Supplementary Information

Copper-catalyzed remote C(sp³)-H azidation and oxidative trifluoromethylation of benzohydrazides

Bao, X., et al

Supplementary Figures

Supplementary Figure 2. ¹³C NMR spectra of 4a

Supplementary Figure 3. ¹³C NMR spectra of 4b

Supplementary Figure 4. ¹³C NMR spectra of 4b

Supplementary Figure 6. ¹³C NMR spectra of 4c

Supplementary Figure 8. ¹³C NMR spectra of 4d

Supplementary Figure 10. ¹³C NMR spectra of 4e

Supplementary Figure 12. ¹³C NMR spectra of 4f

Supplementary Figure 14. ¹³C NMR spectra of 4g

Supplementary Figure 16. ¹³C NMR spectra of 4h

Supplementary Figure 17. ¹H spectra of 4i

Supplementary Figure 18. ¹³C NMR spectra of 4i

Supplementary Figure 20. ¹³C NMR spectra of 4j

Supplementary Figure 22. ¹³C NMR spectra of 4k

Supplementary Figure 24. ¹³C NMR spectra of 4k'

Supplementary Figure 25. ¹H spectra of 41

Supplementary Figure 26. ¹³C NMR spectra of 41

Supplementary Figure 27. ¹H spectra of 4m

Supplementary Figure 28. ¹³C NMR spectra of 4m

Supplementary Figure 30. ¹³C NMR spectra of 4n

Supplementary Figure 31. ¹H spectra of 40

Supplementary Figure 32. ¹³C NMR spectra of 40

Supplementary Figure 33. ¹H spectra of 4p

Supplementary Figure 34. ¹³C NMR spectra of 4p

Supplementary Figure 35. ¹H spectra of 4q

Supplementary Figure 36. ¹³C NMR spectra of 4q

Supplementary Figure 38. ¹³C NMR spectra of 4r

Supplementary Figure 39. ¹H spectra of 4s

Supplementary Figure 40. ¹³C NMR spectra of 4s

Supplementary Figure 41. ¹H spectra of 4t

Supplementary Figure 42. ¹³C NMR spectra of 4t

Supplementary Figure 44. ¹³C NMR spectra of 4u

Supplementary Figure 45. ¹H spectra of 5a

Supplementary Figure 46. ¹³C NMR spectra of 5a

Supplementary Figure 47. ¹⁹F spectra of 5a

Supplementary Figure 48. ¹H spectra of 5b

Supplementary Figure 50. ¹⁹F spectra of 5b

BAOX1248A.1.fid — ChemInfo_1Hzg CDCI3 /opt/ xbao 26

 $< \frac{3.034}{3.022}$

Supplementary Figure 51. ¹H spectra of 5c

Supplementary Figure 52. ¹³C NMR spectra of 5c

Supplementary Figure 53. ¹⁹F spectra of 5c

Supplementary Figure 54. ¹H spectra of 5d

Supplementary Figure 55. ¹³C NMR spectra of 5d

Supplementary Figure 56. ¹⁹F spectra of 5d

BAOX12188.1.fid — ChemInfo_1Hzg (DCI3 /opt/ xbao 60 66009 (2000)

 $\left\{ \sum_{2.913}^{2.929} 2.917 \\ 2.913 \\ 2.913 \\ 2.913 \\ \end{array} \right\}$

Supplementary Figure 57. ¹H spectra of 5e

Supplementary Figure 58. ¹³C NMR spectra of 5e

Supplementary Figure 59. ¹⁹F spectra of 5e

Supplementary Figure 60. ¹H spectra of 5f

Supplementary Figure 61. ¹³C NMR spectra of 5f

Supplementary Figure 62. ¹⁹F spectra of 5f

BAOX1226D.10.fid — ChemInfo_1Hzg CDCl3 /opt/ xbao 30

Br 5g CF₃

 $\begin{array}{c} 7.601\\ 7.556\\ 7.455\\ 7.455\\ 7.457\\ 7.437\\ 7.441\\ 7.441\\ 7.441\\ 7.441\\ 7.252\\ 6.026\\ 6.096\\ 6.080\\ 6.069\\ 6.069\\ 6.069\\ 6.026\\ 6.$

 $< \frac{2.907}{2.895}$

Supplementary Figure 63. ¹H spectra of 5g

Supplementary Figure 64. ¹³C NMR spectra of 5g

Supplementary Figure 66. ¹H spectra of 5h

Supplementary Figure 68. ¹⁹F spectra of 5h

Supplementary Figure 70. ¹³C NMR spectra of 5i

Supplementary Figure 71. ¹⁹F spectra of 5i

Supplementary Figure 72. ¹H spectra of 5j

Supplementary Figure 74. ¹⁹F spectra of 5j

Supplementary Figure 75. ¹H spectra of 5k

Supplementary Figure 76. ¹³C NMR spectra of 5k

Supplementary Figure 77. ¹⁹F spectra of 5k

Supplementary Figure 78. ¹H spectra of 51

51

CI

Supplementary Figure 80. ¹⁹F spectra of 51

Ö NHMe °CF₃ Br **5m** 1.094 1.094 2.95<u>H</u> £10. 1.92 Ę 7.5 3.0 9.5 8.5 8.0 7.0 5.0 4.5 4.0 2.5 9.0 6.5 6.0 5.5 3.5 2.0 -1.0 1.5 1.0 0.5 0.0 -0.5

 $< \frac{2.942}{2.930}$

Supplementary Figure 81. ¹H spectra of 5m

Supplementary Figure 82. ¹³C NMR spectra of 5m

Supplementary Figure 84. ¹H spectra of 5n

Supplementary Figure 86. ¹⁹F spectra of 5n

Supplementary Figure 88. ¹³C NMR spectra of 50

Supplementary Figure 89. ¹⁹F spectra of 50

Supplementary Figure 90. ¹H spectra of 5p

Supplementary Figure 91. ¹³C NMR spectra of 5p

Supplementary Figure 92. ¹⁹F spectra of 5p

Supplementary Figure 94. ¹³C NMR spectra of 5q

Supplementary Figure 95. ¹⁹F spectra of 5q

Supplementary Figure 96. ¹H spectra of 5r

Supplementary Figure 97. ¹³C NMR spectra of 5r

BAOX1248C.2.fid — refe_19Fzg CDCl3 /opt/ xbao 31

-63.266 -63.273 -63.284 -63.290

Supplementary Figure 98. ¹⁹F spectra of 5r

Supplementary Figure 99. ¹H spectra of 5s

Supplementary Figure 100. ¹³C NMR spectra of 5s

Supplementary Figure 101. ¹⁹F spectra of 5s

Supplementary Figure 102. ¹H spectra of 5t

Supplementary Figure 103. ¹³C NMR spectra of 5t

Supplementary Figure 104. ¹⁹F spectra of 5t

Supplementary Figure 105. ¹H spectra of 5u & 5u'

Supplementary Figure 106. ¹³C NMR spectra of 5u & 5u'

Supplementary Figure 107. ¹⁹F spectra of 5u & 5u'

Supplementary Figure 108. ¹H spectra of 3a-D2

Supplementary Figure 109. ¹³C NMR spectra of 3a-D2

Supplementary Figure 110. ¹H NMR spectra of 6

Supplementary Figure 112. ¹H spectra of 7

Supplementary Figure 114. ¹H spectra of 8

Supplementary Figure 116. ¹H spectra of 4a-D1

Supplementary Figure 117. ¹³C NMR spectra of 4a-D1

Supplementary Figure 118. ¹H spectra of 10

Supplementary Figure 120. ¹H spectra of 5a-D1

Supplementary Figure 121. ¹³C NMR spectra of 5a-D1

Supplementary Figure 122. ¹H spectra of 12

1.00<u>-1</u> 3.05<u>H</u> .0.0 9.5 8.0 1.5 9.0 8.5 4.5 7.0 6.5 6.0 5.5 5.0 4.0 3.5 2.5 2.0 1.0 3.0

A.

Supplementary Figure 124. ¹H spectra of 13

0.5

0.0

-1.(

-0.5

Supplementary Figure 126. ¹H spectra of 14

Supplementary Figure 128. ¹H spectra of 15

Supplementary Figure 129. ¹³C NMR spectra of 14

Supplementary Figure 130. ¹H spectra of 5v

Supplementary Figure 131. ¹³C NMR spectra of 5v

Supplementary Figure 132. ¹⁹F spectra of 5v

Supplementary Tables

Supplementary Table 1: Copper-catalyzed γ -azidation of 2-ethyl benzohydrazide 3a: Cu(II) salts and organic peroxides screening.^a

	CO ₂ Et		O II
Ö	Cu(II) (0.4 equi	iv), TMSN ₃ (4 equiv)	
3	$\rightarrow \qquad \qquad$		
Entry	Cu(II)	Peroxide	Yield/% ^b
1	Cu(OAc) ₂	TBHP	58
2	Cu(OTf) ₂	TBHP	40
3	CuSO ₄	TBHP	56
4	CuF ₂	TBHP	56
5	Cu(acac) ₂	TBHP	62
6	$Cu(ClO_4)_2$ •6H ₂ O	TBHP	72
7	Cu(BF ₄) ₂ •6H ₂ O	TBHP	60
8	Cu(NO ₃) ₂ •2H ₂ O	TBHP	64
9	CuBr ₂	TBHP	44
10	Cu(ClO ₄) ₂ •6H ₂ O	DTBP	trace
11	$Cu(ClO_4)_2$ •6H ₂ O	H_2O_2	trace
12	$Cu(ClO_4)_2$ •6H ₂ O	CHP	64
13	$Cu(ClO_4)_2$ •6H ₂ O	ТВРВ	60
14	Cu(ClO ₄) ₂ •6H ₂ O	<i>t</i> BuOOAc	82
15	Cu(ClO ₄) ₂ •6H ₂ O	DCP	trace

[a] **3a** (0.1 mmol, 1.0 equiv), TMSN₃ (4.0 equiv), Cu(II) (0.4 equiv), peroxide (4.0 equiv), and *t*BuOH (2.0 mL) at 50 °C. [b] Yield was determined by ¹H NMR spectroscopy with CH_2Br_2 as an internal standard.

Supplementary Table 2: Copper-catalyzed γ -azidation of 2-ethyl benzohydrazide 3a: solvents screening.^a

	ÇÖ ₂ Et	Q
0	\sim Cu(ClO ₄) ₂ •6H ₂ O (0.4 equiv), TMSN ₃ (4 equiv	
N.N.	$CO_2Et \ tBuOOAc (4.0 equiv), solvent, 50 °C c = 0.05 \text{ mmol/mL}$	H N ₃
3a		
Entry	Solvent	Yield/% ^b
1	<i>t</i> BuOH	82
2	DCE	52
3	1,4-dioxane	52
4	EtOAc	36
5	CF ₃ CH ₂ OH	24
6	CH ₃ CN	48

[a] **3a** (0.1 mmol, 1.0 equiv), TMSN₃ (4.0 equiv), Cu(ClO₄)₂•6H₂O (0.4 equiv), *t*BuOOAc (4.0 equiv), and solvent (2.0 mL) at 50 °C. [b] Yield was determined by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard.

Supplementary Table 3: Copper-catalyzed γ -azidation of 2-ethyl benzohydrazide 3a: Cu(I) salts screening.^a

. ()	5	
	CO ₂ Et	O II
o y	Cu(I) (0.2 equiv), TMSN ₃ (4 equiv)	
	CO_2Et <i>t</i> BuOOAc (4.0 equiv), Bu ^t OH, 50 °C <i>c</i> = 0.05 mmol/mL	H N ₃ 4a
Entry	Cu(I)	Yield/% ^b
1	CuOAc	56
2	CuOTf•benzene	52
3	CuCl	44
4	Cul	53
5	CuBr	48
6	CuPF ₆ •4CH ₃ CN	68
7 ^c	CuPF ₆ •4CH ₃ CN	88/(85) ^d

[a] **3a** (0.1 mmol, 1.0 equiv), TMSN₃ (4.0 equiv), Cu(I) (0.4 equiv), *t*BuOOAc (4.0 equiv) and Bu^tOH (2.0 mL) at 50 °C. [b] Yield was determined by ¹H NMR spectroscopy with CH₂Br₂ as an internal standard. [c] TMSN₃ (2.0 equiv), *t*BuOOAc (2.0 equiv). [d] Yield of isolated product in parenthesis.

