X, Y, and Z fragments, 32P-labeled W fragment (≤0.02 μM each), 
100 mM MgCl2, 30 mM EPPS (pH 7.5), with or without 0.2 mg hydroxyapatite. The 
RNAs were heated to 65 ºC for 2 min and cooled to 22 ºC before use. The mixture was 
incubated at 48 ºC for 2 h. After the incubation, supernatant was put in the stripping 
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buffer, and RNAs that were adsorbed onto mineral surfaces were stripped off as 
described above. The RNA products were subjected to 8% polyacrylamide / 8M urea 
denaturing gel electrophoresis in 1X TBE buffer (800 V, approximately 2 h) and 
analyzed as described above. 
 
 
Full details of mathematical models.  
We first derive a model for the simultaneous adsorption of different oligomers on a 1D 
surface, to obtain exact expressions for the surface fraction covered by each oligomer in a 
low-dimensional case. We then consider some extensions of the model to higher 
dimensions for stiff and flexible oligomers. These approaches are derived from the works 
of Ramirez-Pastor et al.,3,4 where they have been applied to the case of a single adsorbent. 
 

I Adsorption of oligomers on a 1D lattice  
We start by considering a large solution of RNA oligomers, each of which maintained at 
a fixed dimensionless concentration  𝑐𝑐̅. In addition, the solution contains a mineral, with 
an exposed surface on which oligomers can adsorb. We consider the exposed surface to 
have 𝑀𝑀adsorption sites, with a size comparable to a single monomer. Correspondingly, to 
fully adsorb a k-mer, 𝑘𝑘 adsorption sites need to be occupied. For our purposes, the RNA 
solution contains 8-,12-,16-,20- and 24-mers, and whenever we take a sum (e.g. ∑ ) it 
will denote a sum over these values. 
 
Let us denote with 𝑁𝑁𝑖𝑖 the number of adsorbed RNA oligomers of length i. In total, these 
oligomers occupy 𝑖𝑖 𝑁𝑁𝑖𝑖  mineral sites. Consequently, we find that the number of 
unoccupied mineral sites 𝑁𝑁∅ can be written as 
 𝑁𝑁∅ = 𝑀𝑀 −�𝑖𝑖 𝑁𝑁𝑖𝑖

𝑖𝑖

. (1) 

 
We denote by 𝑊𝑊 the number of empty mineral sites plus the number of adsorbed species 
 𝑊𝑊 = 𝑁𝑁∅ + �𝑁𝑁𝑖𝑖

𝑖𝑖

. (2) 

 
A surface state is completely described by the exact sequence in which the surface bound 
molecules and empty sites appear. The number of states is consequently given by all their 
possible permutations 
 Ω({𝑁𝑁𝑖𝑖},𝑀𝑀) = �

𝑊𝑊
𝑁𝑁8,𝑁𝑁12,𝑁𝑁16,𝑁𝑁20,𝑁𝑁24,𝑁𝑁∅

� =
𝑊𝑊!

𝑁𝑁8!𝑁𝑁12!𝑁𝑁16!𝑁𝑁20!𝑁𝑁24!𝑁𝑁∅!
 . 

 

(3) 

 
We introduce a standard free energy for a 𝑘𝑘-mer on a mineral surface, 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚

∘ , which we 
model as an affine function of 𝑘𝑘 
 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚

∘ = 𝑎𝑎0 + 𝑎𝑎1 𝑘𝑘 , (4) 
 



 
 

4 
 

where we suppose that 𝑎𝑎1 < 0. It follows that  Ω({𝑁𝑁𝑖𝑖},𝑀𝑀) is the partition function for a 
microcanonical ensemble, which can be related to a canonical ensemble 𝑄𝑄({𝑁𝑁𝑖𝑖},𝑀𝑀,𝑇𝑇) via 
 𝑄𝑄({𝑁𝑁𝑖𝑖},𝑀𝑀,𝑇𝑇) = Ω({𝑁𝑁𝑖𝑖},𝑀𝑀) exp(−𝛽𝛽�𝑁𝑁𝑖𝑖

