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Abstract

This supplement fleshes out several details in [5]. Section S1 relates the model (1) in the paper to spiked covariance
models [1, 6]. Section S2 discusses interesting properties of the simplified expressions. Section S3 shows the impact of
the parameters on the asymptotic PCA amplitudes and coefficient recovery. Section S4 contains numerical simulation
results for PCA amplitudes and coefficient recovery, and Section S5 simulates complex-valued and Gaussian mixture
data.

S1. Relationship to spiked covariance models

The model (1) considered in the paper is similar in spirit to the generalized spiked covariance model of [1]. To
discuss the relationship more easily, we will refer to the paper model (1) as the “inter-sample heteroscedastic model”.
Both this and the generalized spiked covariance model generalize the Johnstone spiked covariance model proposed
in [6]. In the Johnstone spiked covariance model [1], sample vectors y1, . . . , yn ∈ Cd are generated as

yi = diag(α2
1, . . . , α

2
k , 1, . . . , 1︸  ︷︷  ︸

d−k copies

)1/2xi, (S1)

where xi ∈ Cd are independent identically distributed (iid) vectors with iid entries that have mean E(xi j) = 0 and
variance E|xi j|

2 = 1.
For normally distributed subspace coefficients and noise vectors, the inter-sample heteroscedastic model (1) is

equivalent (up to rotation) to generating sample vectors y1, . . . , yn ∈ Cd as

yi = diag(θ2
1 + η2

i , . . . , θ
2
k + η2

i , η
2
i , . . . , η

2
i︸     ︷︷     ︸

d−k copies

)1/2xi, (S2)

where xi ∈ Cd are iid with iid normally distributed entries. (S2) generalizes the Johnstone spiked covariance model
because the covariance matrix can vary across samples. Heterogeneity here is across samples; all entries (yi)1, . . . , (yi)d

within each sample yi have equal noise variance η2
i .

The generalized spiked covariance model generalizes the Johnstone spiked covariance model differently. In the
generalized spiked covariance model [1], sample vectors y1, . . . , yn ∈ Cd are generated as

yi =

[
Λ

Vd−k

]1/2

xi, (S3)
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(a) Deterministic inter-sample het-
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(b) Random inter-sample heteroscedas-
tic model.
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(c) Johnstone spiked covariance model
with covariance (S6).

Figure S1: Simulated subspace recovery as a function of the contamination fraction p2, the proportion of samples with noise
variance σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1 occurs in proportion p1 = 1− p2. Subspace amplitudes are θ1 = 1 and

θ2 = 0.8, and there are 104 samples in 103 dimensions. Simulation mean (blue curve) and interquartile interval (light blue ribbon)
are shown with the asymptotic recovery (4) of Theorem 1 (green curve). The region where A(βi) ≤ 0 is the red horizontal segment
with value zero (the prediction of Conjecture 1). Deterministic noise variances η2

1, . . . , η
2
n are used for simulations in (a), random

ones are used for those in (b), and (c) has data generated according to the Johnstone spiked covariance model with covariance
matrix set as (S6).

where xi ∈ Cd are iid with iid entries as in (S1), Λ ∈ Ck×k is a deterministic Hermitian matrix with eigenvalues
α2

1, . . . , α
2
k , Vd−k ∈ R(d−k)×(d−k) has limiting eigenvalue distribution ν, and these all satisfy a few technical condi-

tions [1]. All samples share a common covariance matrix, but the model allows, among other things, for heterogenous
variance within the samples. To illustrate this flexibility, note that we could set

Λ = diag(θ2
1 + η2

1, . . . , θ
2
k + η2

k), Vd−k = diag(η2
k+1, . . . , η

2
d). (S4)

In this case, there is heteroscedasticity among the entries of each sample vector. Heterogeneity here is within each
sample, not across them; recall that all samples have the same covariance matrix.

Therefore, for data with intra-sample heteroscedasticity, one should use the results of [1] and [10] for the general-
ized spiked covariance model. For data with inter-sample heteroscedasticity, one should use the new results presented
in Theorem 1 of the paper [5] for the inter-sample heteroscedastic model. A couple variants of the inter-sample het-
eroscedastic model are also natural to consider in the context of spiked covariance models; the next two subsections
discuss these.

