

Figure S1. Mapping interactions among ASPP/PP1 complex members

(A) Diagram of ASPP proteins from different species. RA = Ras Association domain; CC = coiled-coil; Ank = ankyrin repeats; SH3 = SH3 domain. The position of the RVxF motif is indicated, except in human and *C. elegans* iASPP, which do not have a canonical RVxF motif. The constructs used in panels (B) and (C) are indicated by black lines above Dm ASPP. The construct used for the ASPP:PP1a crystallization is also indicate.(B-D) Western blots of co-IP experiments from lysates of transfected S2 cells, probed with indicated antibodies. (B, C) The N-terminal coiled-coil of ASPP is sufficient for RASSF8 and Ccdc85 binding. (D) The ASPP RVxF motif is dispensable for RASSF8 binding. The RA domain containing protein RASSF, which does not bind ASPP, is used as a negative control. (E) The ASPP RVxF motif is dispensable for Ccdc85 binding. (F) Western blots of co-IP experiments using lysates of transfected HEK293T cells, probed with the indicated antibodies.

Figure S2. Generation of a ccdc85 mutant and characterization of the ASPP rescue constructs

(A) Gene structure of ccdc85 (CG17265) showing the position of ccdc85C1.1 deletion (2.4 kbp) and the transposon (P{XP}d06579) mobilized to create it. The deletion affects the 5'-UTR of ccdc85 and the 3'-UTR of CG3558. Coding exons are marked in orange, non-coding exons in grey. (B) Agarose gel electrophoresis of a PCR across the 5'-UTR of ccdc85 in ccdc85C1.1 over a chromosomal deficiency (Df(2L)Exel7014) yields a product that is 2.4 kbp smaller than in wild type flies. (C) Agarose gel electrophoresis of RT-PCR reactions on mRNA extracted from ccdc85C1.1/Df(2L)Exel7014 flies. ccdc85 mRNA was undetectable, while CG3558 levels were slightly reduced. (D-F) Confocal X-Y sections of third instar larval wing discs stained with the indicated antibodies. Flp/FRT clones, marked by absence of β -galactosidase, were generated using hsFlp. GFP-tagged ASPPwt (D–F) or ASPPFA (E–I) expressed under the ubiquitin 63E promoter are localised to cell-cell junctions identically to endogenous ASPP. Clone boundaries are marked with dashed yellow lines. Using β -galactosidase staining intensity, tissues that only express endogenous ASPP (endo), a mixture (het) or only exogenous, GFP-tagged ASPP (GFP) can be distinguished. ubiquitin 63E-driven ASPP is expressed at slightly higher levels than endogenous ASPP (compare endo and GFP tissues).

Figure S3. ASPP-FA does not rescue anterior scutellar bristle duplication in ASPP mutants (A) Anterior scutellar bristle duplication in ASPP null mutant female on the right side (arrowhead). (B) ASPP expression in ASPP null mutant flies partially rescues the bristle duplication phenotype. ASPPFA expression does not alter the ASPP null phenotype. 150 flies per genotype and sex were analyzed. Anterior scutellar bristle duplications either on the left side, right side or both sides were counted as duplication events.

Figure S4. ASPP2 shows some mobility when bound to PP1a

(A) Crystals of the PP1α:ASPP2 complex were obtained in P1 spacegroup with two copies of the complex per asymmetric unit. Both copies of the complex are very similar, however we observed a rotation of six degrees of ASPP2 related to PP1 catalytic domain between the two copies, as well as a higher average temperature factor for ASPP2 compare to PP1α (Table 1) which suggests that ASPP2 has a low degree of flexibility when bound to PP1. This flexibility is probably due to the nature of the interaction and particularly to the limited surface of interaction between ASPP2 and PP1 catalytic domain. PP1 and ASPP2 molecules are virtually identical within the two copies of the complex superposing with an RMSD of 0.12 Å and 0.28 Å respectively (all Cα). (B) Difference electron density map contoured at 3σ for the PP1α C-tail bound to the ASSP2 SH3 domain. (C) Intact mass spectrum of PP1:ASPP2 complex after an incubation of 7 days at 20°C. (D) Electrostatic surface representation of the ASPP2 SH3 domain. The specificity pocket of the ASPP2 SH3 domain forms by the RT and n-Src loops is mainly acidic.