𝑖𝑖

𝜇𝜇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚∘ ), (5) 

 
where 𝛽𝛽 = 1

𝑘𝑘𝑏𝑏𝑇𝑇
, with Boltzmann’s constant 𝑘𝑘𝑏𝑏 and the absolute temperature T. We can 

then extract the Helmholtz free energy F by 
 𝛽𝛽𝛽𝛽({𝑁𝑁𝑖𝑖},𝑀𝑀,𝑇𝑇) = − ln𝑄𝑄({𝑁𝑁𝑖𝑖},𝑀𝑀,𝑇𝑇) = − lnΩ({𝑁𝑁𝑖𝑖},𝑀𝑀) + 𝛽𝛽�𝑁𝑁𝑖𝑖

𝑖𝑖

𝜇𝜇𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚∘ , (6) 

 
We can rewrite lnΩ({𝑁𝑁𝑖𝑖},𝑀𝑀)  as a mixing entropy, by performing a Stirling 
approximation ln𝑁𝑁! = 𝑁𝑁 ln𝑁𝑁 − 𝑁𝑁 + 𝑂𝑂(ln𝑁𝑁) :  
 lnΩ({𝑁𝑁𝑖𝑖},𝑀𝑀) = 𝑊𝑊 ln𝑊𝑊 −  �𝑁𝑁𝑖𝑖

𝑖𝑖

ln𝑁𝑁𝑖𝑖 −  𝑁𝑁∅ ln𝑁𝑁∅, (7) 

 
which can be rewritten as  
 lnΩ({𝑁𝑁𝑖𝑖},𝑀𝑀) = −  �𝑁𝑁𝑖𝑖

𝑖𝑖

ln
𝑁𝑁𝑖𝑖
𝑊𝑊
−  𝑁𝑁∅ ln

𝑁𝑁∅
𝑊𝑊

. (8) 

 
This has the functional form of a mixing entropy (but taken relative to 𝑊𝑊 instead of 𝑀𝑀), 
which gives a clear interpretation of this object. However, we prefer to work in terms of 
surface coverages 𝜃𝜃𝑖𝑖 = 𝑖𝑖 𝑁𝑁𝑖𝑖

𝑀𝑀
, 𝜃𝜃0 = 𝑁𝑁∅

𝑀𝑀
, 𝜃𝜃𝑊𝑊 = 𝑊𝑊

𝑀𝑀
. Let us therefore write: 

 lnΩ({𝑁𝑁𝑖𝑖},𝑀𝑀) = 𝑊𝑊 ln
𝑊𝑊
𝑀𝑀
−  �𝑁𝑁𝑖𝑖

𝑖𝑖

ln
𝑁𝑁𝑖𝑖
𝑀𝑀
−  𝑁𝑁∅ ln

𝑁𝑁∅
𝑀𝑀

  (9) 

= 𝑀𝑀 � 𝜃𝜃𝑊𝑊 ln𝜃𝜃𝑊𝑊 −  �
𝜃𝜃𝑖𝑖
𝑖𝑖

ln
𝜃𝜃𝑖𝑖
𝑖𝑖

𝑖𝑖

 −  𝜃𝜃0 ln𝜃𝜃0 �, 

 
where we have introduced 𝜃𝜃𝑘𝑘 = 𝑘𝑘 𝑁𝑁𝑘𝑘

𝑀𝑀
 (fraction of sites covered by  𝑘𝑘 -mers), 𝜃𝜃0 = 𝑁𝑁∅

𝑀𝑀
 

(fraction of empty sites), 𝜃𝜃𝑊𝑊 = 𝑊𝑊
𝑀𝑀

  (fraction of empty sites and oligomers). The 𝜃𝜃𝑊𝑊 ln 𝜃𝜃𝑊𝑊 
term in Eq. (9) is a consequence of multisite adsorption. We can now extract the chemical 
potential of adsorbed monomers of length 𝑘𝑘, using 
 

𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑁𝑁𝑘𝑘

�
𝑇𝑇,𝑀𝑀,𝑁𝑁𝑖𝑖≠𝑁𝑁𝑘𝑘

 , 
(10) 

 
which after taking the appropriate derivatives affords the expression 
 

𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 =  𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚
∘ + 𝑘𝑘𝑏𝑏𝑇𝑇 � ln

𝜃𝜃𝑘𝑘
𝑘𝑘

+ (𝑘𝑘 − 1) ln
𝜃𝜃𝑊𝑊
 𝜃𝜃0 

− ln  𝜃𝜃0�.  
(11) 

 
If our mixture would contain only a single type of oligomer of length 𝑘𝑘, we recover the 
isotherm in 3. 
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Let us now put our system in contact with a large solution of oligomers, each of which 
maintained at a dimensionless concentration  𝑐𝑐̅ = 𝑐𝑐𝑘𝑘/𝑐𝑐∘ . Where 𝑐𝑐∘  is a standard 
concentration (1 M). The oligomers in solution have a chemical potential 
 𝜇𝜇𝑘𝑘 = 𝜇𝜇𝑘𝑘∘ + 𝑘𝑘𝑏𝑏𝑇𝑇 ln 𝑐𝑐̅, (12) 
 
where 𝜇𝜇𝑘𝑘∘  is a standard free energy of formation at concentration  𝑐𝑐∘. We consider 𝜇𝜇𝑘𝑘∘  to 
be an affine function of 𝑘𝑘:  
 𝜇𝜇𝑘𝑘∘ = 𝑏𝑏0 + 𝑏𝑏1 𝑘𝑘. (13) 
 
A reversible adsorption process will lead to chemical equilibrium, at which 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑘𝑘. 
Let us now substitute Eq. (12) in Eq. (11), and write  
 

0 = Δ𝜇𝜇𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎
∗ + 𝑘𝑘𝑏𝑏𝑇𝑇 � ln

𝜃𝜃𝑘𝑘
𝑘𝑘

+ (𝑘𝑘 − 1) ln
𝜃𝜃𝑊𝑊
 𝜃𝜃0 

− ln  𝜃𝜃0�. 
(14) 

 
From Eq. (4),(12), and (13) it follows that Δ𝜇𝜇𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎

∗  is again an affine function. We write 
 Δ𝜇𝜇𝑘𝑘,𝑎𝑎𝑎𝑎𝑎𝑎

∗ = 𝜖𝜖 + 𝛿𝛿 𝑘𝑘, (15) 
 
where 𝜖𝜖 = 𝑎𝑎0 − 𝑏𝑏0 − 𝑘𝑘𝑏𝑏𝑇𝑇 ln 𝑐𝑐̅  and 𝛿𝛿 = 𝑎𝑎1 − 𝑏𝑏1 . Eq. (14) then gives the equilibrium 
surface coverage for 𝑘𝑘-mers  
 

𝜃𝜃𝑘𝑘 = 𝑘𝑘 exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� �
𝜃𝜃0
𝜃𝜃𝑊𝑊

�
𝑘𝑘−1

𝜃𝜃0. 
(16) 

 
Let us define 𝑟𝑟𝑘𝑘 = 5 𝜃𝜃𝑘𝑘

𝑘𝑘
/∑  𝜃𝜃𝑖𝑖

𝑖𝑖
 as the relative concentration of a 𝑘𝑘-mer. The ratio of 𝑘𝑘-mers 

to 𝑗𝑗-mers is then 
 𝑟𝑟𝑘𝑘

𝑟𝑟𝑗𝑗
=
𝑗𝑗 𝜃𝜃𝑘𝑘
𝑘𝑘 𝜃𝜃𝑗𝑗

= �
𝜃𝜃0

 𝜃𝜃𝑊𝑊 
�
𝑘𝑘−𝑗𝑗

exp�−𝛽𝛽 𝛿𝛿 (𝑘𝑘 − 𝑗𝑗)�. 
(17) 