S1.1. Random noise variances

The noise variances η2
1, . . . , η

2
n in the inter-sample heteroscedastic model (1) are deterministic. A natural variation

could be to instead make them iid random variables defined as

η2
i =


σ2

1 with probability p1,
...

σ2
L with probability pL,

(S5)

where p1+· · ·+ pL = 1. To ease discussion, this section will use the words “deterministic” and “random” before “inter-
sample heteroscedastic model” to differentiate between the paper model (1) that has deterministic noise variances and
its variant that instead has iid random noise variances (S5). In the random inter-sample heteroscedastic model, scaled
noise vectors η1ε1, . . . , ηnεn are iid vectors drawn from a mixture. As a result, sample vectors y1, . . . , yn are also iid
vectors with covariance matrix (up to rotation)

E(yiyH
i ) = diag(θ2

1 + σ̄2, . . . , θ2
k + σ̄2, σ̄2, . . . , σ̄2︸      ︷︷      ︸

d−k copies

), (S6)

where σ̄2 = p1σ
2
1 + · · · + pLσ

2
L is the average variance.
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(S6) is a spiked covariance matrix and the samples y1, . . . , yn are iid vectors, and so it could be tempting to think
that the data can be equivalently generated from the Johnstone spiked covariance model with covariance matrix (S6).
However this is not true. The PCA performance of the random inter-sample heteroscedastic model is similar to that
of the deterministic version and is different from that of the Johnstone spiked covariance model with covariance
matrix (S6). Figure S1 illustrates the distinction in numerical simulations. In all simulations, we drew 104 samples
from a 103 dimensional ambient space, where the subspace amplitudes were θ1 = 1 and θ2 = 0.8. Two noise variances
σ2

1 = 0.1 and σ2
2 = 3.25 have proportions p1 = 1 − p2 and p2. In Figure S1a, data are generated according to the

deterministic inter-sample heteroscedastic model. In Figure S1b, data are generated according to the random inter-
sample heteroscedastic model. In Figure S1c, data are generated according to the Johnstone spiked covariance model
with covariance matrix (S6).

Figures S1a and S1b demonstrate that data generated according to the inter-sample heteroscedastic model have
similar behavior whether the noise variances η2

1, . . . , η
2
n are set deterministically or randomly as (S5). The similarity is

expected because the random noise variances in the limit will equal σ2
1, . . . , σ

2
L in proportions approaching p1, . . . , pL

by the law of large numbers. Thus data generated with random noise variances should have similar asymptotic PCA
performance as data generated with deterministic noise variances.

Figures S1b and S1c demonstrate that data generated according to the random inter-sample heteroscedastic model
behave quite differently from data generated according to the Johnstone spiked covariance model, even though both
have iid sample vectors with covariance matrix (S6). To understand why, recall that in the random inter-sample
heteroscedastic model, the noise standard deviation ηi is shared among the entries of the scaled noise vector ηiεi.
This induces statistical dependence among the entries of the sample vector yi that is not eliminated by whitening
with E(yiyH

i )−1/2. Whitening a sample vector yi generated according to the Johnstone spiked covariance model, on the
other hand, produces the vector xi that has iid entries by definition. Thus, the random inter-sample heteroscedastic
model is not equivalent to the Johnstone spiked covariance model. One should use Theorem 1 in the paper [5] to
analyze asymptotic PCA performance in this setting rather than existing results for the Johnstone spiked covariance
model [2, 3, 7–9].

S1.2. Row samples

In matrix form, the inter-sample heteroscedastic model can be written as

Y = (y1, . . . , yn) = UΘZH + EH ∈ Cd×n,

where

Z = (z(1), . . . , z(k)) ∈ Cn×k is the coefficient matrix,

E = (ε1, . . . , εn) ∈ Cd×n is the (unscaled) noise matrix,

H = diag(η1, . . . , ηn) ∈ Rn×n
+ is a diagonal matrix of noise standard deviations.

Samples in the paper [5] are the columns y1, . . . , yn of the data matrix Y, but one could alternatively form samples
from the rows

y(i) =


(y1)i
...

(yn)i

 = Z∗Θu(i) + Hε(i), (S7)

where u(i) = ((u1)i, . . . , (un)i) and ε(i) = ((ε1)i, . . . , (εn)i) are the ith rows of U and E, respectively. Row samples (S7)
are exactly the columns of the transposed data matrix Y> and so row samples have the same PCA amplitudes as
column samples; principal components and score vectors swap.