Supplementary Table 4: Copper-catalyzed oxidative δ -trifluoromethylation of 2-ethylbenzohydrazide 3a: metal salts screening.^a

$\begin{array}{c} CF_{3} \\ \hline \\ CF_{3} \\ \hline \\ O \\ \hline \\ DCM, rt \end{array}$	
9	5a
Metal salts	Yield/% ^b
CuF ₂	trace
Cu(OTf) ₂	trace
Cu(OAc) ₂	trace
Cul	61
CuBr	54
CuCl	64
CuOAc	22
CuOTf•benzene	18
FeCl ₂	trace
FeBr ₂	trace
Fe(OTf) ₂	trace
FeCl ₃	trace
Fe(OTf) ₃	trace
	$\begin{array}{c} & \overset{CF_3}{\overset{MX (0.2 \text{ equiv})}{\overset{DCM, rt}{\overset{DCM, rt}{}}} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $

[a] **3a** (0.1 mmol, 1.0 equiv), Togni's reagent **9** (3.0 equiv), MX (0.2 equiv), and DCM (1.0 mL) at rt. [b] Yield was determined by 1 H NMR spectroscopy with DMAP as an internal standard.

ethylbenzohydrazide 3a: bas	es screening. ^a	0
+ CO ₂ Et + CO ₂ Et	$ \begin{array}{c} $	
3aaaaa_aa	9	5a
Entry	Base	Yield/% ^b
1		64
2	NaHCO ₃	61
3	Na ₂ CO ₃	68
4	K ₂ CO ₃	24
5	Na ₃ PO ₄	50
6	Na ₂ HPO ₄	54
7	DABCO	36
8 ^c	Na ₂ CO ₃	74(72) ^d
9 ^{<i>f</i>}	Na ₂ CO ₃	54

Supplementary Table 5: Copper-catalyzed oxidative δ -trifluoromethylation of 2-

[a] **3a** (0.1 mmol, 1.0 equiv), Togni's reagent **9** (3.0 equiv), CuCl (0.2 equiv mmol), base (3.0 equiv), and DCM (1.0 mL) at rt. [b] Yield was determined by ¹H NMR spectroscopy with DMAP as an internal standard. [c] CuCl (0.4 equiv) [d] Yield of isolated product in parenthesis. [f] CuCl (0.06 mmol).

Supplementary Table 6: Copper-catalyzed oxidative δ -trifluoromethylation of 2-ethylbenzohydrazide 3a: solvents screening.^a

	P_2Et CF_3 + CO_2Et O	CuCl (0.4 equiv)	NHMe CF3
3a '	9		5a
Entry	Solvent		Yield/% ^b
1	Benzene		trace
2	PhCl		trace
3	PhCF ₃		trace
4	CH ₃ CN		trace
5	DCE		61
6	1,4-Dioxane		12
7	DCM		74/(72) ^c

[a] **3a** (0.1 mmol, 1.0 equiv), Togni's reagent **9** (3.0 equiv), CuCl (0.4 equiv), Na_2CO_3 (3.0 equiv), and solvent (1.0 mL) at rt. [b] Yield was determined by ¹H NMR spectroscopy with DMAP as an internal standard. [d] Yield of isolated product in parenthesis.

Supplementary Methods

General Information.

General Analytical Information.

NMR spectra were recorded on a Brüker AvanceIII-400, Brüker Avance-400 or Brüker DPX-400 spectrometer at room temperature, ¹H frequency is at 400.13 MHz, ¹³C frequency is at 100.62 MHz. Chemical shifts (δ) were reported in parts per million (ppm) relative to residual solvent peaks rounded to the nearest 0.01 for proton and 0.1 for carbon (*ref: CHCl3 [¹H: 7.26, ¹³C: 77.16]*. Coupling constants (*J*) were reported in Hz to the nearest 0.1 Hz. Peak multiplicity was indicated as follows s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad). Attribution of peaks was done using the multiplicities and integrals of the peaks.

IR spectra were recorded in a Jasco FT/IR-4100 spectrometer outfitted with a PIKE technology MIRacleTM ATR accessory as neat films compressed onto a Zinc Selenide window. The spectra were reported in cm⁻¹.

The accurate masses were measured by the mass spectrometry service of the EPFL by ESI-TOF using a QTOF Ultima from Waters or APPI-FT-ICR using a linear ion trap Fourier transform ion cyclotron resonance mass spectrometer from Thermo Scientific.

Melting points were measured using a Stuart SMP30

Materials and Methods.

Unless otherwise stated, starting materials were purchased from Aldrich and/or Fluka. Solvents were purchased in HPLC quality, degassed by purging thoroughly with nitrogen and dried over activated molecular sieves of appropriate size. Alternatively, they were purged with argon and passed through alumina columns in a solvent purification system (Innovative Technology). Conversion was monitored by thin layer chromatography (TLC) using Merck TLC silica gel 60 F254. Compounds were visualized by UV light at 254 nm and by dipping the plates in an ethanolic vanillin/sulfuric acid solution or an
aqueous potassium permanganate solution followed by heating. Flash column chromatography was performed over silica gel (230–400 mesh).

General procedure

The benzohydrazides **3** were prepared following Studer's procedure.¹

General procedure for the Copper-catalyzed y-azidation of 2-alkyl benzohydrazides 3

A screw cap tube was charged with Cu(PF₆)•4CH₃CN (14.9 mg, 0.04 mmol, 0.4 equiv), substrate **3** (0.1 mmol, 1.0 equiv), TMSN₃ (26.5 μ l, 0.2 mmol, 2.0 equiv) and *t*BuOH (2.0 mL). The mixture was stirred at 50 °C for 2 minutes, then *t*BuOOAc (32.2 μ L, 0.2 mmol, 2.0 equiv) was added to the above mixture. After being stirred for 2 hours at 50 °C under N₂ atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **4**.

Characterization of compounds 4

2-(1-azidoethyl)-N-methylbenzamide (4a)

The crude product was purified by flash column chromatography on silica gel to afford **4a** (17.4 mg, 85% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.44 (d, *J* = 7.8 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.29 (d, *J* = 7.7 Hz, 1H), 7.25 – 7.17 (m, 1H), 6.17 (s, 1H), 5.08 (q, *J* = 6.8 Hz, 1H), 2.87 (d, *J* = 4.9 Hz, 3H), 1.46 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 139.7, 135.4, 130.7, 127.9, 127.0, 126.8, 57.4, 26.8, 21.7.

IR (neat) cm⁻¹υ: 3294 (w), 2976 (w), 2104 (s), 1721 (w), 1635 (s), 1619 (m), 1538 (s), 1410 (m), 1305 (m), 1245 (s), 1065 (m), 760 (s), 697 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{10}H_{12}N_4NaO^+$ 227.0903; Found 227.0906.

2-(1-azidoethyl)-N,4-dimethylbenzamide (4b)

The crude product was purified by flash column chromatography on silica gel to afford **4b** (18.5 mg, 85% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.20 (d, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 7.1 Hz, 1H), 6.01 (s, 1H), 5.12 (q, *J* = 6.7 Hz, 1H), 2.89 (d, *J* = 4.9 Hz, 3H), 2.31 (s, 3H), 1.47 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 170.0, 141.0, 139.9, 132.5, 128.6, 127.4, 127.1, 57.4, 26.8, 21.8, 21.6.

IR (neat) cm⁻¹ υ: 3262 (w), 2979 (w), 2112 (s), 2076 (m), 1625 (s), 1562 (s), 1452 (w), 1322 (m), 1249 (s), 1146 (m), 1071 (w), 836 (m), 720 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO^+$ 241.1060; Found 241.1059.

3-(1-azidoethyl)-N-methyl-[1,1'-biphenyl]-4-carboxamide (4c)

The crude product was purified by flash column chromatography on silica gel to afford **4c** (25.8 mg, 92% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 (d, *J* = 1.8 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.52 – 7.42 (m, 4H), 7.41 – 7.36 (m, 1H), 6.25 (q, *J* = 5.3 Hz, 1H), 5.26 (q, *J* = 6.7 Hz, 1H), 2.98 (d, *J* = 4.9 Hz, 3H), 1.59 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 143.6, 140.5, 140.0, 134.0, 129.0, 128.1, 127.7, 127.3, 126.5, 125.6, 57.5, 26.9, 21.8.

IR (neat) cm⁻¹ v: 3269 (w), 2936 (w), 2100 (m), 1624 (m), 1562 (m), 1481 (w), 1450 (w), 1409 (w), 1307 (m), 1241 (m), 1069 (w), 838 (w), 761 (s), 696 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{16}N_4NaO^+$ 303.1216; Found 303.1216.

2-(1-azidoethyl)-4-methoxy-N-methylbenzamide (4d)

The crude product was purified by flash column chromatography on silica gel to afford **4d** (19.8 mg, 85% yield) as a white solid.

MP: 74 – 75 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (d, *J* = 8.5 Hz, 1H), 7.03 (d, *J* = 2.3 Hz, 1H), 6.80 (dd, *J* = 8.4, 2.4 Hz, 1H), 5.99 (s, 1H), 5.27 (q, *J* = 6.7 Hz, 1H), 3.84 (s, 3H), 2.96 (d, *J* = 4.8 Hz, 3H), 1.54 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 169.6, 161.4, 142.4, 128.8, 127.6, 113.0, 112.5, 57.4, 55.6, 26.9, 21.9.

IR (neat) cm⁻¹ v: 3259 (w), 2987 (w), 2110 (m), 2069 (w), 1631 (m), 1609 (m), 1570 (m), 1492 (w), 1409 (m), 1284 (s), 1229 (s), 1169 (w), 1066 (m), 1038 (s), 894 (w), 824 (m), 707 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO_2^+$ 257.1009; Found 257.1010.

2-(1-azidoethyl)-4-fluoro-N-methylbenzamide (4e)

The crude product was purified by flash column chromatography on silica gel to afford **4e** (20.2 mg, 90% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.36 (dd, *J* = 8.5, 5.6 Hz, 1H), 7.20 (dd, *J* = 9.9, 2.4 Hz, 1H), 6.96 (td, *J* = 8.1, 2.3 Hz, 1H), 6.20 (s, 1H), 5.17 (q, *J* = 6.8 Hz, 1H), 2.93 (d, *J* = 4.9 Hz, 3H), 1.51 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.0, 163.9 (d, *J* = 250.8 Hz), 143.2 (d, *J* = 7.4 Hz), 131.3 (d, *J* = 3.4 Hz), 129.2 (d, *J* = 8.6 Hz), 114.8 (d, *J* = 21.7 Hz), 114.1 (d, *J* = 22.8 Hz), 57.0 (d, ⁴*J* = 1.4 Hz), 26.9, 21.7.

IR (neat) cm⁻¹ v: 3286 (w), 2935 (w), 2104 (s), 2091 (s), 1635 (s), 1542 (s), 1447 (m), 1409 (m), 1308 (m), 1259 (s), 1215 (m), 1127 (m), 1058 (w), 853 (w), 800 (m), 762 (m), 702 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{10}H_{11}FN_4NaO^+$ 245.0809; Found 245.0811.

2-(1-azidoethyl)-4-bromo-N-methylbenzamide (4f)

The crude product was purified by flash column chromatography on silica gel to afford **4f** (23.3 mg, 83% yield) as a white solid.