 
Because 𝑊𝑊 ≥  𝑁𝑁∅ , 𝜃𝜃0/𝜃𝜃𝑊𝑊 ≤ 1 . If we consider 𝑘𝑘 > 𝑗𝑗 , we see that the entropic term 

� 𝜃𝜃0
 𝜃𝜃𝑊𝑊 

�
𝑘𝑘−𝑗𝑗

favors shorter oligomers. This is to be expected, as smaller oligomers allow for 

more possible surface configurations. Because 𝛿𝛿 < 0 , the factor exp�−𝛽𝛽 𝛿𝛿 (𝑘𝑘 − 𝑗𝑗)� 
favors longer oligomers. From Eq. (17), we deduce that the relative concentrations of 
adsorbed oligomers follow an exponential trend. We will now extend the model by 
relaxing the 1D assumption. Interestingly, this can largely be taken account by simply 
shifting the constants 𝜖𝜖 and 𝛿𝛿. Consequently, we can proceed using Eq. (16). 
  
IIa 2D: Connectivity ansatz 
As shown in 3, an effective way to describe stiff oligomers on a 2D lattice is by 
introducing a connectivity ansatz. Let 𝑐𝑐 be the number of connections of a lattice point 
(for a 2D square lattice: 4, on the line: 2). By supposing Ω scales with dimension as the 
one for the Flory model, it can be shown that  
 Ω(𝑀𝑀,𝑁𝑁, 𝑐𝑐)

Ω(𝑀𝑀,𝑁𝑁, 𝑐𝑐′)
= �

𝑐𝑐 − 1
𝑐𝑐′ − 1

�
∑ 𝑁𝑁𝑖𝑖𝑖𝑖  (𝑖𝑖−1)

. 
(18) 
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Perfoming our previous calculation and setting 𝑐𝑐′ = 2, we find for arbitrary 𝑐𝑐 
 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐 =  𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚,2 − 𝑘𝑘𝑘𝑘 (𝑘𝑘 − 1) ln(𝑐𝑐 − 1). (19) 
 
This means we can incorporate it in Δ𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎∗  by defining 𝜖𝜖′ = 𝜖𝜖 + 𝑘𝑘𝑏𝑏𝑇𝑇 ln(𝑐𝑐 − 1)  and   
𝛿𝛿′ = 𝛿𝛿 − 𝑘𝑘𝑏𝑏𝑇𝑇 ln(𝑐𝑐 − 1). 
 
IIb 2D: Dilute lattice placements  
Another extension, put forward in,4 is to study a dilute limit and consider the number of 
ways an oligomer can be placed on a lattice. For stiff oligomers, which can only be 
placed on square lattices, we can then consider every 1D placement, and place them 
along all 𝑐𝑐/2 directions. The microcanonical partition function then grows as: 
 Ω(𝑀𝑀,𝑁𝑁, 𝑐𝑐)

Ω(𝑀𝑀,𝑁𝑁, 𝑐𝑐′)
= �

𝑐𝑐
𝑐𝑐′
�
∑ 𝑁𝑁𝑖𝑖𝑖𝑖  

. 
(20) 

 
Which yields a constant correction to 𝜇𝜇𝑘𝑘 
 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚,𝑐𝑐 =  𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚,2 − 𝑘𝑘𝑏𝑏𝑇𝑇 ln(𝑐𝑐/2) . (21) 
 
It can be absorbed in the expression for Δ𝜇𝜇𝑎𝑎𝑎𝑎𝑎𝑎∗ , by defining 𝜖𝜖′ = 𝜖𝜖 + 𝑘𝑘𝑏𝑏𝑇𝑇 ln(𝑐𝑐/2). For 
dilute flexible oligomers, the number of single-oligomer configurations 𝛾𝛾(𝑐𝑐,𝑘𝑘) is the 
number of self-avoiding random walks of length 𝑘𝑘. On a 2D square lattice, this quantity 
behaves as 𝛾𝛾(𝑐𝑐,𝑘𝑘) = 𝑢𝑢𝑘𝑘𝑘𝑘𝑣𝑣 , with 𝑢𝑢2𝑑𝑑 ≈ 2.62, 𝑣𝑣2𝑑𝑑 = 11

