1

Stratification of reactivity determines nitrate removal in groundwater

- Tamara Kolbe^{a,1,2}, Jean-Raynald de Dreuzy^{a,b}, Benjamin W. Abbott^{c,d}, Luc Aquilina^{a,3}, 2
- Tristan Babey^{a,3}, Christopher T. Green^{e,3}, Jan H. Fleckenstein^{f,g,3}, Thierry Labasque^{a,3}, Anniet 3
- 4 M. Laverman^{d,3}, Jean Marcais^{h,a,3}, Stefan Peiffer^{i,3}, Zahra Thomas^{j,3}, Gilles Pinay^{d,k}
- ^aCentre National de la Recherche Scientifique (CNRS), Géoscience Rennes UMR 6118, Université de Rennes, 35042 Rennes. France:
- ^bCentre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA),
- 5 6 7 8 9 Observatoire des Sciences de l'Univers de Rennes (OSUR) - UMR 3343, Université de Rennes, 35042 Rennes, France:
- 10 ^cDepartment of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84604;
- 11 ^dCentre National de la Recherche Scientifique (CNRS), ECOBIO - UMR 6553, Université de Rennes, 35042 Rennes, France;
- 12 13 ^eWater Mission Area, US Geological Survey, Menlo Park, CA 94025;
- 14 ^fDepartment of Hydrogeology, Helmholtz Centre for Environmental Research – Zentrum für Umweltforschung
- 15 (UFZ), 04318 Leipzig, Germany;
- 16 ^gDivision of Hydrologic Modeling, University of Bayreuth, 95447 Bayreuth, Germany;
- 17 ^hEcole nationale du génie rural, des eaux et des forêts (ENGREF), Agroparistech, 75231 Paris, France;
- 18 ¹Department of Hydrology, Bayreuth Center of Ecology and Environmental Research, 95447 Bayreuth, Germany;
- 19 ^jInstitut National de la Recherche Agronomique (INRA), Sol Agro et Hydrosystème Spatialisation, UMR 1069, 20 Agrocampus Ouest, 35042 Rennes, France; and
- 21 ^kInstitut National de Recherche en Sciences et Technologies pour l'Environnement et l'Agriculture (Irstea), 22 RiverLy, Centre de Lyon-Villeurbanne, 69625 Villeurbanne, France 23
- 24 ²Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences,
- 25 75007 Uppsala. Sweden
- 26 ³Authors contributed equally to this work.
- Classification: PHYSICAL SCIENCE, Environmental Science 27
- 28 Keywords: groundwater, denitrification, reactivity patterns, transit times, reaction times

29 S1 Information about the crystalline unconfined aquifer Pleine-Fougères, France

30 S1.1 Field data

31 Table S1: CFC-12, O ₂ , NO ₃ and NO ₃ degraded concentrations for early	ach sampling campaign (Dec 2014, Mar 2015
---	---

32 *and Oct* 2015)

ID	CFC-12 [pptv]			O ₂ [mg/L]		NO ₃ [mg/L]			NO ₃ degraded* [mg/L]			
	Dec-14	Mar-15	Oct-15	Dec-14	Mar-15	Oct-15	Dec-14	Mar-15	Oct-15	Dec-14	Mar-15	Oct-15
1	397.94	251.65	337.34	0.16	0.07	0.54	23.56	26.06	26.57	41.44	32.76	32.73
2	377.06	263.35	313.38	0.44	0.39	0.16	0.00	0.00	0.09	10.44	9.96	8.82
3	521.38	329.29	460.82	5.05	6.18	6.36	51.84	48.98	50.32	12.34	12.63	2.87
4	192.67	107.23	141.06	2.18	1.45	0.71	0.33	0.12	0.00	23.87	35.57	37.88
5	-	227.51	242.92	2.39	2.60	1.63	26.34	33.53	22.78	29.12	22.97	40.43
6	188.08	73.24	108.97	1.54	1.15	1.70	37.76	37.77	37.70	27.58	30.34	27.69
7	-	98.51	99.91	-	0.32	0.29	-	0.00	0.00	-	52.97	46.64
8	437.05	261.75	410.69	6.24	5.59	5.32	63.63	63.57	68.19	19.42	17.13	16.52
9	36.08	36.49	33.63	0.10	0.41	0.20	0.00	0.00	0.00	19.25	17.81	17.54
10	464.76	91.75	33.14	4.16	3.94	0.88	0.00	0.00	0.00	14.17	2.06	7.13
11	11.08	36.36	29.83	0.15	0.85	0.04	0.00	0.00	0.00	10.55	10.20	15.83
12	82.14	126.68	103.18	0.24	1.30	1.60	0.00	0.00	0.04	36.72	44.55	37.18
13	134.58	125.20	95.75	1.56	1.18	0.78	37.96	38.78	24.04	19.52	19.04	19.71
14	435.60	254.18	480.63	6.76	6.78	7.20	42.60	52.37	39.08	2.03	4.11	0.00
15	933.77	-	746.32	2.87	3.88	2.39	32.04	61.81	32.70	11.82	11.45	12.48
16	-	-	220.00	-	-	7.66	-	-	75.02	-	-	0.00
* cal	^k calculated from dissolved N ₂											