MP: 107 - 108 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.41 (dd, *J* = 8.1, 1.9 Hz, 1H), 7.21 (d, *J* = 8.1 Hz, 1H), 6.21 (s, 1H), 5.12 (q, *J* = 6.8 Hz, 1H), 2.93 (d, *J* = 4.8 Hz, 3H), 1.51 (d, *J* = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 142.2, 134.0, 131.0, 130.2, 128.6, 125.0, 57.0, 26.9, 21.7.

IR (neat) cm⁻¹υ: 3249 (w), 3015 (w), 2358 (m), 2329 (m), 2141 (m), 1797 (s), 1610 (s), 1438 (s), 1225 (s), 1101 (s), 797 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{10}H_{12}BrN_4O^+$ 283.0189; Found 283.0188.

2-(1-azidoethyl)-N,3-dimethylbenzamide (4g)

The crude product was purified by flash column chromatography on silica gel to afford **4g** (17.6 mg, 86% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 – 7.11 (m, 3H), 6.06 (s, 1H), 5.28 (q, *J* = 7.0 Hz, 1H), 3.11 (d, *J* = 4.9 Hz, 3H), 2.60 (s, 3H), 1.74 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 171.3, 137.4, 137.2, 136.4, 133.3, 127.7, 125.1, 58.4, 26.9, 20.4, 19.9.

IR (neat) cm⁻¹ v: 3285 (w), 2972 (w), 2902 (w), 2113 (s), 1637 (s), 1538 (m), 1454 (m), 1409 (m), 1308 (m), 1244 (s), 1197 (m), 1076 (m), 1057 (s), 807 (s), 746 (m), 666 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO^+$ 241.1060; Found 241.1063.

2-(1-azidoethyl)-3-fluoro-N-methylbenzamide (4h)

The crude product was purified by flash column chromatography on silica gel to afford **4h** (17.4 mg, 78% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 1H), 7.19 – 7.01 (m, 2H), 6.13 (s, 1H), 5.07 (qd, J = 6.9, 1.4 Hz, 1H), 2.99 (d, J = 4.9 Hz, 3H), 1.68 (dd, J = 7.0, 1.2 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.0 (d, J = 2.9 Hz), 161.6 (d, J = 250.9 Hz), 138.3 (d, J = 4.0 Hz), 129.8 (d, J = 9.2 Hz), 126.4 (d, J = 13.2 Hz), 123.0 (d, J = 3.6 Hz), 118.0 (d, J = 23.3 Hz), 55.1, 26.9, 19.4 (d, ⁴J = 3.6 Hz).

IR (neat) cm⁻¹υ: 3282 (w), 2091 (s), 1542 (s), 1447 (w), 1409 (m), 1259 (s), 1215 (w), 1127 (w), 1058 (w), 1008 (w), 853 (w), 762 (m), 705 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{10}H_{11}FN_4NaO^+$ 245.0809; Found 245.0813.

2-(1-azidoethyl)-3-bromo-N-methylbenzamide (4i)

The crude product was purified by flash column chromatography on silica gel to afford **4i** (21.4 mg, 76% yield) as an oil, which was contaminated by the amide **4i'**.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.21 (d, J = 8.0, 1.2 Hz, 1H), 7.07 (t, J =

7.8 Hz, 1H), 5.92 (s, 1H), 5.21 (q, *J* = 6.9 Hz, 1H), 2.93 (d, *J* = 4.9 Hz, 3H), 1.63 (d, *J* = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 138.7, 137.5, 134.9, 129.0, 127.2, 123.7, 59.8, 26.9, 19.2.

IR (neat) cm⁻¹υ: 3289 (w), 2970 (w), 2159 (w), 2114 (s), 1629 (s), 1559 (m), 1553 (s), 1470 (m), 1407 (m), 1316 (s), 1255 (s), 1064 (s), 1011 (m), 806 (s), 716 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{10}H_{11}BrN_4NaO^+$ 305.0008; Found 305.0010.

3-bromo-2-ethyl-N-methylbenzamide (4i')

¹H NMR (400 MHz, CDCl₃) δ 7.5 (dd, J = 8.0, 1.3 Hz, 1H), 7.14 (dt, J = 7.8, 1.4 Hz, 1H), 6.97 (t, J = 7.8 Hz, 1H), 5.78 (s, 1H), 2.90 (d, J = 7.6 Hz, 3H), 2.79 (q, J = 7.5 Hz, 2H), 1.14 (t, J = 7.5 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 170.1, 141.2, 138.6, 134.4, 129.9, 125.8, 27.0, 26.7, 14.6.

2-(1-azidoethyl)-N,5-dimethylbenzamide (4j)

The crude product was purified by flash column chromatography on silica gel to afford **4j** (18.9 mg, 86% yield) as an oil.

¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.9 Hz, 1H), 7.28 (d, J = 7.6 Hz, 1H), 7.21 (s, 1H), 6.15 (s, 1H), 5.11 (q, J = 6.8 Hz, 1H), 2.97 (d, J = 4.8 Hz, 3H), 2.35 (s, 3H), 1.54 (d, J = 6.7 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 170.0, 137.9, 136.5, 135.5, 131.4, 127.7, 126.7, 57.3, 26.8, 21.5, 21.0.

IR (neat) cm⁻¹υ: 3265 (w), 2978 (w), 2111 (s), 2073 (m), 1625 (s), 1561 (s), 1452 (m), 1409 (m), 1319 (s), 1249 (s), 1146 (m), 1071 (m), 836 (s), 719 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{15}N_4O^+$ 219.1240; Found 219.1236.

2-(1-azidoethyl)-5-methoxy-N-methylbenzamide (4k)

CONHMe MeO. N₃ 4k

The crude product was purified by flash column chromatography on silica gel to afford **4k** (16.8 mg, 72% yield) as an oil and **4k'** (5.6 mg, 21% yield) as an oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.41 (d, J = 8.7 Hz, 1H), 6.97 (dd, J = 8.7, 2.6 Hz, 1H), 6.90 (d, J = 2.5 Hz, 1H), 6.11 (s, 1H), 5.03 (q, J = 6.8 Hz, 1H), 3.80 (s, 3H), 2.97 (d, J = 5.1 Hz, 3H), 1.52 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 169.6, 159.0, 136.9, 131.2, 128.2, 116.0, 112.7, 57.1, 55.6, 26.9, 21.4.

IR (neat) cm⁻¹ v: 3288 (w), 2936 (w), 2099 (m), 1639 (m), 1605 (m), 1541 (m), 1493 (w), 1410 (w), 1293 (m), 1237 (s), 1116 (w), 1036 (m), 826 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO_2^+$ 257.1009; Found 257.1009.

2-(1-(*tert*-butoxy)ethyl)-5-methoxy-N-methylbenzamide (4k')

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.39 (d, *J* = 8.6 Hz, 1H), 7.19 (s, 1H), 7.05 (s, 1H), 6.90 (dd, *J* = 8.6, 2.6 Hz, 1H), 4.96 (q, *J* = 6.6 Hz, 1H), 3.79 (s, 3H), 2.96 (d, *J* = 4.8 Hz, 3H), 1.35 (d, *J* = 6.5 Hz, 3H), 1.15 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 158.3, 137.0, 135.3, 129.6, 116.0, 113.6, 74.9, 68.7, 55.5, 28.6, 26.7, 25.5.

IR (neat) cm⁻¹ v: 3308 (w), 2974 (w), 1631 (m), 1601 (m), 1556 (m), 1469 (w), 1367 (w), 1327 (w), 1275 (w), 1234 (s), 1195 (w), 1076 (s), 1039 (m), 1015 (m), 958 (w), 850 (m), 703 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₅H₂₄NO₃⁺ 266.1751; Found 266.1747.

2-(1-azidoethyl)-5-chloro-N-methylbenzamide (4l)

The crude product was purified by flash column chromatography on silica gel to afford **41** (22.3 mg, 93% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 1H), 7.40 (dd, J = 8.4, 2.0 Hz, 1H), 7.33 (d, J = 2.0 Hz, 1H), 6.35 (s, 1H), 5.07 (q, J = 6.7 Hz, 1H), 2.92 (d, J = 4.9 Hz, 3H), 1.49 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 138.3, 136.8, 133.6, 130.7, 128.4, 127.2, 56.9, 26.8, 21.6.

IR (neat) cm⁻¹ υ: 3238 (w), 3088 (w), 2976 (w), 2113 (s), 2079 (s), 1624 (s), 1619 (m), 1559 (s), 1412 (m), 1311 (s), 1242 (s), 1154 (m), 1099 (m), 1064 (m), 1007 (w), 881 (m), 827 (s), 720 (s), 687 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{10}H_{12}ClN_4O^+$ 239.0772; Found 239.0768.

2-(1-azidoethyl)-5-bromo-N-methylbenzamide (4m)

The crude product was purified by flash column chromatography on silica gel to afford **4m** (23.4 mg, 93% yield) as a white solid.

MP: 89 – 90 °C

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, J = 8.4, 1.9 Hz, 1H), 7.49 (d, J = 1.9 Hz, 1H), 7.37 (d, J = 8.4 Hz, 1H), 6.26 (s, 1H), 5.07 (q, J = 6.8 Hz, 1H), 2.94 (d, J = 4.8 Hz, 3H), 1.50 (d, J = 6.7 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 168.3, 138.9, 137.1, 133.7, 130.0, 128.7, 121.6, 57.0, 26.9, 21.6.

IR (neat) cm⁻¹ v: 3238 (w), 2981 (w), 2113 (s), 2080 (s), 1625 (s), 1568 (m), 1557 (s), 1409 (m), 1311 (s), 1243 (s), 1153 (m), 1088 (m), 1062 (s), 1005 (m), 861 (m), 824 (s), 718 (s), 680 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{10}H_{12}BrN_4O^+$ 283.0189; Found 283.0187.

3-(1-azidoethyl)-*N***-methyl-2-naphthamide (4n)**

The crude product was purified by flash column chromatography on silica gel to afford **4n** (20.7 mg, 82% yield) as a white solid.

MP: 106-107 °C

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.92 (s, 1H), 7.86 (s, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.58 – 7.45 (m, 2H), 6.32 (s, 1H), 5.32 (q, *J* = 6.7 Hz, 1H), 3.01 (d, *J* = 4.9 Hz, 3H), 1.63 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 170.1, 136.6, 133.8, 133.6, 132.0, 128.1, 128.0, 127.7, 127.3, 127.1, 126.1, 57.4, 27.0, 21.5.

IR (neat) cm⁻¹ v: 3269 (w), 2972 (w), 2093 (s), 1627 (s), 1552 (m), 1457 (w), 1409 (m), 1313 (m), 1245 (m), 1161 (w), 1109 (w), 1053 (w), 1012 (w), 891 (m), 845 (w), 746 (s), 721 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{14}H_{14}N_4NaO^+$ 277.1060; Found 277.1067.

1-(1-azidoethyl)-N-methyl-2-naphthamide (40)

CONHMe N_3

The crude product was purified by flash column chromatography on silica gel to afford **40** (21.5 mg, 84% yield) as an oil.

¹**H** NMR (400 MHz, CDCl₃) δ 8.40 (d, J = 8.5 Hz, 1H), 7.75 (dd, J = 8.1, 1.6 Hz, 1H), 7.65 (d, J = 8.1 Hz, 1H), 7.52 – 7.41 (m, 2H), 7.23 (d, J = 8.4 Hz, 1H), 6.05 (s, 1H), 5.48 (q, J = 7.0 Hz, 1H), 2.92 (d, J = 4.9 Hz, 3H), 1.66 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.9, 134.6, 134.4, 134.2, 130.3, 129.2, 129.1, 126.8, 126.7, 125.9, 123.4, 58.9, 26.9, 21.4.