In (S7), noise heteroscedasticity is within each row sample y(i) rather than across row samples y(1), . . . , y(d), and
so one might think that the row samples could be equivalently generated from the generalized spiked covariance
model (S3) with a covariance similar to (S4). However, the row samples are neither independent nor identically
distributed; U induces dependence across rows as well as variety in their distributions. As a result, the row samples
do not match the generalized spiked covariance model.

S3
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Figure S2: Location of the largest real root βi of Bi(x) for two noise variances σ2
1 = 2 and σ2

2 = 0.75, occurring in proportions p1 =

70% and p2 = 30%, where the sample-to-dimension ratio is c = 1 and the subspace amplitude is θi = 1.

One could make U random according to the “i.i.d. model” of [2]. As noted in Remark 1, Theorem 1 from the
paper [5] still holds and the asymptotic PCA performance is unchanged. For such U, the row samples y(1), . . . , y(d) are
now identically distributed but they are still not independent; dependence arises because Z is shared. To remove the
dependence, one could make Z deterministic and also design it so that the row samples are iid with covariance matrix
matching that of (S3), but doing so no longer matches the inter-sample heteroscedastic model. It corresponds instead
to having deterministic coefficients associated with a random subspace. Thus to analyze asymptotic PCA performance
for row samples one should still use Theorem 1 in the paper [5] rather than existing results for the generalized spiked
covariance model [1, 10].

S2. Additional properties

This section highlights a few additional properties of βi, B′i(βi) and A(βi) that lend deeper insight into how they
vary with the noise variances σ2

1, . . . , σ
2
L.

S2.1. Expressing A(βi) in terms of βi and B′i(βi)
We can rewrite A(βi) in terms of βi and B′i(βi) as follows:

A (βi) = 1 − c
L∑
`=1

p`σ4
`(

βi − σ
2
`

)2 = 1 − c
L∑
`=1

p`

1 −
−2βiσ

2
` + β2

i(
βi − σ

2
`

)2


= 1 − c

L∑
`=1

p`

1 −
−2βiσ

2
` + 2β2

i − β
2
i(

βi − σ
2
`

)2


= 1 − c

L∑
`=1

p`

1 + β2
i

1(
βi − σ

2
`

)2 − 2βi
1

βi − σ
2
`


= 1 − c

L∑
`=1

p` − cβ2
i

L∑
`=1

p`(
βi − σ

2
`

)2 + 2cβi

L∑
`=1

p`
βi − σ

2
`

= 1 − c − cβ2
i

 1
cθ2

i

B′i (βi)
 + 2cβi

1 − Bi (βi)
cθ2

i


= 1 − c −

βi

θ2
i

{βiB′i (βi) − 2}, (S8)

since Bi(βi) = 0. Thus we focus on properties of βi and B′i(βi) for the remainder of Section S2; (S8) relates them back
to A(βi).

S4



0 1 2 3 4
σ2

1

0

1

2

3

4

σ
2 2

βi − σ̄2

10.0

10.1

10.2

10.3

(a) βi − σ̄
2 over σ2

1 and σ2
2.

0 1 2 3 4
σ2

1

0

1

2

3

4

σ
2 2

B′i(βi)

0.100

0.101

0.102

0.103

0.104

(b) B′i (βi) over σ2
1 and σ2

2.

Figure S3: Illustration of βi−σ̄
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2 for all values of sample-to-dimension ratio c, proportions p1 and p2, and subspace amplitude θi

S2.2. Graphical illustration of βi

Note that βi is the largest solution of
1

cθ2
i

=

L∑
`=1

p`
x − σ2

`

, (S9)

because βi is the largest real root of Bi(x). Figure S2 illustrates (S9) for two noise variances σ2
1 = 2 and σ2

2 = 0.75,
occurring in proportions p1 = 70% and p2 = 30%, where the sample-to-dimension ratio is c = 1 and the subspace
amplitude is θi = 1. The plot is a graphical representation of βi and gives a way to visualize the relationship between
βi and the model parameters. Observe, for example, that βi is larger than all the noise variances and that increasing θi

or c amounts to moving the horizontal red line down and tracking the location of the intersection.