33

34

36

35 S1.2 Well locations with information about $\tau_{stratum}$ and τ_{enter}

38 S1.3 Correlation of apparent reaction times with hydrological conditions

ID	ID Well depth [m]		Thickness saturated zone [m]	CFC based groundwater age [y]	Mean travel distance [m]
1	65	6.4	58.6	34	173
2	70	2.4	67.6	43	436
3	34	11.7	20.3	15	176
4	82	16.3	65.7	45	403
5	94	11.9	82.1	30	422
6	60	20.1	39.9	32	393
7	98	22.7	75.3	43	600
8	80	7.2	75.8	49	765
9	58	1.7	56.3	45	868
10	46	0.1	46	62	1029
11	84	2.4	81.6	40	66
12	34	4.6	29.4	23	173
13	30	1.2	28.8	27	271
14	66	8.3	57.7	21	199
15	28	3.7	24.3	8	122
16	35	20.1	14.9	16	183

39 Tab. S1.3-1: Hydrological conditions at well locations

40

41 Tab. S1.3-2: Pearson product-moment correlation between well characteristics and apparent reaction times

	$ au_{O_2,app}$	$ au_{NO_3^-,app}$
Well depth	-0.31	0.01
Water table depth	0.04	-0.45
Thickness saturated zone	-0.33	0.15
CFC based groundwater age	-0.08	0.05
Mean travel distance	0.17	-0.24

42

43 S2 Concentrations within the apparent and strata framework – synthetic test case

Here, a uniform transit time distribution and constant input concentrations are used to illustrate the relations between O₂ and NO₃ concentrations, the stratum reaction times $\tau_{stratum}$ and the apparent reaction times τ_{app} . The uniform transit time distribution is defined between $t_{min} = 0$ y and $t_{max} = 70$ y. O₂ and NO₃ input concentrations are constant over time, e.g. $[O_2]_0 = 7$ mg/L and $[NO_3^-]_0 = 28$ mg/L. Relations between apparent and stratum reaction times derive from the equality of apparent and strata concentrations:

$$[0_2]_{app} = [0_2]_{stratum}$$
[S1]

$$[NO_3^-]_{app} = [NO_3^-]_{stratum}$$
[S2]

50 **S2.1 Concentrations within the apparent framework**

Apparent concentrations $[O_2]_{app}$ and $[NO_3^-]_{app}$ in a well are calculated by convoluting their input concentrations $[O_2]_0(t)$ and $[NO_3^-]_0(t)$ with the transit time distribution p(t) and applying a first-order reaction term using Eq. S3 and S4. Reactions are assumed to occur uniformly along the flow line. Expressions are given hereafter in cases where both, O_2 and $NO_3^$ concentrations, are fully degraded within the range of the transit time distribution, i.e. when the critical time $t_{c,app} = -\tau_{app} \ln \left(\frac{[O_2]_c}{[O_2]_0} \right)$ is within the limits of the time distribution $(t_{min} < t_{app,c} < t_{max})$:

$$[0_{2}]_{app} = [0_{2}]_{0} \frac{\tau_{O_{2},app} \left(e^{-\frac{t_{min}}{\tau_{O_{2},app}}} - e^{-\frac{t_{max}}{\tau_{O_{2},app}}} \right)}{t_{max} - t_{min}}$$
[S3]

$$[NO_{3}^{-}]_{app} = [NO_{3}^{-}]_{0} \frac{\tau_{NO_{3}^{-},app}}{t_{max} - t_{min}} - t_{min} + t_{c,app}$$
[S4]

58 S2.2 Concentrations in the strata framework – The late start pattern

- 59 Within the late start pattern, O_2 and NO_3^- concentrations are calculated by using Eq. S5 and S6.
- 60 Solutions are given for $t_{min} < \tau_{enter} + t_{c,stratum} < t_{max}$ with $t_{c,stratum} =$ 61 $-\tau_{stratum} \ln \left(\frac{[O_2]_c}{[O_2]_0} \right)$ when both, O_2 and NO_3^- reduction, can occur and are not complete:

$$[0_2]_{stratum} = [0_2]_0 \frac{\tau_{O_2, stratum} \left(1 - e^{-\frac{t_{max} - \tau_{enter}}{\tau_{O_2, stratum}}}\right) + \tau_{enter} - t_{min}}{t_{max} - t_{min}}$$
[S5]

$$[NO_{3}^{-}]_{stratum} = [NO_{3}^{-}]_{0} \frac{\tau_{NO_{3}^{-},stratum}}{(1-e^{-\frac{t_{max}-\tau_{enter}-t_{c,stratum}}{\tau_{NO_{3}^{-},stratum}}}) + \tau_{enter} + t_{c,stratum} - t_{min}}{t_{max}-t_{min}}$$
[S6]

