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Supplementary Figure 1. Calculated density of states of perfect and

oxygen-defective Bi,Oj; single-unit-cell slab.
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Supplementary Figure 2. XRD patterns of the Bi,O3; nanosheets with rich and poor

oxygen vacancies.
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Supplementary Figure 3. IR spectra of Bi-amine hybrid intermediate and Bi,O3
nanosheets. The vibration bands suggest the existence of amine in Bi-amine hybrid
intermediate. After ultrasonication and exfoliation, the vibration bands of amine are

absent, indicating the clean surface of the as-prepared Bi,O3; nanosheets
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Supplementary Figure 4. (a) TEM image, and (b) atomic-resolution HAADF-STEM

1,03 nanosheets.
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Supplementary Figure 5. /n-situ ESR of DMPO-CH3, where DMPO was used as the

spin trapping agent.
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Supplementary Figure 6. Representative NMR spectra of synthetic DMC from the
reaction of CO, and CH30OH in acetonitrile (CH;CN) solution. (a) "H-NMR spectra of
the products after 8 h CO, reaction. (b) C-NMR spectra of the products using

common CO, and "*C isotopic labeling CO,.
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Supplementary Figure 7. BET surface area of OV-R-Bi,03; and OV-P-Bi,0; samples.
The BET surface areas of OV-R-Bi1,05; and OV-P-Bi,05; were 30.18 m> g'1 and 28.96

m’” g, respectively, which suggests similar BET surface area of above samples.
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Supplementary Figure 8. Performances of various catalysts for CO, fixation to
DMC under the same reaction conditions (CO; (0.2 Mpa) at 373 K under Xe-lamp
irradiation). Herein, the CeO, nanosheets, V,0s nanosheets, and ZrO, nanoparticles

are prepared according to literatures'™.
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Supplementary Figure 9. Characterization of the OV-R-Bi,O3; sample after 25
catalytic cycles. (a) XRD pattern, (b) Room temperature ESR spectra, (¢, d) TEM
image before and after catalytic cycles up to 200 hours. The above results show that
the crystal phase, morphology and vacancy concentration of OV-R-Bi,O3 were well

maintained after 25 catalytic cycles.
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Supplementary Figure 10. Band structure study. (a) UV-vis spectra. Inset:
corresponding Tauc plots of samples. (b) Mott-Schottky curves. (c) Valence-band
spectra and Secondary electron cutoff (Ecu.oif) measured by SRPES. (d) Band
structure diagram. Based on the Mott-Schottky curves, the flat band potentials, which
are close to the corresponding conduction band minima (CBMs) in n-type
semiconductors, were determined to be —0.10 and —0.03 eV (vs. normal hydrogen
electrode (NHE)) for OV-Rich-Bi,0; and OV-Poor-Bi,0Os3 nanosheets, respectively. In
addition, the valence band maxima (VBMs) of Bi,O3; nanosheets were resolved by
synchrotron radiation photoelectron spectroscopy (SRPES) with excitation light (v =
168.4 eV)4’5. As demonstrated, the VBM of OV-Rich-Bi1,03; and OV-Poor-Bi,Os;
nanosheets were estimated to be about —7.17 and —7.31 eV vs evac (vacuum level).
With the combination of SRPES and UV-vis results, the CBMs of OV-Rich-Bi,03
and OV-Poor-Bi,03 nanosheets were estimated to be —0.11 and —0.08 eV (vs. NHE),
in good agreement with the values estimated from Mott-Schottky curves. It is worth
noting that the SRPES spectroscopy is more suitable for determining the band

structures, as compared to the electrochemical method®.
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Supplementary Figure 11. Photocurrent response of Bi,O; nanosheets with rich and
poor oxygen vacancies, respectively. The photocurrent-voltage curves suggest
enhanced photocurrent response under negative bias, confirming the enhanced

photogeneration of hot electrons in the ultrathin Bi;Os-sheets with rich defects.
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Supplementary Table 1. Direct synthesis of DMC from CO, and CH;OH with

different catalysts.

. 0.2 Mpa, This
Bi,0s-bulk Trace Trace 373K light, $h work
OV-P-Bi,0; ) ~99 0.2 Mpa, This

nanosheet 373K, light, 8h  work
OV-R-Bi,0; 18 ~99 0.2 Mpa, This
nanosheet 373K, light, 8h  work
9.5 Mpa,
Zr0,-KCI-K,CO3 10.8 432 423K, 8h 7
Mg(OCHj3), + 9.5 Mpa,
. . 7
Zr0,-KClI 39 45.6 423K, 8h
0.6 Mpa,
H3P0O4/V;,0s5 1.96 93.1 413K, 8h 8
7.6 Mpa,
. > 9
H3PW12040/ZI’02 2.02 99 373K, 7h
6 Mpa, 383K,
- . > 10
Ce0O,- 7210, 0.8 99 24k
0.5 Mpa,
. . 11
C01'5PW12040 3.8 65.2 373K, 5h
. 0.5 Mpa,
-Cu- 12
Mo-Cu-Fe/SiO, 7 88 393K, 4h

‘Determined by NMR analyses, using s-trioxane as the internal standard, mol %

bselectivity = yieldpmc™2/conversionmethanol
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