S2.3. Level curves
Figure S3 shows βi − σ̄

2 and B′i(βi) as functions (implicitly) of L = 2 noise variances σ2
1 and σ2

2, where

σ̄2 = p1σ
2
1 + · · · + pLσ

2
L

is the average noise variance. Figure S3 illustrates that lines parallel to the diagonal σ2
1 = σ2

2 are level curves for both
βi − σ̄

2 and B′i(βi). This is a general phenomenon: lines parallel to the diagonal σ2
1 = · · · = σ2

L are level curves of both
βi − σ̄

2 and B′i(βi) for all sample-to-dimension ratios c, proportions p1, . . . , pL and subspace amplitudes θi.
To show this fact, note that βi − σ̄

2 is the largest real solution to

0 = Bi(x + σ̄2) = 1 − cθ2
i

L∑
`=1

p`
x − (σ2

`
− σ̄2)

, (S10)

because 0 = Bi(βi). Changing the noise variances to σ2
1 + ∆, . . . , σ2

L + ∆ for some ∆ also changes the average noise
variance to σ̄2 + ∆ and so σ2

` − σ̄
2 remains unchanged. As a result, the solutions to (S10) remain unchanged.

Similarly, note that

B′i(βi) = cθ2
i

L∑
`=1

p`
(βi − σ

2
`
)2

= cθ2
i

L∑
`=1

p`
{(βi − σ̄2) − (σ2

`
− σ̄2)}2

(S11)

remains unchanged when changing the noise variances to σ2
1 + ∆, . . . , σ2

L + ∆.
Thus we conclude from (S10) and (S11) that lines parallel to σ2

1 = · · · = σ2
L are level curves for both βi − σ̄

2 and
B′i(βi). The line σ2

1 = · · · = σ2
L in particular minimizes the value of both, as was established in the proof of Theorem 2.
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S2.4. Hessians along the line σ2
1 = · · · = σ2

L

We consider βi − σ̄
2 and B′i(βi) as functions (implicitly) of the noise variances σ2

1, . . . , σ
2
L. To denote derivatives

more clearly, we denote the ith noise variance as vi = σ2
i .

Written in this notation, we have

0 = 1 − cθ2
i

L∑
`=1

p`
βi − v`

, (S12)

B′i(βi) = cθ2
i

L∑
`=1

p`
(βi − v`)2 . (S13)

Taking the total derivative of (S12) with respect to vs and vt and solving for ∂2βi/(∂vt∂vs) yields an initially compli-
cated expression, but evaluating it on the line v1 = · · · = vL vastly simplifies it, yielding:

∂2(βi − σ̄
2)

∂vt∂vs
=

2
cθ2

i

(psδs,t − ps pt). (S14)

where δs,t = 1 if s = t and 0 otherwise. Notably, σ̄2 = p1v1 + · · · + pLvL has zero Hessian everywhere.
Likewise, taking the total derivative of (S13) with respect to vs and vt yields an initially complicated expression

that is again vastly simplified by evaluating it on the line v1 = · · · = vL, yielding:

∂2B′i(βi)
∂vt∂vs

=
2

(cθ2
i )4

(psδs,t − ps pt). (S15)

(S14) and (S15) show that the Hessian matrices for βi − σ̄
2 and B′i(βi) are both scaled versions of the matrix

H =


p1

. . .

pL

︸            ︷︷            ︸
diag(p)

−


p1
...

pL

 [p1 · · · pL

]
︸                   ︷︷                   ︸

pp>

(S16)

on the line v1 = · · · = vL. The (scaled) Hessian matrix (S16) is a rank one perturbation by −pp> of diag(p), and
so its eigenvalues downward interlace with those of diag(p) (see Theorem 8.1.8 of [4]). Namely, H has eigenvalues
λ1, . . . , λL satisfying

λ1 ≤ p(1) ≤ λ2 ≤ · · · ≤ λL ≤ p(L),

where p(1), . . . , p(L) are the proportions in increasing order. The vector 1 of all ones, i.e., the vector in the direction
of v1 = · · · = vL, is an eigenvector of H with eigenvalue zero; note that H1 = diag(p)1 − pp>1 = p − p = 0. This
eigenvalue is less than p(1) > 0 and so λ1 = 0 and λ2, . . . , λL ≥ p(1) > 0. Hence the Hessians of βi − σ̄

2 and B′i(βi)
are both zero in the direction of the line v1 = · · · = vL and positive definite in other directions. This property provides
deeper insight into the fact that βi − σ̄