Figure S5. ITC measurements

ITC measurement of (A) ASPP2:PP1 $\alpha^{301-330}$, (B) ASPP2:PP1 $\alpha^{301-330}$ R323A, (C) ASPP2:PP1 $\alpha^{317-323}$, (D) ASPP2:PP1 $\alpha^{317-330}$, (E) ASPP2:PP1 $\alpha^{301-330}$ R32A, (F) ASPP2:PP1 $\alpha^{301-330}$ R32A, (G) ASPP2:PP1 $\alpha^{301-330}$ R32A, (I) ASPP2:PP1 $\alpha^{301-330}$ R32A, (I) ASPP2:PP1 $\alpha^{301-320}$, (J) ASPP2:PP1 $\alpha^{301-320}$, (K) ASPP2:PP1 $\alpha^{2297-324}$, (L) ASPP2:PP1 β/α chimera, (M) ASPP2:PP1 $\gamma^{1/\alpha}$ chimera, (N) iASPP:PP1 $\alpha^{301-330}$, (O) iASPP:PP1 $\alpha^{301-330}$ 3KA, (P) ASPP2^{D1091G/E1092P}:PP1 $\alpha^{301-330}$, (Q) ASPP2^{D1091K/} E^{1092V/E1094K}:PP1 $\alpha^{301-330}$

		Kinetic Analysis			Equilibrium Analysis	
		K _{on} (M ⁻¹ s ⁻¹ x10 ³)	K _{off} (s ⁻¹ x10 ⁻³)	K₀ (nM)	t _{1/2} (s)	K _D (nM)
	PP1-α	104 ±3	0.2 ± 0.001	2.4 ±0.01	3465.0	3.7 ± 0.3
iASPP	PP1-β	129 ± 1	0.2 ± 0.001	2.0 ± 0.01	3465.0	1.9 ±0.5
	PP1-γ1	640 ±2	0.3 ± 0.001	4.9 ± 0.03	2310.0	5.6 ± 0.5
	PP1-α	344 ±5	20.3 ± 0.09	59.0 ± 0.9	34.1	41 ± 1.3
ASPP1	PP1-β	768 ±22	51 ± 0.4	66.5 ± 2.0	13.6	76 ± 5.8
	PP1-γ1	354 ± 6.3	21.5 ±0.2	60.6 ± 1.1	32.2	54 ± 3.4
	PP1-α	270 ±4	5.9 ± 0.02	21.8 ± 0.3	117.5	19 ± 2.1
ASPP1 K1052E/S1055D	PP1-β	665 ± 66	56 ± 0.05	84.4 ± 2.8	12.4	85 ± 7.7
	PP1-γ1	356 ± 6.5	3.7 ± 0.02	104 ± 2.0	187.3	100 ± 6.0
	PP1-α	1 657 ± 46	22 ± 0.1	13.6 ± 0.4	31.5	14 ± 1.3
ASPP2	PP1-β	858 ±35	158 ±3	177 ± 11	4.4	160 ± 15.8
	PP1-γ1	660 ± 25	151 ± 1.3	195 ± 6.5	4.6	195 ± 10
4.0000	PP1-α	577 ± 16	59 ± 0.5	102 ± 3	11.7	84 ± 11
ASPP2 E1090K/D1093S	PP1-β	659 ± 14	117 ± 0.8	178 ± 4	5.9	140 ±9
	PP1-γ1	504 ±9	105 ± 0.6	209 ± 4	6.6	250 ± 20
	PP1-α	348 ± 6.3	33.6 ± 0.2	96 ± 1.8	20.6	84 ± 5.2
ASPP2 D1093S	PP1-β	730 ± 23.3	100 ± 1.0	136 ± 4.5	6.9	157 ± 16
	ΡΡ1-γ1	354 ± 9.5	79 ± 0.5	223 ± 6.2	8.8	140 ± 5.2
ASPP2 D1091G/E1092P	PP1-α	755 ± 10	22 ± 0.1	29.6 ± 4	31.5	20 ± 1.4
ASPP2 D1091K/E1092V/E1094K	PP1-α	85 ± 18	700 ± 33	8 220 ± 1 860	1.0	10 000 ± 3 500

Figure S6. BLI affinity measurements of various PP1:ASPP complexes.

