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A simulation study of the biometric mediation model 
 

In this section, we investigate accuracy and possible bias in parameter recovery, as well as 

possible correlated errors of estimation, and compare these statistical properties across the 

proposed mediation models and a classic mediation approach. To this end, we simulated 

biometric data adhering to the phenotypic mediation hypothesis using the R function of 

Appendix A. A hundred distinct datasets were simulated (500 monozygotic and 500 dizygotic 

simulated twin pairs in each), and the structural equation models (SEMs) specified in 

Appendix B and Appendix C were fit to each dataset. We made a number of observations. 

As shown in the Supplementary Figure S1, estimation of the biometric parameters in a 

SEM did not inflict mentionable efficacy costs in estimation of phenotypic paths in 

comparison to the classic, genetically uninformative, regression-based mediation estimates. 

The phenotypic ‘regression’ paths are much easier to estimate accurately than the specific 

biometric parameters, however. Estimation accuracy of individual biometric parameters 

suffers more from a need to use binary- or ordinal-valued variables than accuracy of the 

phenotypic path coefficients, and ordinal variables generally lead to slightly better accuracy 

than binary variables despite involving more estimated threshold parameters (Supplementary 

Figure S2). 

 While unbiased, some of the parameter estimates had strong negative correlations 

across the simulated datasets (Supplementary Figure S3). This probably pertains to the 

parameters being correlated in their asymptotic distributions. While this has been known 

(though not necessarily well-known) for a long time for biometric estimates of additive 

genetic and shared environmental variance (Williams 1993) , we also found that the 

phenotypic b and c parameter estimates were strongly and negatively correlated (Fig. S3). 
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 We then added normally distributed measurement errors to the latent liabilities 

underlying the ordinal-valued observed variables so that a reliability of 0.7 ensued. If this 

level of reliability is accurately modelled using an error-in-variables model (see Appendix B), 

the mediation model is unbiased, though the added noise has an effect on statistical power 

(Supplementary Figure S4a). Unaccounted errors in variables attenuate the phenotypic path 

coefficients and the biometric paths other than the non-shared environmental variance, which 

includes the error and is therefore inflated (Fig. S4b). 

In summary, the biometric mediation model works as intended, but could be further 

developed to eliminate or decrease the parameter dependencies and to improve estimation 

accuracy for the biometric parameters (two related goals). Errors in variables do bias the 

estimates, but the bias can be eliminated using an accurate estimate of reliability. We next 

turn to theory supporting the main text’s classic analysis of statistical power to detect 

(omnibus) confounding at model level rather than for individual parameters. 

 

Theory for power analysis 
 

In this section, we describe the theory behind our analytic results on statistical power (Figure 

2 in the main text). Let V = [Y, M, X]T = [b(aX + εM) + cX + εY, aX + εM, X]T be the vector of 

variables for a typical phenotypic mediation model (cf. path diagram within the dashed ellipse 

in Figure 1a in the main text). According to standard properties of expected values and 

covariances, the model-implied covariance matrix is then  

𝐶𝑜𝑣(𝑽) = [

(𝑎𝑏 + 𝑐)2𝜎𝑋
2 + 𝑏2𝜎𝜀𝑀

2 + 𝜎𝜀𝑌
2 ⋯ ⋯

𝑏𝜎𝜀𝑀
2 + (𝑎2𝑏 + 𝑎𝑐)𝜎𝑋
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2 + 𝜎𝜀𝑀

2 ⋯

(𝑎𝑏 + 𝑐)𝜎𝑋
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where σX
2 = σA

2 + σC
2 + σE

2 is variance of X, or sum of the biometric A, C, and E variances 

contributing to it (same notation for the residual variables). The between-twin covariances are 

otherwise the same, but the biometric components change according to the know rules of 

Mendelian inheritance (MZ twins share all genetic variance and DZ twins 50% on average, 

and both share the rearing environment; e.g., σX
2 = σA

2 + σC
2 for MZ variance and σX

2 = ½σA
2 

+ σC
2 for DZ variance). Here, a confounder u will add a value σu

2 to all the within-twin 

elements of Cov(V) and its effect on the between-twin covariance depends on the specific 

biometric composition of the source of confounding according to the rules of inheritance. We 

get the exact expected, confound-dependent log-likelihood ratio, χu, by comparing fits of the 

biometric mediation model and Cholesky model to the expected covariance under u. 