2 and B′i(βi) are minimized on the line σ2
1 = · · · = σ2

L, as was established in the
proof of Theorem 2.
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(a) Homoscedastic noise with σ2
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Figure S4: Asymptotic amplitude bias (2) of the ith PCA amplitude as a function of sample-to-dimension ratio c and subspace
amplitude θi with average noise variance equal to one. Contours are overlaid in black. The contours in (b) are slightly further up
and to the right than in (a); more samples are needed to reduce the positive bias.
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(a) Homoscedastic noise with σ2
1 = 1.
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(b) Heteroscedastic noise with p1 = 80% of samples at σ2
1 = 0.8

and p2 = 20% of samples at σ2
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Figure S5: Asymptotic coefficient recovery (5) of the ith score vector as a function of sample-to-dimension ratio c and subspace
amplitude θi with average noise variance equal to one. Contours are overlaid in black and the region where A(βi) ≤ 0 is shown as
zero (the prediction of Conjecture 1). The phase transition in (b) is further right than in (a); more samples are needed to recover
the same strength signal.

S3. Impact of parameters: amplitude and coefficient recovery

Section 3 of [5] discusses how the asymptotic subspace recovery (4) of Theorem 1 depends on the model
parameters: sample-to-dimension ratio c, subspace amplitudes θ1, . . . , θk, proportions p1, . . . , pL and noise vari-
ances σ2

1, . . . , σ
2
L. This section shows that the same phenomena occur for the asymptotic PCA amplitudes (2) and

coefficient recovery (5). For the asymptotic PCA amplitudes, we consider the ratio θ̂2
i /θ

2
i . As discussed in Remark 4,

the asymptotic PCA amplitude θ̂i is positively biased relative to the subspace amplitude θi, and so the almost sure limit
of θ̂2

i /θ
2
i is greater than one, with larger values indicating more bias.

S3.1. Impact of sample-to-dimension ratio c and subspace amplitude θi

As in Section 3.1, we vary the sample-to-dimension ratio c and subspace amplitude θi in two scenarios:

a) there is only one noise variance fixed at σ2
1 = 1

b) there are two noise variances σ2
1 = 0.8 and σ2

2 = 1.8 occurring in proportions p1 = 80% and p2 = 20%.
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Figure S6: Asymptotic amplitude bias (2) and coefficient recovery (5) of the ith PCA amplitude and score vector as functions of
the contamination fraction p2, the proportion of samples with noise variance σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1

occurs in proportion p1 = 1 − p2. The sample-to-dimension ratio is c = 10 and the subspace amplitude is θi = 1. The region where
A(βi) ≤ 0 is the red horizontal segment in (b) with value zero (the prediction of Conjecture 1).

Both scenarios have average noise variance 1. Figures S4 and S5 show analogous plots to Figure 1 but for the
asymptotic PCA amplitudes (2) and coefficient recovery (5), respectively.

As was the case for Figure 1 in Section 3.1, decreasing the subspace amplitude θi degrades both the asymptotic
amplitude performance (i.e., increases bias) shown in Figure S4 and the asymptotic coefficient recovery shown in
Figure S5, but the lost performance could be regained by increasing the number of samples. Furthermore, both the
asymptotic amplitude performance shown in Figure S4 and the asymptotic coefficient recovery shown in Figure S5
decline when the noise is heteroscedastic. Though the difference is subtle for the asymptotic amplitude bias, the
contours move up and to the right in both cases. This degradation is consistent with Theorem 2; PCA performs worse
on heteroscedastic data than it does on homoscedastic data of the same average noise variance and more samples or a
larger subspace amplitude are needed to compensate.

S3.2. Impact of proportions p1, . . . , pL

As in Section 3.2, we consider two noise variances σ2
1 = 0.1 and σ2

2 = 3.25 occurring in proportions p1 = 1 − p2
and p2, where the sample-to-dimension ratio is c = 10 and the subspace amplitude is θi = 1. Figure S6 shows
analogous plots to Figure 2 but for the asymptotic PCA amplitudes (2) and coefficient recovery (5). As was the case
for Figure 2 in Section 3.2, performance generally degrades in Figure S6 as p2 increases and low noise samples with
noise variance σ2

1 are traded for high noise samples with noise variance σ2
2. The performance is best when p2 = 0 and

all the samples have the smaller noise variance σ2
1, i.e., there is no contamination.