Figure S7.

(A) Sequence alignment of ASPP isoforms generated with ESPript 3.0. Identical and similar residues are boxed in red and yellow, respectively. The RVxF motifs, RT and n-Src loops are boxed in yellow, blue and green, respectively. The n-Src loop residues are numbered from 1 to 5.(B) Superposition of P53:ASPP2 complex (yellow/white) to PP1 a:ASPP2 (pink/light green). (C) Superposition of P73:ASPP2 complex (green/white) to PP1a:ASPP2 (pink/light green).

А

В

Figure S8. Disordered PP1a C tail.

(A) The primary sequence of the PP1α C-tail. (B) Secondary Chemical shift plot of the PP1α C-tail. (C) Overlay of the 2D [1H,15N] TROSY spectrum of ASPP2 (red) alone and in presence of two molar excess of the PP1α C tail (purple). Significant differences between the spectrum show the direct interaction.

Correlation ASPP2 and ASPP2KVK interactors

Figure S9. Correlation analysis of the ASPP2 vs ASPP2KVK interactors

Quantitative AP-MS from HEK293T cells expressing Strep-HA tagged ASPP2 or ASPP2^{KVK}. The graph shows the correlation between the intensity of ASPP2 and ASPP2^{KVK} interactors. All interactors have a similar affinity for ASPP2 and ASPP2 and ASPP2 and ASPP2^{KVK}, only PP1a shows reduced binding for the mutated form. Interactors are inferred at spectra count level using SAINT probability score of 0.95. Protein intensity is measured on the basis of the three most intense and unique peptide precursors. Error bars indicate standard deviation.

ubi-GFP-PP1a87B	GFP-PP1a96A	YFP-PP1β9C	
CFP	K GFP	M	
J merge Ecad	L merge	N merge Ecad	

Figure S10. Retinal phenotypes of ASPP PP1 binding mutants

(A-F) Confocal X-Y sections of pupal retinas at 40h APF stained with anti E-cad antibodies to mark cell outlines. ASPP null mutants (B) have increased IOC numbers and misplaced bristles compared to control (A) (13.92±1.32 vs 12.12±0.70). (C-F) Expression of ASPP wild type and different mutants under the *ubiquitin promoter 63E (ubi)* in *ASPP* null mutants (C) Expression of ASPP^{WT} (D) Expression of *ASPP^{FA}* (E) Expression of ASPPKVK (F) Expression of the ASPPFA-WK (see Supplementary table 1 for full genotypes). (G) Quantification of IOCs per ommatidial unit for indicated genotypes. ASPPwt (in grey, 12.25± 0.63) but not ASPPFA (in green, 13.02±0.90) or ASPPFA-WK (in red, 13.18±1.26) rescue the ASPP mutant phenotype. ASPPKVK (in blue, 12.6±0.93) could rescue the phenotype. A one-way ANOVA with three pairwise comparisons was carried out (control vs. ASPP-/-, control vs ASPPFA, control vs. ASPPFA-WK) and p-values were adjusted using a Bonferroni correction. Significant differences are marked. *** indicates p<0.001 and ** indicates p<0.01. (H) Quantification of bristle misplacement in (A-D). ASPPwt, but not ASPPFA, ASPPKVK, ASPPFA-WK expression restore bristle placement in ASPP mutants. (I-N) Confocal X-Y section of pupal retinas at 26h APF showing in vivo localisation of different Drosophila GFP-tagged PP1 isoforms stained with E-cad antibodies to mark the cell outlines. (O-T) Confocal X-Y sections of pupal retinas at 26h APF showing endogenous GFP-tagged PP1a96A and stained with E-Cad. (O-Q) PP1a96A localises at the cellcell junctions (67.78% ± 7.58). (R-T) Loss of *ccdc85* in an ASPP mutant background mislocalises PP1α96A from the cell-cell junctions (54.08% ± 7.18). (U) Quantification of junctional PP1a96A of the indicated genotypes at 26h APF in percentage. For the guantification of PP1a96A intensity, two regions of interest were drawn surrounding the junctions of a cell (ROI_{TOTAL} and ROI_{CYTOPLASM}). Junctional fraction was quantified by (ROI_{TOTAL} - ROI_{CYTOPLASM}). Values were normalised to 100% for PP1a96A. Significant differences are marked *** indicates p<0.001 using unpaired Student's t-tests (n=40 cells from 3 retinas). Scale bars=10 μ m. Error bars represent the standard deviations.