32
. On a 3D lattice, we have 

𝜈𝜈3𝑑𝑑 ≈ 0.16. The correction for dilute systems is then 
 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚,4 = 𝜇𝜇𝑘𝑘,𝑚𝑚𝑚𝑚𝑚𝑚,2 −  𝑘𝑘𝑏𝑏𝑇𝑇[𝑘𝑘 ln𝑢𝑢2𝑑𝑑/𝑢𝑢3𝑑𝑑 + (𝑣𝑣2𝑑𝑑 − 𝑣𝑣3𝑑𝑑)  ln𝑘𝑘]. (22) 
 
Just as with the connectivity ansatz, we can absorb a contribution proportional to 𝑘𝑘, 
because we can write 𝛿𝛿′ = 𝛿𝛿 − 𝑘𝑘𝑏𝑏𝑇𝑇 ln𝑢𝑢. The ln 𝑘𝑘 contribution gives a new factor 
�𝑘𝑘
𝑗𝑗
�
𝑣𝑣2𝑑𝑑−𝑣𝑣3𝑑𝑑

. However, because 𝑣𝑣2𝑑𝑑 − 𝑣𝑣3𝑑𝑑 ≈ 0.18, this contribution is relatively small, 
and we will neglect it in our further derivation. Overall, we see that the extension of the 
model to 2D for stiff and flexible polymers can be accounted for by shifting the 
parameters in the adsorption energy. In the subsequent sections, we will solve the model 
for Eq. (16). 
 
III Solving for 𝜽𝜽𝒊𝒊 
 
Since the solutions are expressed in terms of 𝜃𝜃0/𝜃𝜃𝑊𝑊 , we do not have a full solution. 
Expressed in terms of 𝜃𝜃𝑖𝑖, we find 
 

𝜃𝜃𝑊𝑊 = �
𝜃𝜃𝑖𝑖
𝑖𝑖

𝑖𝑖

 + 𝜃𝜃0,  
(23) 

and 
 𝜃𝜃0 = 1 −�𝜃𝜃𝑖𝑖

𝑖𝑖

. (24) 

 
We can then write: 
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 𝜃𝜃𝑊𝑊 = � exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� 
𝑖𝑖

(𝜃𝜃0/𝜃𝜃𝑊𝑊)𝑖𝑖−1𝜃𝜃0 + 𝜃𝜃0. (25) 

Let us define  𝜁𝜁 = 𝜃𝜃0
𝜃𝜃𝑊𝑊

. From Eq. (23), we then find 
 1 = � exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� 

𝑖𝑖

𝜁𝜁𝑖𝑖 + 𝜁𝜁, (26) 

 
which is a nonlinear polynomial equation from which we need a real root 𝜁𝜁 < 1.    
We can then express 𝜃𝜃0 as 
 𝜃𝜃0 =

1
1 + ∑ 𝑖𝑖 exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� 𝑖𝑖 𝜁𝜁𝑖𝑖−1

, 

 

(27) 

 
and thus we can numerically solve the system of equations by finding 𝜁𝜁. 
 

IV Temperature dependence 
It is observed that the relative abundance of longer RNAs increases at higher temperature.  
To investigate this effect, let us again consider the quantity 𝑟𝑟𝑘𝑘

𝑟𝑟𝑗𝑗
 in Eq. (17), where 𝑘𝑘 > 𝑗𝑗,  

and study its derivative with regard to temperature 𝑇𝑇. 
 𝑑𝑑 �𝑟𝑟𝑘𝑘𝑟𝑟𝑗𝑗

�

𝑑𝑑𝑑𝑑
= �

𝑟𝑟𝑘𝑘
𝑟𝑟𝑗𝑗
� �
δ − 𝑇𝑇 dδ

𝑑𝑑𝑑𝑑
𝑘𝑘𝑇𝑇2

(𝑘𝑘 − 𝑗𝑗) + (𝑘𝑘 − 𝑗𝑗)
1
𝜁𝜁
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�. 