S3.3. Impact of noise variances σ2
1, . . . , σ

2
L

As in Section 3.3, we consider two noise variances σ2
1 and σ2

2 occurring in proportions p1 = 70% and p2 = 30%,
where the sample-to-dimension ratio is c = 10 and the subspace amplitude is θi = 1. Figure S7 shows analogous
plots to Figure 3 but for the asymptotic PCA amplitudes (2) and coefficient recovery (5). As was the case for Figure 3
in Section 3.3, performance typically degrades with increasing noise variances. The contours in Figure S7b are also
generally horizontal for small σ2

1 and vertical for small σ2
2. They indicate that when the gap between the two largest

noise variances is “sufficiently” wide, the asymptotic coefficient recovery is roughly determined by the largest noise
variance. This property mirrors the asymptotic subspace recovery and occurs for similar reasons, discussed in detail in
Section 3.3. Along each dashed cyan line in Figure S7, the average noise variance is fixed and the best performance for
both the PCA amplitudes and coefficient recovery again occurs when σ2

1 = σ2
2 = σ̄2, as was predicted by Theorem 2.

Along each dashed green curve in Figure S7, the average inverse noise variance is fixed and the best performance for
both the PCA amplitudes and coefficient recovery again occurs when σ2

1 = σ2
2, as was predicted in Remark 6.

S3.4. Impact of adding data
As in Section 3.4, we consider adding data with noise variance σ2

2 and sample-to-dimension ratio c2 to an existing
dataset that has noise variance σ2

1 = 1, sample-to-dimension ratio c1 = 10 and subspace amplitude θi = 1 for the ith
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(b) Asymptotic coefficient recovery (5).

Figure S7: Asymptotic amplitude bias (2) and coefficient recovery (5) of the ith PCA amplitude and score vector as functions of
noise variances σ2

1 and σ2
2 occurring in proportions p1 = 70% and p2 = 30%, where the sample-to-dimension ratio is c = 10 and

the subspace amplitude is θi = 1. Contours are overlaid in black and the region where A(βi) ≤ 0 is shown as zero in (b), matching
the prediction of Conjecture 1. Along each dashed cyan line, the average noise variance is fixed and the best performance occurs
when σ2

1 = σ2
2 = σ̄2. Along each dashed green curve, the average inverse noise variance is fixed and the best performance again

occurs when σ2
1 = σ2

2.
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Figure S8: Asymptotic amplitude bias (2) and coefficient recovery (5) of the ith PCA amplitude and score vector for samples added
with noise variance σ2

2 and samples-per-dimension c2 to an existing dataset with noise variance σ2
1 = 1, sample-to-dimension ratio

c1 = 10 and subspace amplitude θi = 1.

component. The combined dataset has a sample-to-dimension ratio of c = c1 + c2 and is potentially heteroscedastic
with noise variances σ2

1 and σ2
2 appearing in proportions p1 = c1/c and p2 = c2/c.

Figure S8 shows analogous plots to Figure 4 in Section 3.4 but for the asymptotic PCA amplitudes (2) and co-
efficient recovery (5). As was the case for Figure 4, the orange curves show the recovery when σ2

2 = 1 = σ2
1 and

illustrate the benefit we would expect for homoscedastic data: increasing the samples per dimension improves recov-
ery. The green curves show the performance when σ2

2 = 1.1 > σ2
1; as before, these samples are “slightly” noisier and

performance improves for any number added. Finally, the red curves show the performance when σ2
2 = 1.4 > σ2

1.
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(a) 103 samples in 102 dimensions.
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Figure S9: Simulated amplitude bias (2) as a function of the contamination fraction p2, the proportion of samples with noise
variance σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1 occurs in proportion p1 = 1 − p2. The sample-to-dimension ratio is

c = 10 and the subspace amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (blue curve) and interquartile interval (light blue
ribbon) are shown with the asymptotic bias (2) of Theorem 1 (green curve). Increasing data size from (a) to (b) results in even
smaller interquartile intervals, indicating concentration to the mean, which is converging to the asymptotic bias.
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(a) 103 samples in 102 dimensions.
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(b) 104 samples in 103 dimensions.