Stereo image showing electron density of PP1 catalytic domain (2Fobs-Fcalc contoured at 1σ level).

Suplementary table 1. Fly genotypes:

Figure	Genotype
Figure 2A:	control
Figure 2B:	w; ccdc85 ^{C1.1} / Df(2L)Exel7014
Figure 2C	: w; P[GMR-GAL4]#12 / +; UAS-cd8-GFP / +
Figure 2D:	w; P[GMR-GAL4]#12/ UAS-ccdc85
Figure 2G:	w; ASPP ^{2.93} / ASPP ¹ (precise excisions)
Figure 2H	: w; FRT 42D ASPP ^d / ASPP ⁸
Figure 2I:	w; FRT 42D, ubi-GFP-ASPP ^{wt} , ASPP ^d / ASPP ⁸
Figure 2J:	w; FRT 42D, ubi-GFP-ASPP ^{FA} , ASPP ^d / ASPP ⁸
Figure 3A:	w; FRT 42,D ASPP ^d / ASPP ⁸
Figure 3B:	w; FRT 42D, ubi-GFP-ASPP, ASPP ^d / ASPP ⁸
Figure 3C:	w; FRT 42D, ubi-GFP-ASPP ^{FA} , ASPP ^d / ASPP ⁸
Figure 3F:	w; ASPP ^d / ASPP ⁸ ; FRT 82B, Csk ^{1jd8} / +
Figure 3G:	w; FRT 42D, ubi-GFP-ASPP ^{FA} , ASPP ^d /ASPP ⁸ ; FRT 82B,
Figure 31:	CSKIJO87 + W MS1096-GALA/V: +
Figure 3J:	MS1096-GAL4/Y; UAS-ASPP-HA / +
Figure 3K:	MS1096-GAL4/Y; UAS-ASPP ^{FA} -HA / +
Figure S2D:	yw hsFlp; FRT 42D, ubi-GFP-ASPP, ASPP ^d / FRT 42D, arm- LacZ
Figure S2E:	yw hsFlp; FRT 42D, ubi-GFP-ASPP ^{FA} , ASPP ^d / FRT 42D, arm- LacZ
Figure S3A:	w; ASPP ^d / ASPP ⁸
Figure 9A:	w; FRT40A
Figure 9B:	w; FRT40A ccdc85 ^{C1.1} / Df(2L)Exel7014
Figure 9C:	w; FRT42D ASPP ^d Df(2L)Exel7014/ FRT40A ccdc85 ^{C1.1} ASPP ⁸
Figure 9D:	w; FRT42D ubi-GFP-ASPP ^{WT} , ASPP ^d Df(2L)Exel7014/ FRT40A ccdc85 ^{C1.1} ASPP ⁸
Figure 9E:	w; FRT42D ubi-GFP-ASPP ^{FA} , ASPP ^d Df(2L)Exel7014/ FRT40A ccdc85 ^{C11.} ASPP8
Figure 9F:	w; ubi-GFP-ASPP ^{KVK} , ASPP ^d Df(2L)Exel7014/ FRT40A
Figure 9G.	W: Ubi-GEP-ASPPFA-WK ASPPd Df(21) Eval7011/ ERT/04
	ccdc85 ^{C11.} ASPP8
Figure 9H:	w; ubi-GFP-ASPP ^{FA-WK} , ASPP ^d Df(2L)Exel7014/ FRT40A
	ccdc85 ^{C11} ASPP8