(28) 

 
Since 𝛿𝛿 and 𝜖𝜖 correspond to a Gibb’s free energy change, we can write them as enthalpies 
Δℎ𝛿𝛿 ,Δℎ𝜖𝜖  and entropies Δ𝑠𝑠𝛿𝛿 ,Δ𝑠𝑠𝜖𝜖. 
 𝛿𝛿 = Δℎ𝛿𝛿 − 𝑇𝑇Δ𝑠𝑠𝛿𝛿 , (29) 
 𝜖𝜖 = Δℎ𝜖𝜖 − 𝑇𝑇Δ𝑠𝑠𝜖𝜖 , (30) 
 
And thus  
 

δ − 𝑇𝑇
dδ
𝑑𝑑𝑑𝑑

= Δℎ𝛿𝛿 . 
(31) 

 
Taking the derivative with regard to 𝑇𝑇 of Eq. (26) , we find that  
 

�� exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� 
𝑖𝑖

𝑖𝑖 𝜁𝜁𝑖𝑖−1 + 1�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 
(32) 

= −� exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)�  (Δℎ𝜖𝜖 + 𝑖𝑖 Δℎ𝛿𝛿)
𝑖𝑖

/𝑘𝑘𝑇𝑇2 𝜁𝜁𝑖𝑖, 

 
which after rewriting gives 
 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
Δℎ𝛿𝛿
𝑘𝑘𝑇𝑇2 𝜁𝜁 −

Δℎ𝜖𝜖
𝑘𝑘𝑇𝑇2 ∑ exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)�𝑖𝑖 𝜁𝜁𝑖𝑖

∑ exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� 𝑖𝑖 𝑖𝑖 𝜁𝜁𝑖𝑖−1 + 1
−
Δℎ𝛿𝛿
𝑘𝑘𝑇𝑇2

𝜁𝜁. 
(33) 
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Plugging this back in Eq. (28), we then have 
 𝑑𝑑 �𝑟𝑟𝑘𝑘𝑟𝑟𝑗𝑗

�

𝑑𝑑𝑑𝑑
= �

𝑟𝑟𝑘𝑘
𝑟𝑟𝑗𝑗
� (𝑘𝑘 − 𝑗𝑗) �

Δℎ𝛿𝛿
𝑘𝑘𝑇𝑇2 −

Δℎ𝜖𝜖
𝑘𝑘𝑇𝑇2 ∑ exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)�𝑖𝑖 𝜁𝜁𝑖𝑖−1

∑ exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)� 𝑖𝑖 𝑖𝑖 𝜁𝜁𝑖𝑖−1 + 1
�. 

(34) 

 
It follows that selectivity can increase with temperature, provided that the enthalpic 
contributions obey 
 Δℎ𝛿𝛿 − Δℎ𝜖𝜖� exp�−𝛽𝛽(𝜖𝜖 + 𝛿𝛿𝛿𝛿)�

𝑖𝑖

𝜁𝜁𝑖𝑖−1 > 0. (35) 

 
Example: consider Fig. 4D, for which 𝜖𝜖 = 3.4 𝑘𝑘𝑏𝑏𝑇𝑇∗,    𝛿𝛿 =  − 0.8 𝑘𝑘𝑏𝑏𝑇𝑇∗ and �𝑟𝑟24

𝑟𝑟8
� = 2.90, 

with 𝑇𝑇∗ = 293K  a reference temperature. Numerically, we find that selectivity would 
increase with 𝑇𝑇 in this case if 
 − 0.884 Δℎ𝜖𝜖 > −Δℎ𝛿𝛿 . (36) 
 