IR (neat) cm⁻¹ v: 3259 (w), 2987 (w), 2110 (m), 2069 (w), 1609 (m), 1554 (w), 1492 (w), 1409 (m), 1284 (s), 1230 (s), 1066 (m), 1003 (w), 824 (m), 692 (w).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{14}H_{14}N_4NaO^+$ 277.1060; Found 277.1058.

2-(1-azidoethyl)-N-ethylbenzamide (4p)

The crude product was purified by flash column chromatography on silica gel to afford **4p** (16.5 mg, 75% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 (d, *J* = 7.8 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.33 (d, *J* = 7.5 Hz, 1H), 7.26 (t, *J* = 7.4 Hz, 1H), 5.88 (s, 1H), 5.10 (q, *J* = 6.7 Hz, 1H), 3.46-3.38 (m, 2H), 1.50 (d, *J* = 6.7 Hz, 3H), 1.19 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 139.6, 135.8, 130.7, 128.0, 127.0, 126.9, 57.5, 35.1, 21.6, 15.0.
IR (neat) cm⁻¹ υ: 3281 (w), 2976 (w), 2090 (s), 1637 (s), 1535 (s), 1448 (m), 1305 (s), 1251 (s), 1149 (w), 1066 (m), 872 (w), 760 (s), 650 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO^+$ 241.1060; Found 241.1062.

2-(2-azidopropan-2-yl)-N-methylbenzamide (4q)

The crude product was purified by flash column chromatography on silica gel to afford **4q** (16.1 mg, 74% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.43 (m, 1H), 7.39 (ddd, J = 8.1, 5.9, 2.9 Hz, 1H), 7.34 – 7.26 (m, 2H), 5.87 (s, 1H), 3.03 (d, J = 4.9 Hz, 3H), 1.78 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 172.4, 142.1, 136.4, 129.6, 128.6, 127.6, 126.3, 64.5, 28.6, 27.0.

IR (neat) cm⁻¹ v: 3275 (w), 2934 (w), 2111 (s), 1628 (s), 1549 (m), 1407 (m), 1312 (m), 1249 (s), 1149 (m), 1075 (w), 766 (s), 720 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO^+$ 241.1060; Found 241.1063.

2-(azidomethyl)-N-methylbenzamide (4r)

The crude product was purified by flash column chromatography on silica gel to afford **4r** (15.9 mg, 83% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.6 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.41 – 7.33 (m, 2H), 6.18 (s, 1H), 4.57 (s, 2H), 2.99 (d, *J* = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 136.0, 134.0, 130.7, 130.2, 128.6, 127.8, 52.8, 26.9.

IR (neat) cm⁻¹ v: 3284 (w), 2939 (w), 2074 (m), 1628 (m), 1551 (m), 1447 (w), 1407 (w), 1319 (m), 1232 (m), 1171 (m), 878 (w), 850 (w), 755 (m), 698 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for C₉H₁₀N₄NaO⁺ 213.0747; Found 213.0748.

2-(1-azidopropyl)-N-methylbenzamide (4s)

The crude product was purified by flash column chromatography on silica gel to afford **4s** (18.0 mg, 82% yield) as an oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.39 (d, J = 7.0 Hz, 1H), 7.31 (ddd, J = 7.7, 6.2, 2.3 Hz, 1H), 6.05 (s, 1H), 4.92 (dd, J = 7.7, 6.3 Hz, 1H), 2.97 (d, J = 4.9 Hz, 3H), 1.93 – 1.78 (m, 2H), 0.96 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 169.9, 138.6, 136.0, 130.6, 128.0, 127.3, 127.1, 63.7, 29.3, 26.9, 11.0.

IR (neat) cm⁻¹ v: 3242 (w), 2966 (w), 2158 (w), 2089 (s), 1645 (m), 1624 (s), 1558 (m), 1447 (w), 1322 (m), 1242 (s), 1174 (w), 911 (w), 754 (m), 720 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_{14}N_4NaO^+$ 241.1060; Found 241.1064.

2-(1-azido-3-methoxypropyl)-N-methylbenzamide (4t)

The crude product was purified by flash column chromatography on silica gel to afford **4t** (20.2 mg, 81% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.40 (d, *J* = 7.7 Hz, 1H), 7.33-7.27 (m, 1H), 6.33 (s, 1H), 5.13 (t, *J* = 7.3 Hz, 1H), 3.47 (dt, *J* = 10.4, 6.5 Hz, 1H), 3.40 – 3.30 (m, 1H), 3.28 (s, 3H), 2.94 (d, *J* = 5.2 Hz, 3H), 2.05 (q, *J* = 6.6 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 137.8, 136.1, 130.6, 128.2, 127.5, 127.3, 69.2, 59.3, 58.6, 36.0.
26.8.

IR (neat) cm⁻¹ v: 3304 (w), 2933 (w), 2878 (w), 2095 (s), 1637 (s), 1539 (m), 1410 (w), 1307 (m), 1245 (m), 1118 (s), 1012 (w), 761 (m), 670 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{17}N_4O_2^+$ 249.1346; Found 249.1341.

2-(1-azido-3-(benzyloxy)propyl)-N-methylbenzamide (4u)

The crude product was purified by flash column chromatography on silica gel to afford **4u** (30.2 mg, 93% yield) as an oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.43 (m, 2H), 7.44 – 7.38 (m, 1H), 7.36 – 7.27 (m, 6H), 6.20 (s, 1H), 5.18 (t, *J* = 7.6 Hz, 1H), 4.45 (s, 2H), 3.60 (dt, *J* = 9.8, 6.3 Hz, 1H), 3.49 (dt, *J* = 9.7, 6.1 Hz, 1H), 2.83 (d, *J* = 4.8 Hz, 3H), 2.17 – 2.11 (m, 2H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 169.6, 138.1, 137.6, 136.4, 130.6, 128.5, 128.2, 127.9, 127.8, 127.6, 127.3, 73.1, 67.0, 59.4, 35.9, 26.7.

IR (neat) cm⁻¹ v: 3291 (w), 2868 (w), 2097 (s), 1717 (w), 1637 (s), 1542 (m), 1409 (w), 1309 (m), 1274 (m), 1101 (m), 1099 (m), 757 (s), 716 (s), 699 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{21}N_4O_2^+$ 325.1659; Found 325.1652.

General procedure for the Copper-catalyzed oxidative δ-trifluoromethylation of 2-alkyl benzohydrazides 3

To a screw cap tube charged with CuCl (4.0 mg, 0.04 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol, 3.0 equiv) was added a solution of Togni's reagent **9** (94.8 mg, 0.3 mmol, 3.0 equiv) in DCM (0.5 mL) under argon atmosphere. After stirring for 2 min, substrate **3** (0.1 mmol, 1.0 equiv) in DCM (0.5 mL) was added to the above mixture. After being stirred for 4 hours at room temperature under argon atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **5**.

Characterization of compounds 5

(E)-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5a)

The crude product was purified by flash column chromatography on silica gel to afford **5a** (16.8 mg, 74% yield) as a white solid.

MP: 104 – 105 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.54 (m, 2H), 7.49 – 7.43 (m, 2H), 7.42 – 7.37 (m, 1H), 6.16 (dq, J = 16.1, 6.5 Hz, 1H), 5.88 (s, 1H), 3.00 (d, J = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.3, 136.7, 135.6 (q, J = 6.9 Hz), 132.2, 130.6, 129.8, 127.6, 127.2, 123.4 (q, J = 269.2 Hz), 118.2 (q, J = 33.8 Hz), 27.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.46 (dd, J = 6.5, 2.3 Hz).

IR (neat) cm⁻¹ v: 3285 (w), 1668 (w), 1633 (m), 1546 (m), 1417 (w), 1319 (m), 1272 (s), 1101 (s), 966 (m), 858 (w), 748 (m), 696 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{11}F_3NO^+$ 230.0787; Found 230.0788.

(E)-N,4-dimethyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5b)

The crude product was purified by flash column chromatography on silica gel to afford **5b** (18.1 mg, 74% yield) as a white solid.

MP: 143 – 144 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (dq, *J* = 16.0, 2.3 Hz, 1H), 7.38 – 7.33 (m, 2H), 7.18 (d, *J* = 7.8 Hz, 1H), 6.13 (dq, *J* = 16.1, 6.5 Hz, 1H), 5.92 (s, 1H), 2.98 (d, *J* = 4.6 Hz, 3H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 140.8, 135.9 (q, J = 6.8 Hz), 133.8, 132.2, 130.5, 127.8, 127.6, 123.4 (q, J = 269.2 Hz), 117.9 (q, J = 33.8 Hz), 27.0, 21.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.39 (dd, J = 6.5, 2.4 Hz).

IR (neat) cm⁻¹ v: 3281 (w), 1665 (w), 1633 (m), 1557 (w), 1408 (w), 1315 (m), 1271 (m), 1127 (m), 1099 (s), 969 (w), 833 (m), 741 (w), 703 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{13}F_3NO^+$ 244.0944; Found 244.0944.

(E)-N-methyl-3-(3,3,3-trifluoroprop-1-en-1-yl)-[1,1'-biphenyl]-4-carboxamide (5c)

The crude product was purified by flash column chromatography on silica gel to afford 5c (23.2 mg, 76% yield) as a white solid.

MP: 193 – 194 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 1.8 Hz, 1H), 7.67 (dq, J = 16.2, 2.3 Hz, 1H), 7.63 – 7.52 (m, 4H), 7.51 – 7.37 (m, 3H), 6.22 (dq, J = 16.1, 6.4 Hz, 1H), 5.96 (s, 1H), 3.03 (d, J = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 143.7, 139.6, 135.8 (q, J = 6.9 Hz), 135.2, 132.8, 129.2, 128.4, 128.2, 127.3, 125.9, 123.4 (q, J = 269.4 Hz), 118.5 (q, J = 34.0 Hz), 27.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.41 (dd, J = 6.4, 2.3 Hz).

IR (neat) cm⁻¹ v: 3291 (w), 2158 (w), 1667 (w), 1629 (m), 1545 (w), 1410 (w), 1303 (m), 1269 (m), 1113 (s), 970 (w), 839 (w), 762 (s), 699 (s).

HRMS (ESI) m/z: [M + Na]⁺ Calcd for C₁₇H₁₄F₃NNaO⁺ 328.0920; Found 328.0917.

(E)-4-methoxy-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5d)

The crude product was purified by flash column chromatography on silica gel to afford **5d** (15.9 mg, 61% yield) as a white solid.

MP: 151 – 152 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (dq, *J* = 16.0, 2.2 Hz, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.02 (d, *J* = 2.5 Hz, 1H), 6.90 (dd, *J* = 8.5, 2.6 Hz, 1H), 6.12 (dq, *J* = 16.1, 6.4 Hz, 1H), 5.83 (s, 1H), 3.86 (s, 3H), 2.98 (d, *J* = 4.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.0, 161.1, 136.1 (q, *J* = 6.8 Hz), 134.4, 129.4, 129.0, 123.4 (q, *J* = 269.2 Hz), 118.3 (q, *J* = 34.0 Hz), 115.0, 112.5, 55.6, 27.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.42 (dd, J = 6.4, 2.3 Hz).

IR (neat) cm⁻¹ v: 3234 (m), 1649 (s), 1592 (s), 1541 (s), 1418 (s), 1307 (s), 1307 (s), 1209 (s), 1096 (s), 1018 (m), 953 (m), 792 (w), 760 (w).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{13}F_3NO_2^+$ 260.0893; Found 260.0896.

(E)-4-fluoro-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5e)

The crude product was purified by flash column chromatography on silica gel to afford **5e** (18.2 mg, 74% yield) as a white solid.