Figure 9K:	PBac{681.P.FSVS}flwCPTI001360
Figure 9N:	PBac{681.P.FSVS}flwCPTI001360; FRT 42,D ASPPd
Figure 9Q:	PBac{681.P.FSVS}flwCPTI001360; FRT40A ccdc85 ^{C1.1} ASPP ⁸
Figure S10A:	w; ASPP ^{2.93} / ASPP ¹ (precise excisions)
Figure S10B:	w; FRT 42D ASPP ^d / ASPP ⁸
Figure S10C:	w; FRT 42D, ubi-GFP-ASPP, ASPP ^d / ASPP ⁸
Figure S10D:	w; FRT 42D, ubi-GFP-ASPP ^{FA} , ASPP ^d / ASPP ⁸
Figure S10E:	w; FRT 42D, ubi-GFP-ASPP ^{KVK} , ASPP ^d / ASPP ⁸
Figure S10F	: w; FRT 42D, ubi-GFP-ASPP ^{FA-WK} , ASPP ^d / ASPP ⁸
Figure S10I:	ubi-GFP-PP1a87B (III)
Figure S10K:	FlyFos021765(pRedFlp-Hgr)(Pp1alpha-96A15346::2XTY1- SGFP-V5-preTEV-BLRP-3XFLAG)dFRT
Figure S10M:	PBac{681.P.FSVS}flwCPTI001360
Figure S10O:	FlyFos021765(pRedFlp-Hgr)(Pp1alpha-96A15346::2XTY1- SGFP-V5-preTEV-BLRP-3XFLAG)dFRT
Figure S10R:	FRT40A ccdc85 ^{C1.1} ASPP ⁸ ; FlyFos021765(pRedFlp- Hgr)(Pp1alpha-96A15346::2XTY1-SGFP-V5-preTEV-BLRP- 3XFLAG)dFRT

Suplementary table 2. List of primers used in this study

Primer Name	Sequence
ASPP2 920 BamHI	ggggggatccatgagggtgaaattcaaccccc
ASPP2 stop NotI	gggggggggcggccgctcaggccaagctcctttgt
dASPP V812A,F814A fw	aagctgggtcgaagggccagcgctgatccgctg
dASPP V812A,F814A rev	cagcggatcagcgctggcccttcgacccagctt
dASPP V812D,F814A fw	cccaagctgggtcgaagggacagcgctgatccgctggcc
dASPP V812D,F814A rev	ggccagcggatcagcgctgtcccttcgacccagcttggg
ASPP2 E1090K D1094S fw	gacaatcatccacaggaaagacgaatctgaaatcgaatggtggtgg
ASPP2 E1090K D1094S rev	ccaccaccattcgattcgattcgtctttcctgtggatgattgtc
ASPP2 D1093S fw	ccacagggaagacgaatctgaaatcgaatggtggtg
ASPP2 D1093S rev	caccaccattcgattcgattcgtcttccctgtgg
ASPP2 D1091K, E1092V, E1094K fw	catccacagggaaaaggtagataaaatcgaatggtggtgggcg
ASPP2 D1091K, E1092V, E1094K rev	cgcccaccattcgattttatctaccttttccctgtggatg
ASPP2 D1091G, E1092P fw	ccattcgatttcatctgggccttccctgtggatg
ASPP2 D1091G, E1092P rev	catccacagggaaggcccagatgaaatcgaatgg
ASPP2 D1091A, E1092A fw	acaatcatccacagggaagccgcagatgaaatcgaatggtggtgg
ASPP2 D1091A, E1092A rev	ccaccaccattcgatttcatctgcggcttccctgtggatgattgt
ASPP1 K152E, S155D fw	caccatcctgaggcgcgaggacgaagacgagactgagtggtggtg
ASPP1 K152E, S155D rev	caccaccactcagtctcgtcttcgtcctcgcgcctcaggatggtg
ASPP1 S155D fw	ctgaggcgcaaggacgaagacgagactgagtggtggtgg
ASPP1 S155D rev	ccaccactcagtctcgtcttcgtccttgcgcctcag
dASPP D981A, D982A fw	gtgctgcgcaagggcgccgctgccgagaacgagtgg
dASPP D981A, D982A rev	ccactcgttctcggcagcggcgcccttgcgcagcac
dASPP D981K, D982V, E984K fw	gtgctgcgcaagggcaaggttgccaagaacgagtggtggtgg
dASPP D981K, D982V, E984K rev	ccaccactcgttcttggcaaccttgcccttgcgcagcac
dASPP W987K fw	gatgccgagaacgagaagtggtgggcacggaatg
dASPP W987K rev	cattccgtgcccaccacttctcgttctcggcatc
ASPP1 882-1090 BamHI fw	ggatccctgagagtccggtttaaccccctgg
ASPP1 882-1090 Notl rev	gcggccgctcaggcgagtgttcgctgtc