Theoretically, our test statistic is distributed as a non-central chi-squared variate with non-

centrality parameter χu, and therefore statistical power equals to probability of such a variate 

exceeding the critical value for the central chi-squared distribution with degrees of freedom 

corresponding to difference of degrees of freedom between the Cholesky and the biometric 

mediation models (Neale and Cardon 1992).  

Such an omnibus test of 6 degrees of freedom makes most sense here because we want 

to allow reasonable flexibility for the specific form of confounding, which is unknown in 

applications. In the power calculations of the main text, we use simple confounders where all 

the confounding is due to one unknown A, C, or E source of variance. We compare results to 

those from the same procedure applied to DoC model (cf. Figure 1d of the main text). The 

difference in degrees of freedom between the DoC model and a bivariate Cholesky model is 

2. We plot the statistical power as a function of average ratio of confounder variance to true 

variance, with the average taken over all the variables involved in the model in question 

(Figure 2 of the main text). 
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Supplementary data analyses 
 

Measurement error estimate of the stressful life event count 
 

To be able to remove measurement error of stressful life events (SLEs) in the error-in-

variables models, we needed an estimate for the relative amount of measurement error 

variance (i.e., a reliability estimate). To approximate reliability, we made use of the fact that 

two SLEs, “parental alcohol or mental problem as a child” and “parents divorced of moved 

apart when child”, should have occurred for both the twins even if they report otherwise 

(possibly excluding very rare cases of adoption etc.). Thus, for these SLEs, the twins can 

serve as replications for each other’s reports, thereby index (polychoric) inter-rater 

correlation/agreement. Twins’ reports of parental divorce or moving apart correlated at r1 = 

0.985, whereas their reports of parental alcohol or mental problem correlated at r2 = 0.895. 

We let r1 index reliability of SLEs that are easy to remember and interpret and relatively free 

of stigma and r2 index SLEs that are potentially subject to memory failures, stigma, and/or 

ambiguity of interpretation (e.g., different people may regard differently the extent an 

accident is “serious”). These reliabilities were extrapolated to the SLEs from 1 through 18 

(see Table 1 in main text) using a reliability vector with respective elements as v = (r2, r2, r1, 

r2, r2, r1, r2, r2, r2, r2, r2, r2, r1, r1, r2, r1, r2, and r2). Then reliability of the SLE count was 

solved through the following simulation procedure. 

 Altogether 2000 twin-pair reports for all 18 SLEs were simulated from 18 bivariate 

normal distributions with correlations corresponding to elements of the reliability vector v. An 

SLE was recorded whenever a simulated value exceeded the normal-distribution quantile of 

one minus the frequency of the corresponding SLE in the data; i.e., SLEs were generated with 

the empirically observed frequencies. SLE counts of 3 or more were collapsed as in the 
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analyses of real data. Then polychoric correlation between simulated twin pairs’ counts of 

SLEs were computed over the 2000 reports, and this quantity was taken as the reliability of 

the SLE-count variable (r = 0.755). 

 

Parameter estimates for biometric mediation models with adulthood SLEs 
 

Supplementary Figure S5 provides parameter estimates for the consistent biometric mediation 

models with a PD as an exposure, adulthood SLEs as the mediator, and AUD as the outcome. 

One observes that the PDs had a genetic and (non-shared) environmental effect on AUD and 

adulthood SLEs, but no strong mediated effect through the SLEs. Phenotypic association 

between the SLEs and AUD was low and statistically non-significant. In contrast to childhood 

SLEs, shared environment played a negligible role in adulthood SLEs. 
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Supplementary Figures 
 

 

 

Supplementary Figure S1. Boxplots of parameter estimates for 100 simulated datasets. Each 

dataset contained 2000 observations, consisting of 500 monozygotic and 500 dizygotic 

simulated twin pairs. The data adhered to the mediation model according to Appendix A, and 

the parameters are described in Appendix B. The red crosses represent the true parameters 

underlying the simulated data. a) Mediation parameters estimated using the classic 

regression approach. b) Mediation and biometric ACE parameters estimated using structural 

equation modeling (SEM) approach. 
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Supplementary Figure S2. Boxplots of parameter estimates for 100 simulated datasets with 

binary (panel a) and ordinal (panel b) variables. a) The unit-variance simulated liabilities 

had a threshold at 0.8, which resulted in endorsement of the variable in question. b) The 

liabilities had two thresholds, at 0.3 and 0.8, leading to an ordinal variable. 
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Supplementary Figure S3. Scatterplot matrix of the 100 simulated estimates for all the 

model parameters. 