62 S2.3 Relations between apparent and stratum reaction times – The late start pattern

Apparent and stratum reaction times are related to yield identical O₂ and NO₃ concentrations 63 64 using Eq. S.1 and S.2. Observed O₂ and NO₃ concentrations can be interpreted within the apparent and strata framework. For example, sampled concentrations $[0_2] = 1.5 \text{ mg/L}$ and 65 $[NO_3^-] = 8.6 \text{ mg/L}$ lead to significantly faster apparent denitrification ($\tau_{NO_3^-, stratum} = 2.3 \text{ y}$) 66 than apparent O₂ reduction ($\tau_{O_2,stratum} = 15.2$ y) (Fig. S2.1a). This goes against common 67 68 ecological sense. The same concentrations interpreted within the strata framework lead to equal stratum reaction time for O₂ and NO₃ reduction $\tau_{stratum} = 5$ y and a delay of the reactions 69 $\tau_{enter} = 10$ y, showing a late start pattern (Fig. S2.1b). Within the strata framework, O₂ 70 71 reduction starts later and occurs faster than within the apparent framework. NO₃ reduction starts 72 earlier and is slower.

73 τ_{enter} and $\tau_{stratum}$ can be determined for any couple of $\tau_{0_{2},app}$ and $\tau_{NO_{3}^{-},app}$ as long as 74 $\tau_{0_{2},app} > \tau_{NO_{3}^{-},app}$. Divergences between apparent and stratum reaction times occur when τ_{enter} 75 progressively increases as revealed by differences in reaction times of O₂ and NO₃ reduction 76 (Fig. S2.2a). Apparent reaction times logically increase with the stratum reaction time (Fig. 77 S2.2b).

Fig. S2.1: The evolution of O_2 and NO_3 concentrations as functions of transit times for a sampling zone. The transit time distribution is uniform. The interpreted concentrations of O_2 and NO_3 are equal between \mathbf{a} , the apparent and \mathbf{b} the late start pattern.

81 *b*, the late start pattern.

78

raon

83 Fig. S2.2: a, τ_{enter} and b, $\tau_{stratum}$ as functions of apparent reaction times.

84 S2.4 Concentrations in the strata framework – The early stop pattern

- 85 Within the early stop pattern, strata O₂ and NO₃ concentrations are calculated with Eq. S7 and
- 86 S8. Solutions are valid within the integration limits $t_{min} < \tau_{leave} + t_{c,stratum} < t_{max}$.

$$[0_{2}]_{stratum} = [0_{2}]_{0} \frac{\tau_{0_{2},stratum}}{\tau_{0_{2},stratum}} e^{-\frac{t_{min}}{\tau_{0_{2},stratum}} + (t_{max} - \tau_{leave} - \tau_{0_{2},stratum})e^{-\frac{\tau_{leave}}{\tau_{0_{2},stratum}}}}{t_{max} - t_{min}}$$
[S7]

 $[NO_3^-]_{stratum} =$

$$[NO_{3}^{-}]_{0} \frac{\tau_{NO_{3}^{-},stratum} + (t_{max} - \tau_{leave} - \tau_{NO_{3}^{-},stratum})e^{-\frac{\tau_{leave} - t_{c,stratum}}{\tau_{NO_{3}^{-},stratum}} + t_{c,stratum} - t_{min}}$$

$$[S8]$$

87 S2.5 Relation between apparent and stratum reaction times – The early stop pattern

88 Larger apparent reaction times for NO_3 than for O_2 are representative for the early stop pattern

and show incomplete reactions, which can be interpreted as long as the NO_3 and O_2 apparent

90 times do no diverge too strongly.

96

Fig. S2.5 demonstrates how τ_{leave} and $\tau_{stratum}$ evolve in the plot of apparent O₂ and NO₃ reaction times. With a large time to leave the reactive zone, the relation of apparent reaction times approaches the 1:1 line, showing a similar pattern as for uniform distributed reactivity (Fig. S2.5a). Within the early stop pattern, apparent O₂ reaction times are strongly impacted by stratum reaction times (Fig. S2.5b).

97 *Fig. S2.5: Evolution of* a, τ_{leave} and b, $\tau_{stratum}$ within the plot of apparent reaction times.