Figure S10: Simulated coefficient recovery (5) as a function of the contamination fraction p2, the proportion of samples with
noise variance σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1 occurs in proportion p1 = 1 − p2. The sample-to-dimension

ratio is c = 10 and the subspace amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (blue curve) and interquartile interval
(light blue ribbon) are shown with the asymptotic recovery (5) of Theorem 1 (green curve). The region where A(βi) ≤ 0 is the
red horizontal segment with value zero (the prediction of Conjecture 1). Increasing data size from (a) to (b) results in smaller
interquartile intervals, indicating concentration to the mean, which is converging to the asymptotic recovery.

As before, performance degrades when adding a small number of these noisier samples. However, unlike subspace
recovery, performance degrades when adding any amount of these samples. In the limit c2 → ∞, the asymptotic
amplitude bias is 1 + σ2

2/θ
2
i and the asymptotic coefficient recovery is 1/(1 + σ2

2/θ
2
i ); neither has perfect recovery in

the limit when added samples are noisy.

S4. Numerical simulation: amplitude and coefficient recovery

Section 4 of [5] shows that the asymptotic subspace recovery (4) of Theorem 1 is meaningful for practical settings
with finitely many samples in a finite-dimensional space. This section shows that the same is true for the asymptotic
PCA amplitudes (2) and coefficient recovery (5). For the asymptotic PCA amplitudes, we again consider the ratio
θ̂2

i /θ
2
i . As discussed in Remark 4, the asymptotic PCA amplitude θ̂i is positively biased relative to the subspace

amplitude θi, and so the almost sure limit of θ̂2
i /θ

2
i is greater than one, with larger values indicating more bias.

As in Section 4, this section simulates data according to the model described in Section 2.1 for a two-dimensional
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subspace with subspace amplitudes θ1 = 1 and θ2 = 0.8, two noise variances σ2
1 = 0.1 and σ2

2 = 3.25, and a sample-
to-dimension ratio of c = 10. We sweep the proportion of high noise points p2 from zero to one, setting p1 = 1 − p2
as in Section 4. The first simulation considers n = 103 samples in a d = 102 dimensional ambient space (104 trials).
The second increases these to n = 104 samples in a d = 103 dimensional ambient space (103 trials). All simulations
generate data from the standard normal distribution, i.e., zi j, εi j ∼ N(0, 1). Figures S9 and S10 show analogous plots
to Figure 5 but for the asymptotic PCA amplitudes (2) and coefficient recovery (5), respectively.

As was the case for Figure 5 in Section 4, both Figures S9 and S10 illustrate the following general observations:

a) the simulation mean and almost sure limit generally agree in the smaller simulation of 103 samples in a 102

dimensional ambient space

b) the smooth simulation mean deviates from the non-smooth almost sure limit near the phase transition

c) the simulation mean and almost sure limit agree better for the larger simulation of 104 samples in a 103 dimen-
sional ambient space

d) the interquartile intervals for the larger simulations are roughly half those of the smaller simulations, indicating
concentration to the means.

In fact, the amplitude bias in Figure S9 and the coefficient recovery in Figure S10 both have significantly better
agreement with their almost sure limits than the subspace recovery in Figure 5 has with its almost sure limit. The
amplitude bias in Figure S9, in particular, is tightly concentrated around its almost sure limit (2). Furthermore,
Figure S10 demonstrates good agreement with Conjecture 1, providing evidence that there is indeed a phase transition
below which the coefficients are also not recovered.

S5. Additional numerical simulations

Section 4 of [5] and Section S4 provide numerical simulation results for real-valued data generated using normal
distributions. This section illustrates the generality of the model in Section 2.1 by showing analogous simulation
results for circularly symmetric complex normal data in Figure S11 and for a mixture of Gaussians in Figure S12.
As before, we show the results of two simulations for each setting. The first simulation considers n = 103 samples
in a d = 102 dimensional ambient space (104 trials). The second increases these to n = 104 samples in a d = 103

dimensional ambient space (103 trials).
Figure S11 mirrors Sections 4 and S4 and simulates data according to the model described in Section 2.1 for a two-

dimensional subspace with subspace amplitudes θ1 = 1 and θ2 = 0.8, two noise variances σ2
1 = 0.1 and σ2

2 = 3.25,
and a sample-to-dimension ratio of c = 10. We again sweep the proportion of high noise points p2 from zero to
one, setting p1 = 1 − p2. The only difference is that Figure S11 generates data from the standard complex normal
distribution, i.e., zi j, εi j ∼ CN(0, 1).