 

  



11 
 

 

 

 

 

Supplementary Figure S4. Effect of measurement errors in the ordinal-valued biometric 

mediation model. Reliability 0.7 was used in the 100 simulations shown in the boxplots. a) 

Estimates are unbiased when the amount of error is known and modeled. b) Non-modelled 

error in variables attenuates the phenotypic path coefficients and the biometric paths other 

than the non-shared environmental variance, which includes error. 
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Supplementary Figure S5. Convergent mediation models for personality disorder (PD) 

traits, adulthood stressful life events (SLEs), and alcohol use disorder (AUD). Panels a-d 

show estimates for different PD traits. In one case, a lower confidence interval estimate was 

unreliable according to Open Mx software and therefore “NA” is shown instead of the 

estimate. 
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Supplementary Tables 
 

Supplementary Table S1. Genetic and environmental correlations for cases where Cholesky 

model fit better than the biometric mediation models (cases involving borderline PD) 

 

Exposure (X) and 

ACE componentsa 
 Correlations 

Genetic 

variance%c 

X = childhood SLEs  SLEs BPD AUD h2% 

A SLEs 1 -0,208 -0,37 3,5 

 BPD -0,208 1 0,986 26,7 

 AUD -0,37 0,986 1 29,7 

C SLEs 1 0,893 0,735 73,3 

 BPD 0,893 1 0,351 8,7 

 AUD 0,735 0,351 1 14,2 

E SLEs 1 0,136 -0,111 23,3 

 BPD 0,136 1 0,065 64,6 

 AUD -0,111 0,065 1 56 

X = borderline PD  BPD SLEs AUD h 2% 

A BPD 1 0,21 0,97 26,5 

 SLEs 0,21 1 0,443 10,5 

 AUD 0,97 0,443 1 33 

C BPD 1 0,918 0,299 8,8 

 SLEs 0,918 1 0,653 12,3 

 AUD 0,299 0,653 1 11,4 

E BPD 1 0,03 0,067 64,7 

 SLEs 0,03 1 -0,049 77,2 

 AUD 0,067 -0,049 1 55,6 

 

a) Variables were temporally order starting from exposure “X” (two different models are shown for two 

different exposure). Each biometric component is similarly ordered, with genetic (A) influences shown 

first and followed by shared environmental (C) and non-shared environmental (E) influences. 

b) Measured constructs were stressful life events (SLEs), borderline personality disorder (BPD), and 

alcohol use disorder (AUD). 

c) Proportion of total variance explained by genetic influences (per variable, not including measurement 

errors that were removed in “EIV” modeling). 
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Appendix A: an R function for data simulation 
 

medDat <- function() { 

  # Data parameters, simulate data with rbind(DZ1,MZ1,DZ2,MZ2) 

  K = 500   # Number of DZ twins 

  J = 2*K   # Number of twin pairs 

  N = 2*J   # Number of observations 

   

  # mediation parameters 

  a = sqrt(1/4) 

  b = sqrt(1/4) 

  cdot = sqrt(1/4) 

   

  # simulate data 

  pairno <- rep(1:J,2); dzs <- rep(c(rep(1,K),rep(0,K)),2) 

  gmz = rnorm(K); gdz = rnorm(K) 

  xg <- c(gdz*sqrt(1/2) + rnorm(K)*sqrt(1/2), gmz, gdz*sqrt(1/2) + rnorm(K)*sqrt(1/2), gmz) 

  xc = rep(rnorm(J),2); xe = rnorm(N) 

  X <- sqrt(1/3)*(xg + xc + xe) 

   

  gmz = rnorm(K); gdz = rnorm(K) 

  mg <- c(gdz*sqrt(1/2) + rnorm(K)*sqrt(1/2), gmz, gdz*sqrt(1/2) + rnorm(K)*sqrt(1/2), gmz) 

  mc <- rep(rnorm(J),2); me <- rnorm(N) 

  M <- a*X + sqrt(3/4)*sqrt(1/3)*(mg + mc + me) 

   

  gmz = rnorm(K); gdz = rnorm(K) 

  yg <- c(gdz*sqrt(1/2) + rnorm(K)*sqrt(1/2), gmz, gdz*sqrt(1/2) + rnorm(K)*sqrt(1/2), gmz) 

  yc <- rep(rnorm(J),2); ye <- rnorm(N) 

