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Supplementary Methods: 

Spectral Dynamic Causal Modelling 

Dynamic causal modelling (DCM) is Bayesian framework that infers the directed 

(causal) connectivity among the neuronal systems – referred to as effective connectivity. 

A new DCM for resting state fMRI was recently proposed based upon a deterministic 

model that generates predicted cross spectra, referred to as spectral DCM. In order to 

model resting state activity – in the absence of external stimuli – a stochastic component 

capturing neural fluctuations is included in the model. Mathematically, we can express 

the formulation of the stochastic generative model as a set of two equations. First is the 

neuronal state equation, namely 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡),𝜃𝜃) +  𝑣𝑣(𝑡𝑡),        (S1) 

and second is the observation equation, which is a static nonlinear mapping from the 

hidden physiological states in (1) to the observed BOLD activity and is written as: 

𝑦𝑦(𝑡𝑡) = ℎ(𝑥𝑥(𝑡𝑡),𝜑𝜑) +  𝑒𝑒(𝑡𝑡),          (S2) 

where 𝑥̇𝑥(t)  is the rate of change of the neuronal states 𝑥𝑥(𝑡𝑡) , 𝜃𝜃  are unknown 

parameters (i.e. the effective connectivity) and 𝑣𝑣(𝑡𝑡) (resp. 𝑒𝑒(𝑡𝑡)) is the stochastic 

process – called the state noise (resp. the measurement or observation noise) – 

modelling the random neuronal fluctuations that drive the resting state activity.  In the 

observation equations, 𝜑𝜑  are the unknown parameters of the (haemodynamic) 

observation function and 𝑢𝑢(𝑡𝑡) represents any exogenous (or experimental) inputs that 

drive the hidden states – that are usually absent in resting state designs (1). Spectral 

DCM furnishes a constrained inversion of the stochastic model by parameterising the 

neuronal fluctuations 𝑣𝑣(𝑡𝑡). Spectral DCM simplifies the generative model by replacing 

the original timeseries with their second-order statistics (i.e., cross spectra). This means, 

instead of estimating time varying hidden states, we are estimating their covariance, 

which is time invariant. Then we simply need to estimate the covariance of the random 



fluctuations; where a scale free (power law) form for the state noise (resp. observation 

noise) is used – motivated from previous work on neuronal activity (2-4) – as follows: 

𝑔𝑔𝑣𝑣(𝜔𝜔,𝜃𝜃) = 𝛼𝛼𝑣𝑣𝜔𝜔−𝛽𝛽𝑣𝑣  

𝑔𝑔𝑒𝑒(𝜔𝜔,𝜃𝜃) = 𝛼𝛼𝑒𝑒𝜔𝜔−𝛽𝛽𝑒𝑒          (S3) 

Here, {𝛼𝛼,𝛽𝛽} ⊂ 𝜃𝜃 are the parameters controlling the amplitudes and exponents of the 

spectral density of the neural fluctuations. The parameterisation of endogenous 

fluctuations means that the states are no longer probabilistic; hence the inversion 

scheme is significantly simpler, requiring estimation of only the parameters (and 

hyperparameters) of the model.  

We used standard Bayesian model inversion to infer the parameters of the model in (1), 

(2) and (3), from the observed signal 𝑦𝑦(𝑡𝑡). The description of the Bayesian model 

inversion procedures based on variational Laplace can be found elsewhere for the 

interested readers (5-7).   

Parametric Empirical Bayes 

Empirical Bayes refers to the Bayesian inversion or fitting of hierarchical models. In 

hierarchical models, constraints on the posterior density over model parameters at any 

given level are provided by the level above. These constraints are called empirical 

priors because they are informed by empirical data. A hierarchical Parametric Empirical 

Bayes (PEB) model for DCM parameters was recently introduced, which represents 

how individual (within-subject) connections derive from the subjects’ group 

membership (8). Mathematically, for DCM studies with N subjects and M parameters 

per DCM, we have a hierarchical model, where the responses of the i-th subject and the 

distribution of the parameters over subjects can be modeled as: 

𝑦𝑦𝑖𝑖 = Γ𝑖𝑖
(1)(𝜃𝜃(1)) +  𝜀𝜀𝑖𝑖

(1)                        (S4) 

𝜃𝜃(1) = Γ(2)�𝜃𝜃(2)� +  𝜀𝜀(2)  



𝜃𝜃(2) = 𝜂𝜂 +  𝜀𝜀(3)  

where, 𝑦𝑦𝑖𝑖  is the BOLD time series from i-th subject and Γ𝑖𝑖
(1) is a nonlinear mapping 

from the parameters of a model to the predicted response 𝑦𝑦, which in this study was 

the model in Eq. S1 above. 𝜀𝜀𝑖𝑖
(1) is independent and identically distributed (i.i.d.) 

observation noise (equivalent to 𝑒𝑒(𝑡𝑡) in Eq. S2).  In this hierarchical form, empirical 

priors encoding second (between-subject) level effects place constraints on subject-

specific parameters. The second level would be a linear model where the random effects 

are parameterised in terms of their precision: 

Γ(2)�𝜃𝜃(2)� = (𝑋𝑋⨂𝑊𝑊)𝛽𝛽  

where, 𝛽𝛽 ⊂ 𝜃𝜃 are group means or effects encoded by a design matrix with between 𝑋𝑋 

and within-subject 𝑊𝑊 parts. The between-subject part encodes differences among 

subjects or covariates such as age, while the within-subject part specifies mixtures of 

parameters that show random effects. We assume that the first column of the design 

matrix is a constant term, modelling group means and subsequent columns encode 

group differences. 

 

 

 

 

 

 

 

 

 

  



 

Fig. S1: Subjective drug effects. Retrospectively assessed 5D-ASC scores in the 

Placebo (Pla), Ketanserin+LSD (Ket+LSD), and LSD treatment conditions. Scores are 

expressed as a percent of the scale maximum. Scores in the LSD treatment condition 

differed significantly from Placebo and Ketanserin+LSD treatment conditions on each 

scale except for spiritual experience and anxiety (*p < 0.05, Bonferroni corrected; n = 

25 participants).  

 

 

 

  



Table S1. Summary of parameter values 

 

Condition 1: Placebo < [LSD + (Ket+ LSD)]  

Connection Mean Variance Posterior 

probability 

Thal VS 0.088 0.0005 1.0 

PCC  VS 0.047 0.0001 1.0 

Thal  Temp 0.275 0.0006 1.0 

VS  Thal 0.184 0.0008 1.0 

VS  PCC 0.139 0.0022 0.99 

VS  Temp 0.325 0.0018 1.0 

PCC  PCC 0.091 0.0008 0.99 

Condition 2:  (Ket+LSD) < LSD  

Thal  VS 0.143 0.0009 1.0 

Thal  PCC 0.276 0.0036 1.0 

VS  Temp 0.169 0.0097 0.96 

PCC  Thal 0.098 0.0004 1.0 

Temp  Temp 0.18 0.0023 1.0 
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