As an illustration, let us choose Δℎ𝜖𝜖 = −11.5 𝑘𝑘𝑏𝑏𝑇𝑇∗,  Δℎ𝛿𝛿 = −2.5 𝑘𝑘𝑏𝑏𝑇𝑇∗ From Eq. (29) 
and Eq. (30) it follows that Δ𝑠𝑠𝜖𝜖 = 14.9 𝑘𝑘𝑏𝑏 , Δ𝑠𝑠𝛿𝛿 = 1.7 𝑘𝑘𝑏𝑏. Augmenting the temperature 
with Δ𝑇𝑇 =15 K, we would then have for a 24-mer versus an 8-mer  
 𝑑𝑑 �𝑟𝑟24𝑟𝑟8

�

𝑑𝑑𝑑𝑑
Δ𝑇𝑇 ≈ 0.072 ∙ 15 = 1.08, 

(37) 

 
which corresponds well with the order of magnitude observed in the experiment.  
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Fig. S1. Analysis of (A) pyrite, (B) pyrrhotite, (C) magnetite, (D) calcite, and (E) 
hydroxyapatite grains by X-ray diffraction (left) and scanning electron microscopy 
(right). Diffractograms were obtained on a RIGAKU D/Max Rapid II instrument (50 kV; 
50 mA; 30-60 min exposure) and the resulting diffraction patterns were identified using 
Jade software and Powder Diffraction Files from the International Centre for Diffraction 
Data (ICDD). The grains were imaged on a FEI Quanta 200 in low-vaccum mode. 
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Fig. S2. An example of a polyacrylamide gel from the adsorption experiment. The RNA 
samples (no mineral control reaction, adsorbed on surface, in supernatant) were loaded 
onto a 15% polyacrylamide / 8 M urea denaturing gel. The type of minerals used in the 
experiments were: P, pyrite; Py, pyrrhotite; M, magnetite; C, calcite; H, hydroxyapatite. 
The two presented images were on the same gel (same contrast). 
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Fig. S3. Estimated concentration of RNAs in Fig. 1A, B. (A) Total concentration of 
recovered RNAs in each reaction, calculated by summing RNAs stripped from minerals 
and RNAs in supernatant. The concentration was normalized to the level of the control 
reaction performed in the absence of minerals. (B) Estimated percentage of unrecovered 
RNAs, whose length distribution could not be determined. This may represent RNAs 
unstripped off the minerals, degraded or precipitated in the presence of minerals, or 
removed during the process of washing minerals due to weak bindings, which were 
unspecified. (C) The percent of total concentration of RNAs adsorbed onto minerals, 
estimated by dividing the concentration of RNAs stripped from minerals by the total 
concentrations of recovered RNAs. In all panels, the error bars indicate standard errors (N 
= 3). 
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Fig. S4. The adsorption of RNA on calcite and hydroxyapatite by mineral surfaces with 
higher RNA concentrations. The adsorption experiments were performed with (A) calcite 
or (B) hydroxyapatite using the same method as the experiments in Fig. 1A, B except for 
a 10-fold higher concentration of the RNAs (6 μM of each length RNA). Estimated 
percentage of adsorbed RNA was 13% for both calcite and apatite. The error bars 
indicate standard deviations (N = 3). 
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Fig. S5. The effect of a high temperature for RNA adsorption on pyrite and magnetite. The 
adsorption experiments were performed with (A) pyrite or (B) magnetite at 22 ºC or 48 ºC and 
RNA concentrations were determined in the same method as the experiments in Fig. 1. The error 
bars indicate standard deviations (N = 3). 
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Fig. S6. Design of the Azoarcus self-assembly reaction. A part of W fragment (pink) was 
32P-labeled. Dotted arrows indicate weak (grey) or strong (black) catalytic reactions. 
There are reaction intermediates (250–350 nt products). The exact intermediate products 
remain unspecified. 
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Fig. S7. Time course of the change of RNA concentrations on mineral surfaces. 
Adsorption experiment was performed by incubating a mixture of 8-, 12-, 16-, 20-, 24-
mer fully random RNAs (0.6 μM each) and 0.2 mg hydroxyapatite in 10 μl at 22 ºC for 
10 min, 30 min, or 120 min. The concentrations were determined by radioactivity of 32P-
labeled RNA and normalized to the levels of the control reaction (120 min) performed 
without minerals. 
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