MP: 148 – 149 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 16.0 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.20 – 7.16 (m, 1H), 7.01 (t, J = 8.1 Hz, 1H), 6.13 – 6.02 (m, 1H), 5.85 (s, 1H), 2.92 (d, J = 4.8 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.4, 163.6 (d, *J* = 251.1 Hz), 134.9 (d, *J* = 8.2 Hz), 134.7 (m), 132.8 (d, *J* = 3.3 Hz), 129.8 (d, *J* = 8.6 Hz), 123.1 (q, *J* = 269.6 Hz), 119.4 (q, *J* = 34.3 Hz), 116.8 (d, *J* = 21.7 Hz), 114.0 (d, *J* = 22.7 Hz), 27.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.68 (d, J = 8.6 Hz), -109.0 - -109.1 (m).

IR (neat) cm⁻¹ v: 3294 (w), 1669 (w), 1631 (m), 1585 (w), 1552 (m), 1492 (w), 1419 (w), 1323 (m), 1271 (s), 1222 (w), 1170 (w), 1112 (s), 972 (m), 843 (w), 725 (w), 687 (m).

HRMS (APCI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}F_4NO^+$ 248.0693; Found 248.0695.

(E)-4-chloro-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5f)

The crude product was purified by flash column chromatography on silica gel to afford **5f** (17.2 mg, 65% yield) as a white solid.

MP: 140 – 142 °C

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.53 (dq, *J* = 16.0, 2.2 Hz, 2H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.40 (d, *J* = 8.2 Hz, 1H), 7.35 (dd, *J* = 8.2, 2.0 Hz, 1H), 6.16 (dq, *J* = 16.1, 6.3 Hz, 1H), 5.94 (s, 1H), 2.99 (d, *J* = 4.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 136.8, 134.8, 134.5 (q, J = 6.9 Hz), 134.1, 129.7, 129.0, 127.2, 123.1 (q, J = 269.6 Hz), 119.4 (q, J = 34.3 Hz), 27.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.69 (dd, J = 6.3, 2.4 Hz).

IR (neat) cm⁻¹ v: 3292 (w), 1665 (w), 1633 (m), 1572 (w), 1563 (m), 1484 (w), 1414 (w), 1314 (s), 1286 (m), 1255 (m), 1103 (s), 971 (m), 917 (m), 836 (m), 693 (s).

HRMS (APCI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}ClF_3NO^+$ 264.0398; Found 264.0403.

(E)-4-bromo-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5g)

The crude product was purified by flash column chromatography on silica gel to afford **5g** (19.4 mg, 65% yield) as a white solid.

MP: 142 – 144 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.60 (s, 1H), 7.46 – 7.39 (m, 2H), 7.24 (d, *J* = 8.1 Hz, 1H), 6.12 – 6.02 (m, 1H), 5.75 (s, 1H), 2.90 (d, *J* = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 135.2, 134.4 (q, J = 7.0 Hz), 134.2, 132.7, 130.2, 129.1, 124.9, 123.0 (q, J = 269.5 Hz), 119.5 (q, J = 34.2 Hz), 27.1.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.69 (d, J = 6.4 Hz).

IR (neat) cm⁻¹ v: 3283 (w), 2161 (w), 1666 (w), 1630 (m), 1562 (m), 1415 (w), 1315 (s), 1258 (m), 1108 (s), 967 (w), 901 (w), 829 (w), 723 (w), 699 (m).

HRMS (ESI/QTOF) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}BrF_3NO^+$ 307.9892; Found 307.9892.

(E)-4-cyano-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5h)

The crude product was purified by flash column chromatography on silica gel to afford **5h** (17.4 mg, 68% yield) as a white solid.

MP: 136 - 138°C

¹**H** NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 1.4 Hz, 1H), 7.68 (dd, J = 8.0, 1.5 Hz, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.51 (dq, J = 16.2, 2.3 Hz, 1H), 6.23 (dq, J = 16.1, 6.2 Hz, 1H), 5.95 (s, 1H), 3.02 (d, J = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.4, 140.2, 133.62 (q, *J* = 3.0 Hz), 133.56, 132.9, 130.9, 128.5, 122.8 (q, *J* = 269.8 Hz), 120.7 (q, *J* = 34.5 Hz), 117.5, 114.8, 27.1.

¹⁹F NMR (376 MHz, CDCl₃) δ –63.92 (dd, J = 6.1, 2.4 Hz).

IR (neat) cm⁻¹ v: 3282 (w), 2236 (w), 1641 (m), 1570 (w), 1315 (m), 1269 (m), 1140 (s), 1112 (s), 980 (w), 839 (w), 680 (m).

HRMS (APCI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{10}F_3N_2O^+$ 255.0740; Found 255.0734.

(E)-N,3-dimethyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5i)

The crude product was purified by flash column chromatography on silica gel to afford **5i** (16.4 mg, 68% yield) as a white solid.

MP: 103 – 104 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (dq, *J* = 16.4, 2.4 Hz, 1H), 7.23 – 7.19 (m, 3H), 5.89 (dq, *J* = 16.3, 6.3 Hz, 1H), 5.61 (s, 1H), 2.87 (d, *J* = 4.9 Hz, 3H), 2.28 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 137.3, 137.0, 134.7 (q, J = 7.0 Hz), 132.0, 131.0, 128.8, 125.4,
123.0 (q, J = 269.4 Hz), 121.8 (q, J = 33.6 Hz). 26.9, 20.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –64.28 (dd, J = 6.6, 2.5 Hz).

IR (neat) cm⁻¹ v: 3302 (w), 1670 (w), 1637 (m), 1545 (m), 1312 (s), 1272 (m), 1108 (s), 969 (m), 877 (w), 785 (w), 760 (w), 722 (w).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{13}F_3NO^+$ 244.0944; Found 244.0944.

(E)-3-methoxy-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5j)

The crude product was purified by flash column chromatography on silica gel to afford **5j** (16.3 mg, 74% yield) as a white solid.

MP: 107 - 108 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 1H), 7.21 (dq, J = 16.2, 2.3 Hz, 1H), 6.92-6.88 (m, 2H), 6.43 (dq, J = 16.2, 6.6 Hz, 1H), 6.10 (s, 1H), 3.84 (s, 3H), 2.86 (d, J = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 158.6, 139.2, 130.8 (q, J = 7.4 Hz), 130.4, 123.7 (q, J = 269.4 Hz), 120.6 (q, J = 33.0 Hz), 119.64, 119.62, 112.3, 55.8, 26.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.91 (dd, J = 6.6, 2.4 Hz).

IR (neat) cm⁻¹ v: 3287 (w), 2361 (w), 1633 (m), 1542 (w), 1469 (w), 1313 (s), 1259 (s), 1112 (s), 1074 (s), 1014 (w), 972 (m), 910 (w), 841 (w), 783 (w), 725 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{13}F_3NO_2^+$ 260.0893; Found 260.0900.

(E)-3-fluoro-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5k)

The crude product was purified by flash column chromatography on silica gel to afford 5k (16.8 mg, 68% yield) as a white solid.

MP: 138 – 139 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.34 (td, *J* = 8.0, 5.1 Hz, 1H), 7.26 (dq, *J* = 16.5, 2.3 Hz, 1H), 7.23-7.21 (m, 1H), 7.20-7.15(m, 1H), 6.42 (dq, *J* = 16.5, 6.4 Hz, 1H), 5.96 (s, 1H), 2.98 (d, *J* = 4.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.4 (d, *J* = 3.2 Hz), 161.4 (d, *J* = 254.5 Hz), 139.2, 130.9 (d, *J* = 9.6 Hz), 128.8 (q, *J* = 7.3 Hz), 123.2 (q, *J* = 269.6 Hz), 123.4 (d, *J* = 3.6 Hz), 122.6 (qd, *J* = 33.8, 13.5 Hz), 119.7 (d, *J* = 12.5 Hz), 27.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.41 (dd, J = 6.3, 2.4 Hz), -110.67 (dd, J = 11.2, 5.2 Hz).

IR (neat) cm⁻¹ v: 3286 (w), 2162 (w), 1667 (w), 1634 (m), 1604 (m), 1543 (m), 1460 (w), 1419 (w), 1320 (s), 1276 (s), 1247 (m), 1205 (m), 1109 (s), 1049 (w), 972 (m), 938 (w), 847 (m), 786 (m), 730 (m), 683 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_9F_4NNaO^+$ 270.0512; Found 270.0516.

(E)-3-chloro-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5l)

The crude product was purified by flash column chromatography on silica gel to afford **51** (19.5 mg, 74% yield) as a white solid.

MP: 101 - 102 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (dd, *J* = 7.4, 2.0 Hz, 1H), 7.36 (dq, *J* =16.3, 2.3 Hz, 1H), 7.33 – 7.28 (m, 2H), 6.15 (dq, *J* = 16.3, 6.3 Hz, 1H), 5.78 (s, 1H), 2.93 (d, *J* = 4.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.9, 138.6, 134.6, 132.5 (q, *J* = 7.2 Hz), 131.3, 130.1, 126.3, 123.0 (q, *J* = 33.8 Hz), 122.8 (q, *J* = 270.8 Hz), 27.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –64.62 (dd, J = 6.3, 2.3 Hz).

IR (neat) cm⁻¹υ: 3268 (w), 2361 (w), 1635 (m), 1542 (m), 1470 (m), 1311 (s), 1258 (s), 1111 (s), 1081 (s), 970 (m), 789 (w), 722 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{11}H_9ClF_3NNaO^+$ 286.0217; Found 286.0215.

(E)-3-bromo-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5m)

The crude product was purified by flash column chromatography on silica gel to afford **5m** (21.7 mg, 71% yield) as a white solid.

MP: 96 – 97 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.67 (dd, J = 8.0, 1.0 Hz, 1H), 7.40 (dd, J = 7.6, 1.2 Hz, 1H), 7.33 (dq, J = 16.3, 2.3 Hz, 1H), 7.26-7.22 (m, 1H), 6.10 (dq, J = 16.3, 6.3 Hz, 1H), 5.66 (s, 1H), 2.94 (d, J = 4.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 138.6, 134.8 (q, J = 7.2 Hz), 134.5, 132.0, 130.3, 127.0, 124.5, 122.9 (q, J = 33.9 Hz), 122.7 (q, J = 268.6 Hz), 27.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –64.65 (dd, J = 6.3, 2.5 Hz).

IR (neat) cm⁻¹ v: 3287 (w), 1645 (m), 1547 (m), 1430 (w), 1411 (w), 1312 (s), 1269 (m), 1138 (m), 1115 (s), 969 (m), 889 (w), 800 (w), 767 (w), 685 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}BrF_3NO^+$ 307.9892; Found 307.9890.

(E)-N,5-dimethyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5n)

The crude product was purified by flash column chromatography on silica gel to afford **5n** (17.6 mg, 72% yield) as a white solid.

MP: 138-139 °C

¹**H NMR** (400 MHz, CDCl₃) *δ* 7.53 (dq, *J* = 16.2, 2.3 Hz, 1H), 7.47 (d, *J* = 7.9 Hz, 1H), 7.35 – 7.14 (m, 2H), 6.13 (dq, *J* = 16.1, 6.5 Hz, 1H), 5.78 (s, 1H), 3.01 (d, *J* = 4.7 Hz, 3H), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.5, 140.2, 136.7, 135.4 (q, J = 7.0 Hz), 131.3, 129.2, 128.2, 127.1,
123.5 (q, J = 269.2 Hz), 117.3 (q, J = 33.7 Hz), 27.0, 21.4.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.29 (dd, J = 6.5, 2.3 Hz).

IR (neat) cm⁻¹ v: 3296 (w), 2361 (s), 1635 (m), 1544 (w), 1409 (w), 1323 (w), 1272 (m), 1116 (s), 1057 (w), 723 (w).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{12}H_{12}F_3NNaO^+$ 266.0763; Found 266.0763.

(E)-5-methoxy-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (50)

The crude product was purified by flash column chromatography on silica gel to afford **50** (17.4 mg, 67% yield) as a white solid.