  Y <- b*M + cdot*X + sqrt(1 - 4*a*b*cdot)*sqrt(1/2)*sqrt(1/3)*(yg + yc + ye) 

   

  ( data.frame(X = X, M = M, Y = Y, pairno = pairno, dzyg = dzs, id = 1:length(Y)) ) 

} 
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Appendix B: Mathematical details of the biometric mediation model 
 

The classic mediation model is a three-variable system involving an exposure variable x, a 

mediator variable m, and an outcome variable y. The model-predicted relationships among the 

variables are captured by the path diagram in Figure 1a of the main manuscript, or 

alternatively, by the equations 

m = μm + ax + ξm, 

y = μy + bm + cx + ξy, 

where μm and μy are fixed constants known as “intercepts” and ξm and ξy are normally 

distributed independent residual variables with mean of zero. The parameters a, b, and c are 

constant regression slopes, with c representing the direct effect of x on y and the product ab 

representing the indirect (i.e., mediated) effect of x on y through m. To derive a structural 

equation model (SEM), we then further assume that all variables (or their latent liabilities; see 

Methods in main text) are normally distributed and have a zero mean (i.e., μm = μy = 0). 

We place the mediation model to the SEM framework using equations provided in a 

classic book by Bollen (1989). We let vector u = [y, m]T, where T denotes transpose of a 

matrix or vector, collect the outcome y and the mediating variable m of the mediation model. 

These are the “endogenous” variables of the system to which the “exogenous”, or input, 

variable x affects. Vector ξ = [ξy, ξm]T contains their residuals. The general SEM is captured 

by the equation 

++= xuu  , 

and this becomes the mediation model by setting 









=

00

0 b
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and Γ = [c, a]T. Covariance matrix of the residual term ξ is denoted by Ψ. The matrix Ψ is 

assumed to be a diagonal matrix (representing independent residuals). Variance of x is 

denoted by Φ, and basically corresponds to the population variance in the exposure. The SEM 

version of the mediation model then yields the following expected population covariance 

matrix for [u, x]:  

( ) ( )( ) ( )
( )










−

−−+−
=










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−

−−−

TT

TT

xxxu

uxuu

I

III
11

)()(

)()(
)(




 , 

where θ collects the free/estimable parameters of the model; i.e., θ = (a, b, c, Ψ1,1, Ψ2,2, Φ). 

However, this is only phenotypic part of the covariance and cannot explain why twins 

are more similar to each other than randomly sampled representatives of the population. To 

that end, one needs to extend the model to a twin-study design (Neale and Cardon 1992). We 

did this by partitioning Φ as Φ = ΦA + ΦC + ΦE, and Ψ as Ψ = ΨA + ΨC + ΨE, where A stands 

for additive genetic factors, C for shared environmental factors, and E for non-shared 

environmental factors. This standard partition is further discussed in the main manuscript and 

in pertinent literature (Neale and Cardon 1992). 

 Even when the data-generating process assumed by the mediation model holds true in 

the nature, the expected covariance ∑(θ) does not correspond to covariance of data measured 

or observed with error. If one has an estimate for the reliable variance, say α = [αy, αm, αx]
T, 

the situation can be remedied using various forms of ‘error-in-variables’ modeling (Carroll et 

al. 2006). A simple solution in the SEM context is to let δ contain square roots of the elements 

in α and then let the expected covariance be 

)1()()(  −+= diagT

EIV , 
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where “∙” refers to element-wise multiplication instead of matrix product and the diag(1 – δ∙δ) 

operator makes a diagonal matrix with the vector [1 – αy, 1 – αm, 1 – αx]
T in the diagonal. 

Now, fitting )(EIV  to the observed ‘error-in-variables’ covariance matrix yields unbiased, 

or error-free, estimates for the parameters in θ. Hybrid versions of the above model can be 

created by manipulating the covariance components according to established rules (Bollen 

1989; Neale and Cardon 1992). 
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Appendix C: Scripts for fitting biometric mediation models using Open 

Mx R package 
 

Scripts for fitting the models of this study can be found either from the URL: 

www.iki.fi/tom.rosenstrom/codes.html  

Or, from the Bitbucket-hosted URL: 

https://bitbucket.org/rosenstroem/biometric_mediation_scripts  

 

We hope that other researchers find these useful. If so, please cite this paper when using the 

code. 
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