Figure S12 instead simulates a homoscedastic setting of the model described in Section 2.1 over a range of noise
distributions, all mixtures of Gaussians. As before, we consider a two-dimensional subspace with subspace amplitudes
θ1 = 1 and θ2 = 0.8, and a sample-to-dimension ratio of c = 10. Figure S12 generates coefficients zi j ∼ N(0, 1) from
the standard normal distribution and generates noise entries εi j from the Gaussian mixture model

εi j ∼

N
(
0, λ2

1/σ
2
)

with probability p1,

N
(
0, λ2

2/σ
2
)

with probability p2,

where λ2
1 = 0.1 and λ2

2 = 3.25, and the single noise variance is set to

σ2 = p1λ
2
1 + p2λ

2
2. (S17)

Each scaled noise entry ηiεi j = σεi j is a mixture of two Gaussian distributions with variances λ2
1 and λ2

2. We sweep
the mixture probability p2 from zero to one, setting p1 = 1 − p2. Thus, Figure S12 illustrates performance over a
range of noise distributions. The noise variance (S17) in Figure S12 matches the average noise variance in Figure S11
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(c) Coefficient recovery, 103 samples in
102 dimensions.
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i,
u
i〉|

2

i = 1

i = 2

(e) Subspace recovery, 104 samples in
103 dimensions.
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Figure S11: Simulated complex-normal PCA performance as a function of the contamination fraction p2, the proportion of samples
with noise variance σ2

2 = 3.25, where the other noise variance σ2
1 = 0.1 occurs in proportion p1 = 1− p2. The sample-to-dimension

ratio is c = 10 and the subspace amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (blue curve) and interquartile interval
(light blue ribbon) are shown with the almost sure limits of Theorem 1 (green curve). The region where A(βi) ≤ 0 is shown as red
horizontal segments with value zero (the prediction of Conjecture 1).

as we sweep p2. However, Figures S12 and S11 differ because Figure S12 simulates a homoscedastic setting while
Figure S11 simulates a heteroscedastic setting. Figure S12 also differs from Figure S1b that simulates data from the
random inter-sample heteroscedastic model of Section S1.1. While both simulate (scaled) noise from a mixture model,
scaled noise entries ηiεi j in Figure S12 are all iid. Scaled noise entries ηiεi j in the random inter-sample heteroscedastic
model are independent only across samples; they are not independent within each sample. Figure S12 is instead more
like Figure S1c that simulates data from the Johnstone spiked covariance model. See Section S1.1 for a comparison
of these models.

As was the case for (real-valued) standard normal data in Sections 4 and S4, Figures S11 and S12 illustrate the
following general observations:

a) the simulation means and almost sure limits generally agree in the smaller simulations of 103 samples in a 102

dimensional ambient space

b) the smooth simulation means deviate from the non-smooth almost sure limits near the phase transitions

c) the simulation means and almost sure limits agree better for the larger simulations of 104 samples in a 103

dimensional ambient space

d) the interquartile intervals for the larger simulations are roughly half those of the smaller simulations, indicating
concentration to the means.

The agreement between simulations and almost sure limits demonstrated in both Figures S11 and S12 highlights the
generality of the model considered in [5]: it allows for both complex-valued data and non-Gaussian distributions. In
both cases, the asymptotic results of Theorem 1 remain meaningful for practical settings with finitely many samples
in a finite-dimensional space.
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(c) Coefficient recovery, 103 samples in
102 dimensions.
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(e) Subspace recovery, 104 samples in
103 dimensions.
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(f) Coefficient recovery, 104 samples in
103 dimensions.

Figure S12: Simulated mixture model PCA performance as a function of the mixture probability p2, the probability that a scaled
noise entry ηiεi j is Gaussian with variance λ2

2 = 3.25, where it is Gaussian with variance λ2
1 = 0.1 otherwise, i.e., with probability

p1 = 1 − p2. The sample-to-dimension ratio is c = 10 and the subspace amplitudes are θ1 = 1 and θ2 = 0.8. Simulation mean (blue
curve) and interquartile interval (light blue ribbon) are shown with the almost sure limits of Theorem 1 (green curve). The region
where A(βi) ≤ 0 is shown as red horizontal segments with value zero (the prediction of Conjecture 1).
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