MP: 123 – 124 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.6 Hz, 1H), 7.39 (dq, J = 16.1, 2.2 Hz, 1H), 6.96 – 6.87 (m,

2H), 6.17 – 6.08 (m, 1H), 6.01 (dq, J = 16.1, 6.5 Hz, 1H), 3.80 (s, 3H), 2.94 (d, J = 4.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.1, 160.4, 138.1, 134.7 (q, *J* = 6.9 Hz), 128.3, 126.2 (d, *J* = 269.0 Hz), 124.0, 116.1, 115.7 (d, *J* = 33.7 Hz), 112.6, 55.5, 26.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.04 (dd, J = 6.6, 2.2 Hz).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{13}F_3NO_2^+$ 260.0893; Found 260.0894.

(E)-5-chloro-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5p)

The crude product was purified by flash column chromatography on silica gel to afford **5p** (16.5 mg, 62% yield) as a white solid.

MP: 144 – 145 °C

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 – 7.46 (m, 2H), 7.45 – 7.38 (m, 2H), 6.14 (dq, *J* = 16.1, 6.4 Hz, 1H), 5.96 (s, 1H), 3.00 (d, *J* = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.8, 137.9, 135.8, 134.4 (q, J = 6.9 Hz), 130.7, 130.6, 128.5, 127.8,
123.2 (q, J = 269.4 Hz), 118.7 (q, J = 34.0 Hz), 27.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ – 63.57 (dd, J = 6.3, 2.3 Hz).

IR (neat) cm⁻¹ v: 3300 (w), 1704 (w), 1669 (w), 1639 (m), 1555 (w), 1318 (m), 1286 (m), 1131 (m), 1105 (s), 971 (m), 877 (m), 820 (m), 721 (m), 695 (m).

HRMS (APCI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}ClF_3NO^+$ 264.0398; Found 264.0401.

(E)-5-bromo-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5q)

The crude product was purified by flash column chromatography on silica gel to afford **5q** (19.3 mg, 63% yield) as a white solid.

MP: 138 – 139 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.63 – 7.53 (m, 2H), 7.53 – 7.43 (m, 1H), 7.42 (d, *J* = 8.3 Hz, 1H), 6.15 (dq, *J* = 16.1, 6.4 Hz, 1H), 5.99 (s, 1H), 2.99 (d, *J* = 5.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 138.1, 134.5 (q, J = 6.9 Hz), 133.6, 131.1, 130.7, 128.6, 123.8, 123.2 (q, J = 270.5 Hz), 118.7 (q, J = 34.2 Hz), 27.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ – 63.60 (dd, J = 6.3, 2.5 Hz).

IR (neat) cm⁻¹ v: 3268 (w), 2016 (w), 1675 (s), 1602 (s), 1576 (s), 1346 (s), 1302 (s), 1256 (s), 1119 (s), 985 (m), 904 (w), 901 (w), 798 (w).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}BrF_3NO^+$ 307.9892; Found 307.9892.

(E)-N-methyl-3-(3,3,3-trifluoroprop-1-en-1-yl)-2-naphthamide (5r)

The crude product was purified by flash column chromatography on silica gel to afford **5r** (20.8 mg, 75% yield) as a white solid.

MP: 141 – 142 °C

¹**H** NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.92 (s, 1H), 7.88 – 7.76 (m, 2H), 7.69 (dq, J = 16.0, 2.3 Hz, 1H), 7.62 – 7.49 (m, 2H), 6.23 (dq, J = 16.0, 6.5 Hz, 1H), 6.08 (s, 1H), 3.05 (d, J = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 136.2 (q, J = 6.9 Hz), 133.8, 133.7, 132.9, 129.7, 128.3, 128.2, 128.1, 127.9, 127.6, 127.4, 123.4 (q, J = 269.3 Hz), 118.0 (q, J = 33.8 Hz), 27.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.28 (dd, J = 6.5, 2.3 Hz).

IR (neat) cm⁻¹ v: 3294 (w), 2158 (w), 1664 (w), 1624 (s), 1549 (m), 1308 (s), 1270 (m), 1123 (s), 1101 (s), 966 (m), 746 (s), 685 (m).

HRMS (ESIm/z: $[M + H]^+$ Calcd for C₁₅H₁₃F₃NO⁺ 280.0944; Found 280.0948.

(E)-N-methyl-1-(3,3,3-trifluoroprop-1-en-1-yl)-2-naphthamide (5s)

The crude product was purified by flash column chromatography on silica gel to afford **5s** (17.7 mg, 64% yield) as a white solid.

MP: 157 – 158 °C

¹**H NMR** (400 MHz, CDCl₃) δ 8.05 – 7.96 (m, 1H), 7.91 – 7.83 (m, 2H), 7.76 (dq, *J* = 16.3, 2.3 Hz, 1H), 7.62 – 7.56 (m, 2H), 7.53 (d, *J* = 8.5 Hz, 1H), 6.13 (dq, *J* = 16.3, 6.4 Hz, 1H), 5.79 (s, 1H), 2.99 (d, *J* = 4.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 170.1, 134.1 (d, *J* = 7.0 Hz), 134.0, 133.9, 130.9, 129.6, 129.4, 128.7, 127.7, 127.4, 125.1, 124.3, 123.4 (q, *J* = 33.7 Hz), 122.9 (q, *J* = 271.1 Hz), 27.0

¹⁹**F NMR** (376 MHz, CDCl₃) δ –64.24 (dd, J = 6.3, 2.4 Hz).

IR (neat) cm⁻¹ v: 3291 (w), 1667 (w), 1629 (m), 1545 (w), 1481 (w), 1410 (w), 1304 (m), 1261 (m), 1114 (s), 970 (w), 911 (w), 839 (w), 762 (m), 699 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{15}H_{13}F_3NO^+$ 280.0944; Found 280.0943.

(E)-N-ethyl-2-(3,3,3-trifluoroprop-1-en-1-yl)benzamide (5t)

The crude product was purified by flash column chromatography on silica gel to afford **5t** (15.1 mg, 62% yield) as a white solid.

MP: 86-87 °C

¹H NMR (400 MHz, CDCl₃) δ 7.62 - 7.54 (m, 2H), 7.52 - 7.36 (m, 3H), 6.17 (dq, J = 16.1, 6.4 Hz, 1H), 5.77 (s, 1H), 3.50 (qd, J = 7.3, 5.7 Hz, 2H), 1.25 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.5, 136.9, 135.6 (q, *J* = 6.8 Hz), 132.0, 130.6, 129.8, 127.6, 127.1, 123.4 (q, *J* = 269.2 Hz), 118.3 (q, *J* = 34.0 Hz), 35.2, 15.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.52 (dd, J = 6.4, 2.3 Hz).

IR (neat) cm⁻¹ v: 3298 (w), 1668 (w), 1630 (m), 1597 (w), 1540 (m), 1314 (m), 1270 (s), 1128 (m), 1105 (s), 971 (m), 877 (w), 751 (m), 695 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{12}H_{13}F_3NO^+$ 244.0944; Found 244.0943.

(E)-N-methyl-2-(4,4,4-trifluorobut-2-en-2-yl)benzamide (5u) & N-methyl-2-(4,4,4-trifluorobut-1-

en-2-yl)benzamide (5u')

The crude product was purified by flash column chromatography on silica gel to afford 5u, 5u' (9.3 mg, 38% yield, $5u:5u' \approx 1:1$) as a white solid.

¹**H NMR** (400 MHz, CDCl3) δ 7.47 (dd, *J* = 7.5, 1.5 Hz, 1H), 7.44 (dd, *J* = 7.6, 1.5 Hz, 1H), 7.37 – 7.23 (m, 4H), 7.15 (dd, *J* = 7.5, 1.4 Hz, 1H), 7.13 (dd, *J* = 7.4, 1.6 Hz, 1H), 5.90 (brs, 1H), 5.85 (brs, 1H), 5.60 (qq, *J* = 16.0, 1.4 Hz, 1H), 5.40 (s, 1 H), 5.31 (s, 1H), 3.13 (qd, *J* = 10.8, 1.1 Hz, 2H), 2.87 (d, *J* = 4.8 Hz, 3H), 2.86 (d, *J* = 4.8 Hz, 3.6H), 2.13 (qd, *J* = 2.4, 1.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.8, 169.3, 150.9 (q, J = 5.7 Hz), 140.6, 139.3, 139.0 (q, J = 2.9 Hz),
134.66, 134.64, 130.4, 130.3, 129.5, 128.9, 128.6, 128.2, 128.14, 128.07, 127.9, 125.6 (q, J = 277.7 Hz), 123.1 (q, J = 271.3 Hz), 121.9, 118.0 (q, J = 33.9 Hz), 41.2 (q, J = 28.9 Hz), 26.8, 26.79, 19.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -58.12, -64.47.

IR (neat) cm⁻¹ v: 3240 (w), 1631 (m), 1564 (w), 1552 (m), 1412 (w), 1350 (w), 1317 (w), 1253 (s), 1131 (s), 1117 (s), 1080 (s), 931 (w), 846 (w), 757 (m).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{12}H_{12}F_3NNaO^+$ 266.0763; Found 266.0764.

Supplementary Notes

Supplementary Note 1: mechanism study

a) Synthesis and characterization data of 2-alkyl benzohdrazides 3a-D2 & 7.

To a solution of S4 (0.83g, 6.0 mmol, 1.0 euqiv) in THF (40 mL) was added *sec*-BuLi (8.6 mL, 1.4 M in cyclohexane, 2.0 equiv) at -78 °C. The reaction mixture was stirred at -78 °C for 1 h, then MeI (1.1 mL, 18.0 mmol, 3.0 equiv) was added to the above reaction mixture. The reaction mixture was stirred for 2 hours, and aqueous NH₄Cl solution was added into the mixture. The mixture was extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by a short column flash chromatography (SiO₂, eluent: EtOAc) to give S5, which can be used directly in the next step. Following the Studer's procedure,¹ the **3a-D2** was prepared.

¹**H NMR** (400 MHz, Acetone-*d*₆) δ 7.49 – 7.42 (m, 1.5 H), 7.40 – 7.27 (m, 2H), 7.18 – 7.06 (m, 0.5 H), 4.19 (q, *J* = 7.1 Hz)/4.11 (qd, *J* = 7.1, 3.7 Hz)* (4 H), 3.47, 3.13 (ABq, J = 18.4 Hz)/ 3.19 (d, *J* = 17.0 Hz)*, 1.66 (dhept, *J* = 17.0, 1.7 Hz)* (2H), 3.22/3.49* (s, 3H), 2.40 (t, *J* = 1.2 Hz)/2.37 (d, J = 1.7 Hz)* (6H), 1.29 (t, *J* = 7.1 Hz)/1.21 (t, *J* = 7.1 Hz)* (6H), 1.25 (brs)/1.20 (brs) (3H). (Signals marked with an asterisk (*) correspond to the peaks assigned to the minor rotamer.).

¹³C NMR (101 MHz, Acetone-*d*₆) (major rotamer) δ 170.1, 167.0, 148.1, 141.2, 134.4, 130.0, 129.4, 126.1, 126.0, 102.2, 59.6, 40.8, 24.9, 15.1, 13.9, 13.9.

¹³C NMR (101 MHz, Acetone-*d*₆) (minor rotamer) δ 172.3, 166.3, 149.6, 141.6, 134.1, 129.3, 128.6, 125.4, 124.8, 103.2, 59.6, 40.0, 22.8, 14.9, 14.7, 13.8.

IR (neat) cm⁻¹υ: 2860 (w), 1698 (m), 1668 (s), 1445 (w), 1388 (m), 1295 (m), 1216 (s), 1199 (s), 1134 (m), 1103 (s), 1024 (s), 760 (m), 740 (s), 699 (m).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{23}H_{29}D_2N_2O_5^+$ 417.2353; Found 417.2352.

Following the Studer's procedure,¹ compound 7 was prepared from compound S7.

diethyl 2,6-dimethyl-1-(*N*-methyl-2-((2-phenylcyclopropyl)methyl)benzamido)-1,4dihydropyridine-3,5-dicarboxylate (7)

¹**H NMR** (400 MHz, Acetone- d_6) δ 7.59 (d, J = 7.7 Hz, 0.7H), 7.47 (q, J = 7.6 Hz, 1H), 7.37 (dt, J = 14.8, 7.4 Hz, 1.7H), 7.23 (t, J = 7.5 Hz, 1.6H), 7.14-7.06 (m, 3H), 4.18 (q, J = 7.1 Hz, 3H)/4.14 – 4.01 (m, 1H)*, 3.47, 3.12 (ABq, J = 18.4 Hz, 1.4H)/3.21*, 1.65* (d, J = 17.0 Hz, 0.6H), 3.21/3.49* (s, 3H), 2.92 – 2.80/2.78-2.60* (m, 2H), 2.41/2.37* (s, 3H), 2.39 (s, 3H), 1.96 – 1.87 (m, 1H), 1.49-1.35 (m, 1H), 1.28 (t, J = 7.2 Hz)/1.01 (t, J = 6.9 Hz)* (3H), 1.24 – 1.19 (m, 2H), 1.01 (t, J = 6.9 Hz, 3H). (Signals marked with an asterisk (*) correspond to the peaks assigned to the minor rotamer.).

¹³C NMR (101 MHz, Acetone-*d₆*) (major rotamer) δ 170.1, 167.0, 148.0, 148.0, 143.2, 138.8, 134.5, 129.9, 128.2, 126.3, 126.0, 125.6, 125.2, 102.2, 59.6, 40.8, 36.9, 25.0, 23.8, 23.2, 15.6, 14.1, 14.0, 13.9.
¹³C NMR (101 MHz, Acetone-*d₆*) (minor rotamer) δ 172.4, 166.3, 149.6, 149.6, 143.4, 139.2, 134.3, 129.2, 129.0, 128.2, 125.6, 125.5, 125.22, 125.17, 103.4, 59.64, 40.1, 36.9, 23.8, 23.4, 22.9, 15.7, 14.8, 14.8, 13.8, 13.8.

IR (neat) cm⁻¹ υ: 2980 (w), 1704 (m), 1667 (s), 1601 (w), 1443 (w), 1387 (m), 1365 (w), 1291 (m), 1280 (m), 1213 (s), 1112 (s), 1049 (s), 1001 (m), 972 (w), 886 (m), 875 (w), 770 (m), 750 (s), 721 (m). HRMS (ESI) m/z: [M + H]⁺ Calcd for C₃₁H₃₇N₂O₅⁺ 517.2697; Found 517.2697.

b) Control experiments of γ -azidation of 2-alkyl benzohydrazides

Condition A: A screw cap tube was charged with Cu(PF₆)•4CH₃CN (14.9 mg, 0.04 mmol, 0.4 equiv), substrate **3k** (0.1 mmol, 1.0 equiv), TMSN₃ (26.5 μ l, 0.2 mmol, 2.0 equiv) and *t*BuOH (2.0 mL). The mixture was stirred at 50 °C for 2 minutes, then *t*BuOOAc (32.2 μ L, 0.2 mmol, 2.0 equiv) was added to the above mixture. After being stirred for 2 hours at 50 °C under N₂ atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **4k** (16.8 mg, 72% yield) as an oil and **4k**² (5.6 mg, 21% yield) as an oil.

Condition B: A screw cap tube was charged with $Cu(PF_6) \bullet 4CH_3CN$ (14.9 mg, 0.04 mmol, 0.4 equiv), substrate **3k** (0.1 mmol, 1.0 equiv), TMSN₃ (26.5 µl, 0.2 mmol, 2.0 equiv) and *t*BuOH (1.0 mL)/MeOH (1.0 mL). The mixture was stirred at 50 °C for 2 minutes, then *t*BuOOAc (32.2 µL, 0.2 mmol, 2.0 equiv) was added to the above mixture. After being stirred for 2 hours at 50 °C under N₂ atmosphere, the

reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **4k** (15.2 mg, 65% yield) as an oil and **4k'** (1.7 mg, 6% yield) as an oil.

c) Radical clock experiment of γ -azidation of 2-alkyl benzohydrazides.

A screw cap tube was charged with Cu(PF₆)•4CH₃CN (14.9 mg, 0.04 mmol, 0.4 equiv), substrate 7 (0.1 mmol, 1.0 equiv), TMSN₃ (26.5 μ l, 0.2 mmol, 2.0 equiv) and *t*BuOH (2.0 mL). The mixture was stirred at 50 °C for 2 minutes, then *t*BuOOAc (32.2 uL, 0.2 mmol, 2.0 equiv) was added to the above mixture. After being stirred for 2 hours at 50 °C under N₂ atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **8** (19.8 mg, 65% yield).

(E)-2-(4-azido-4-phenylbut-1-en-1-yl)-N-methylbenzamide (8)

¹**H** NMR (400 MHz, CDCl₃) δ 7.48 – 7.23 (m, 9H), 6.80 (d, J = 15.8 Hz, 1H), 6.10 (dt, J = 15.2, 7.2 Hz, 1H), 5.84 (s, 1H), 4.62 (t, J = 7.1 Hz, 1H), 2.96 (d, J = 4.9 Hz, 3H), 2.80-2.67 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 139.1, 135.2, 135.0, 131.0, 130.1, 128.8, 128.4, 128.2, 127.6, 127.4, 126.9, 126.5, 65.9, 40.1, 26.8.

IR (neat) cm⁻¹ v: 3061 (w), 2095 (s), 2022 (w), 1635 (m), 1535 (m), 1475 (w), 1409 (w), 1309 (m), 1240 (m), 1159 (w), 1035 (w), 966 (m), 752 (s), 698 (s).

HRMS (ESI) m/z: $[M + Na]^+$ Calcd for $C_{18}H_{18}N_4NaO^+$ 329.1373; Found 329.1374.

d) Kinetic isotope effect of γ -azidation of 2-alkyl benzohydrazides.

Two sets of reactions were carried out in parallel under the standard conditions, and quenched with aqueous Na_2CO_3 in 40 s. The **4a** and **4a-D1** were isolated in 66% and 25% yield, respectively. Note: **4a-D1** was not pure, which was contaminated with amide **4a-D2**.

2-(1-azidoethyl-1-d)-N-methylbenzamide (4a-D1)

¹**H NMR** (400 MHz, CDCl₃) δ 7.54 (dd, J = 7.9, 1.4 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 1H), 7.40 (dd, J = 7.7, 1.5 Hz, 1H), 7.33 (td, J = 7.4, 1.4 Hz, 1H), 6.10 (s, 1H), 3.00 (d, J = 4.9 Hz, 3H), 1.57 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 169.8, 139.5, 135.4, 130.6, 127.9, 127.0, 126.7, 26.8, 21.4. Signals corresponding to the deuterium substituted carbon was not resolvable due to its anticipated weak intensity.

HRMS (ESI/QTOF) m/z: $[M + Na]^+$ Calcd for $C_{10}H_{11}[_2H]N_4NaO^+$ 228.0966; Found 228.0965.

Amide 4-D2 ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.30 (m, 2H), 7.27 (dd, J = 7.8, 1.3 Hz, 1H), 7.20 (td, J = 7.4, 1.4 Hz, 1H), 5.84 (s, 1H), 2.99 (d, J = 6.4 Hz, 3H), 1.22 (s, 3H).

Amide 4-D2 ¹³C NMR (101 MHz, CDCl₃) δ 129.9, 129.4, 126.6, 125.7, 26.6, 15.7. Signals corresponding to the deuterium substituted carbon was not resolvable due to its anticipated weak intensity

IR (neat) cm⁻¹ v: 3272 (w), 2938 (w), 2089 (m), 1633 (m), 1543 (m), 1409 (w), 1310 (w), 1138 (w), 803 (w), 743 (w), 720 (s), 674 (w).

e) Control experiments of oxidative δ-trifluoromethylation of 2-alkyl benzohydrazides

To a screw cap tube charged with CuCl (4.0 mg, 0.04 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol, 3.0 equiv) was added a solution of Togni's reagent (47.4 mg, 0.15 mmol, 1.5 equiv) in DCM (0.5 mL) under argon atmosphere. After stirring for 2 min, substrate **3a** (0.1 mmol, 1.0 equiv) in DCM (0.5 mL) was added to the above mixture. After being stirred for 4 hours at room temperature under argon atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **5a** (9.5 mg, 42% yield), **10** (1.9 mg, 12% yield), **6** (0.7 mg, 4% yield).

2-ethyl-N-methylbenzamide (6)

The physical and spectroscopic data were in accordance with those reported in the literature.³
¹**H** NMR (400 MHz, CDCl₃) δ 7.24 (td, *J* = 7.5, 1.5 Hz, 1H), 7.19 (dd, *J* = 7.3, 1.2 Hz, 1H), 7.16 (d, *J* = 7.8 Hz, 1H), 7.08 (td, *J* = 7.5, 1.3 Hz, 1H), 5.95 (s, 1H), 2.85 (d, *J* = 4.9 Hz, 3H), 2.68 (q, *J* = 7.6 Hz, 2H), 1.13 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.0, 142.2, 136.3, 129.8, 129.3, 126.7, 125.6, 26.6, 26.3, 15.8. *N*-methyl-2-vinylbenzamide (10)

The physical and spectroscopic data were in accordance with those reported in the literature.²

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 (dd, *J* = 7.8, 1.1 Hz, 1H), 7.46 – 7.34 (m, 2H), 7.30 – 7.22 (m, 1H), 7.02 (dd, *J* = 17.5, 10.9 Hz, 1H), 5.88 (s, 1H), 5.70 (dd, *J* = 17.5, 1.1 Hz, 1H), 5.33 (dd, *J* = 10.9, 1.1 Hz, 1H), 2.97 (d, *J* = 4.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 135.8, 135.4, 134.5, 130.1, 127.7, 127.4, 126.2, 116.7, 26.8.

To a screw cap tube charged with CuCl (4.0 mg, 0.04 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol, 3.0 equiv) was added a solution of Togni's reagent (63.2 mg, 0.2 mmol, 2.0 equiv) in DCM (0.5 mL) under argon atmosphere. After stirring for 2 min, compound **10** (16.1 mg, 0.1 mmol, 1.0 equiv) in DCM (0.5 mL) was added to the above mixture. After being stirred for 4 hours at room temperature under argon atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **5a** (20.4 mg, 89% yield).

To a screw cap tube charged with CuCl (4.0 mg, 0.04 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol, 3.0 equiv) was added a solution of Togni's reagent (94.8 mg, 0.3 mmol, 3.0 equiv) in DCM (0.5 mL) under argon atmosphere. After stirring for 2 min, compound **3a** (41.4 mg, 0.1 mmol, 1.0 equiv) and TEMPO (46.8 mg, 0.3 mmol, 3.0 equiv) in DCM (0.5 mL) was added to the above mixture. After being stirred for 4 hours at room temperature under argon atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The yield of **TEMPO-CF₃⁴** was determined by ¹⁹F NMR analysis (PhF was internal reference) as 94% yield.

d) KIE Experiments of oxidative δ-trifluoromethylation of 2-ethyl benzohdrazides

Two sets of reactions were carried out in parallel under the standard conditions, and quenched with aqueous Na₂CO₃ in 6 min. **5a** and **5a-D1** were isolated in 16% and 7% yield, respectively. Note: **5a-D1** was not pure, which was contaminated with amide **4a-D2**.

(E)-N-methyl-2-(3,3,3-trifluoroprop-1-en-1-yl-1-d)benzamide (5a-D1)

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 (dd, J = 8.0, 1.4 Hz, 1H), 7.41 – 7.36 (m, 2H), 7.34 – 7.29 (m, 1H), 6.08 (qt, J = 6.4, 2.2 Hz, 1H), 5.89 (s, 1H), 2.92 (d, J = 4.9 Hz, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.2, 136.5, 135.2 (m), 131.9, 130.4, 129.7, 127.4, 127.0, 123.3 (q, J = 269.2 Hz), 117.9 (q, J = 34.0 Hz), 26.9.

IR (neat) cm⁻¹ v: 3293 (w), 1667 (w), 1543 (w), 1471 (w), 1410 (w), 1302 (m), 1261 (m), 1115 (s), 970 (w), 915 (w), 836 (w), 761 (m), 699 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{11}H_{10}[_2H]F_3NO^+ 231.0850$; Found 231.0851.

c) Isoindolinone (11) formation

To a screw cap tube charged with CuCl (4.0 mg, 0.04 mmol) and Na₂CO₃ (31.8 mg, 0.3 mmol, 3.0 equiv) was added a solution of Togni's reagent (94.8 mg, 0.3 mmol, 3.0 equiv) in DCM (0.5 mL) under argon atmosphere. After stirring for 2 min, compound **3r** (40.0 mg, 0.1 mmol, 1.0 equiv) in DCM (0.5 mL) was added to the above mixture. After being stirred for 4 hours at room temperature under argon atmosphere, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **11** (5.3 mg, 36% yield). The physical and spectroscopic data were in accordance with those reported in the literature.⁵

¹**H NMR** (400 MHz, CDCl3): 3.22 (s, 3H), 4.38 (s, 2H), 7.47 (t, J = 8.1 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.82 (d, J = 7.5 Hz, 1H).

Supplementary Note 2: transformation of amides 4a

a)

To a solution of **4a** (20.4 mg, 0.1 mmol, 1.0 euqiv) in THF (2.0 mL) was added Schwartz's reagent (35.0 mg, 0.12 mmol, 1.2 equiv) at room temperature. The reaction mixture was stirred at room temperature overnight, then the solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 3/1) to give **12** (13.2 mg, 76% yield) as an oil.

2-(1-azidoethyl)benzaldehyde (12)

CHO N₃

¹**H** NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 7.85 – 7.79 (m, 1H), 7.70 – 7.61 (m, 2H), 7.52 (ddd, J = 7.6, 6.7, 2.1 Hz, 1H), 5.79 (q, J = 6.7 Hz, 1H), 1.53 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) *δ* 193.1, 143.5, 134.8, 134.5, 132.7, 128.3, 127.1, 56.6, 22.2.

IR (neat) cm⁻¹ v: 3220 (w), 1688 (s), 1616 (w), 1469 (w), 1416 (w), 1356 (w), 1308 (w), 1142 (w), 1099 (m), 798 (w), 761 (m), 716 (m), 703 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₉H₁₀N₃O⁺ 176.0818; Found 176.0816

To a solution of **4a** (20.4 mg, 0.1 mmol, 1.0 euqiv) and NH₄Cl (32.1 mg, 0.6 mmol, 6.0 equiv) in MeOH (3.0 mL) was added In (68.9 mg, 0.6 mmol, 6.0 equiv) at room temperature. The reaction mixture was stirred under reflux for 24 hours, then quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 2/1) to give **13** (13.5 mg, 91% yield), the physical and spectroscopic data were in accordance with those reported in the literature⁶.

3-methylisoindolin-1-one (13)

¹**H** NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.84 (d, J = 7.5 Hz, 1H), 7.55 (td, J = 7.5, 1.2 Hz, 1H), 7.49 – 7.39 (m, 2H), 4.70 (q, J = 6.7 Hz, 1H), 1.50 (d, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 149.1, 131.91, 131.87, 128.1, 123.7, 122.3, 52.8, 20.4.

HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₉H₁₀NO⁺ 148.0757; Found 148.0754.

To a solution of **4a** (20.4 mg, 0.1 mmol, 1.0 euqiv) in THF (2.0 mL) was added PMe₃ (1.0 M in THF, 2.0 mL, 2.0 equiv) at room temperature. The reaction mixture was stirred at room temperature overnight. Et₃N (30 μ L, 0.3 mmol) and CbzCl (29.0 uL, 0.2 mmol, 2.0 equiv) were added to the above mixture at 0 °C. After stirring for 1 h, the reaction mixture was quenched with water, extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 3/1) to give **14** (27.7 mg, 89% yield) as colorless oil.

benzyl (1-(2-(methylcarbamoyl)phenyl)ethyl)carbamate (14)

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 – 6.98 (m, 9H), 5.90 (d, J = 6.9 Hz, 1H), 5.28 – 4.88 (m, 3H), 2.99 (d, J = 4.7 Hz, 3H), 1.44 (d, J = 6.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.8, 156.2, 141.4, 136.3, 135.9, 130.4, 128.6, 128.3, 128.15, 128.12, 127.5, 126.7, 66.9, 48.9, 26.8, 23.1.

IR (neat) cm⁻¹ v: 3278 (w), 2968 (w), 2160 (w), 1698 (s), 1638 (s), 1530 (s), 1455 (m), 1313 (m), 1250 (s), 1049 (s), 1005 (m), 755 (s), 731 (s), 697 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{21}N_2O_3^+$ 313.1547; Found 313.1544.

To a solution of **4a** (20.4 mg, 0.1 mmol, 1.0 euqiv) and CuI (3.8 mg, 0.02 mmol, 0.02 equiv) in THF (1.0 mL) was added ethynylbenzene (33 uL mg, 0.3 mmol, 3.0 equiv) at room temperature. The reaction mixture was stirred at room temperature for 24 hours, then quenched with water, and extracted with EtOAc. The organic extracts were washed with Na₂CO₃ solution and brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by flash chromatography (SiO₂, eluent: PE/EtOAc = 1/1) to give **15** (28.1 mg, 92% yield).

N-methyl-2-(1-(4-phenyl-1H-1,2,3-triazol-1-yl)ethyl)benzamide (15)

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.74 (d, *J* = 6.9 Hz, 2H), 7.40 – 7.30 (m, 5H), 7.29 – 7.18 (m, 2H), 6.73 (d, *J* = 5.0 Hz, 1H), 6.34 (q, *J* = 7.0 Hz, 1H), 2.93 (d, *J* = 4.8 Hz, 3H), 1.98 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.9, 147.3, 138.9, 135.3, 130.8, 130.6, 128.8, 128.3, 128.1, 127.3, 126.8, 125.6, 119.8, 56.3, 26.8, 21.2.

IR (neat) cm⁻¹ v: 3291 (w), 2938 (w), 1639 (m), 1542 (m), 1484 (w), 1410 (w), 1307 (w), 1225 (w), 1157 (w), 1077 (w), 1030 (w), 911 (w), 763 (s), 729 (s), 720 (s), 694 (s).

HRMS (ESI) m/z: $[M + H]^+$ Calcd for $C_{18}H_{19}N_4O^+$ 307.1553; Found 307.1545.

To a solution of **5a** (22.9 mg, 0.01 mmol, 1.0 euqiv) in HOAc (1.0 mL) and water (1.0 mL) was added H_2SO_4 (0.5 mL, 20% aq.) at room temperature. The reaction mixture was stirred at 70 °C for 24 h. The mixture was extracted with EtOAc. The organic extracts were washed with brine, dried over Na₂SO₄. The solvent was removed under reduced pressure. The residue was purified by a short column flash chromatography (SiO₂, eluent: EtOAc/PE = 1:1) to give **5v** (15.2 mg, 71% yield) as a white solid.

MP: 103 – 104 °C

¹**H NMR** (400 MHz, CDCl₃) δ 12.20 (s, 1H), 8.17 (dd, *J* = 7.9, 1.4 Hz, 1H), 8.12 (dq, *J* = 16.0, 2.3 Hz, 1H), 7.66-7.61 (m, 1H), 7.57 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.51 (td, *J* = 7.6, 1.5 Hz, 1H), 6.09 (dq, *J* = 16.0, 6.4 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 172.5, 137.5 (q, J = 7.0 Hz), 136.7, 133.8, 132.0, 129.6, 128.4, 128.0,
123.3 (q, J = 269.4 Hz), 118.9 (q, J = 33.8 Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ –63.65 (dd, J = 6.3, 2.5 Hz).

IR (neat) cm⁻¹ v: 3247 (w), 2164 (w), 1687 (s), 1572 (w), 1489 (w), 1415 (m), 1308 (m), 1267 (s), 1107 (s), 1080 (s), 966 (m), 928 (m), 749 (s).

HRMS (ESI) m/z: $[M - H]^-$ Calcd for $C_{10}H_6F_3O_2^-$ 215.0325; Found 215.0324.

Supplementary Note 3: crystallographic data for 5a

Table S7 Crystal data and structure refinement for 5a

Identification code	baox1188e-a	
Empirical formula	$C_{11}H_{10}F_3NO$	
Formula weight	229.20	
Temperature	140.00(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions	a = 14.2553(4) Å	$\alpha = 90^{\circ}$.
	b = 4.95361(10) Å	$\beta = 110.625(3)^{\circ}.$
	c = 16.0604(4) Å	$\gamma = 90^{\circ}$.
Volume	1061.42(5) Å ³	
Z	4	
Density (calculated)	1.434 Mg/m ³	
Absorption coefficient	1.118 mm ⁻¹	
F(000)	472	
Crystal size	0.435 x 0.223 x 0.189 mm ³	
Theta range for data collection	5.648 to 75.096°.	
Index ranges	$-17 \le h \le 17, -5 \le k \le 3, -19 \le l \le 19$	
Reflections collected	6516	

Independent reflections	2123 [$R_{int} = 0.0169$]	
Completeness to $\theta = 67.684^{\circ}$	99.9 %	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.458	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	2123 / 0 / 186	
Goodness-of-fit on F^2	1.051	
Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0347, wR_2 = 0.0942$	
R indices (all data)	$R_1 = 0.0370, wR_2 = 0.0966$	
Extinction coefficient	0.0036(5)	
Largest diff. peak and hole	0.331 and -0.273 e.Å ⁻³	
CCDC No.: CCDC 1866223		

Supplementary References:

1. Chou, C.-M.; Guin, J.; Mück-Lichtenfeld, C.; Grimme, S.; Studer, A. Radical-Transfer

Hydroamination of Olefins with N-Aminated Dihydropyridines. Chem. Asian J. 2011, 6, 1197.

- 2. Talbot, E. P. A.; Fernandes, T. de A.; McKenna, J. M.; Toste, F. D. Asymmetric Palladium-Catalyzed Directed Intermolecular Fluoroarylation of Styrenes. *J. Am. Chem. Soc.* **2014**, *136*, 4101.
- Havlik, S. E.; Simmons, J. M.; Winton, V. J.; Johnson, J. B. Nickel-Mediated Decarbonylative Cross-Coupling of Phthalimides with in Situ Generated Diorganozinc Reagents. *J. Org. Chem.* 2011, 76, 3588.
- 4. Zhu, Z.-Z.; Chen, K.; Yu, L.-Z.; Tang, X.-Y.; Shi, M. Copper(I)-Catalyzed Intramolecular Trifluoromethylation of Methylenecyclopropanes. *Org. Lett.* **2015**, *17*, 5994.
- Dang, T. T.; Zhu, Y.; Ngiam, J. S. Y.; Ghosh, S. C.; Chen, A.; Seayad, A. M. Palladium Nanoparticles Supported on ZIF-8 As an Efficient Heterogeneous Catalyst for Aminocarbonylation. *ACS Catal.* 2013, *3*, 1406.

6. Ruan, Y. P.; Chen, M. D.; He, M. Z.; Zhou, X.; Huang, P. Q. A Practical Two-Step Synthesis of 3-

Alkyl-2,3-dihydro-1H-isoindolin-1-ones. Synth. Commun. 2004, 34, 853.