PP1a 96A D C attB2 stop	ggggaccactttgtacaagaaagctgggtgttatcgtcgcttgtcggcgg
PP1b 9C D C attB2 stop	ggggaccactttgtacaagaaagctgggtgttacttcttctcggatggttt
PP1a 13C attB1	ggggacaagtttgtacaaaaaagcaggcttcaccatggcggaggttctcaat
PP1a 13C attB2 stop	ggggaccactttgtacaagaaagctgggttctacttcttgcgcttctcga
PP1a 87B attB1	ggggacaagtttgtacaaaaagcaggcttcaccatgggcgacgtgatgaata
PP1a 87B attB2 stop	ggggaccactttgtacaagaaagctgggtgttactttttacgcttgtcgg
PP1a 96A attB1	ggggacaagtttgtacaaaaaagcaggcttcaccatgtcggatatcatgaacatcg
PP1a 96A attB2 stop	ggggaccactttgtacaagaaagctgggttttattttttcttgtttttattgttagct
PP1b 9C attB1	ggggacaagtttgtacaaaaagcaggcttcaccatgggcgacttcgatctg
PP1b 9C attB2 stop	ggggaccactttgtacaagaaagctgggttttatttcttcttgttggtcg
Ccdc85 attB1	ggggacaagtttgtacaaaaagcaggcttcaccatgtccggcaatcaacag
Ccdc85 attB2 stop	ggggaccactttgtacaagaaagctgggttttagagcggctccagggc
ASPP 1-234 attB1	ggggacaagtttgtacaaaaaagcaggcttcaccatgaaggagccgacgaacac tttg
ASPP 1-234 attB2	ggggaccactttgtacaagaaagctgggtgctgctgctgctgctgatg
ASPP 231-795 attB1	ggggacaagtttgtacaaaaaagcaggcttcaccatgcaacagcagcagcacca
ASPP 231-795 attB2	ggggaccactttgtacaagaaagctgggtggctggttgtcacggttgt
ASPP 796-1020 attB1	ggggacaagtttgtacaaaaaagcaggcttcaccatgaacatcaaggagcgaac g
ASPP 796-1020 attB2	ggggaccactttgtacaagaaagctgggtggccgcacttcagcgat

Supplementary table 3. Statistics analysis

Figure 2					
Panel	Name	Mean	Std		
В	ctrl	12.37	0.56		
С	ccdc85 ^{-/-}	13.37	1.30		
D	GMR>GFP	12.53	0.63		
E	GMR>ccdc85	10.37	1.40		
Н	ctrl	12.02	0.25		
1	ASPP-/-	14.15	1.39		
J	ASPP ^{-/-} ubi- ASPP ^{wt}	12.04	0.29		
к	ASPP ^{-/-} ubi- ASPP ^{FA}	13.15	1.04		
Genotype A	Genotype B	P value	Summary		
ctrl	ccdc85 ^{-/-}	0.0003	***		
GMR>GFP	GMR>ccdc85	<0.0001	***		
ASPP-/-	ASPP ^{-/-} ubi- ASPP ^{wt}	<0.0001	***		
ASPP ^{-/-} ubi- ASPP ^{wt}	ASPP ^{-/-} ubi- ASPP ^{FA}	<0.0001	***		
Figure3	Figure3				
Panel	Name	Mean	Std		
	ctrl	1.00	0.03		
A	ASPP-/-	1.10	0.03		
В	ASPP ^{-/-} ubi- ASPP ^{wt}	1.00	0.03		
С	ASPP ^{-/-} ubi- ASPP ^{FA}	1.04	0.05		
J	MS1096>	1.00	0.03		
I	MS1096> ASPP ^{wt}	0.85	0.03		
К	MS1096> ASPP ^{FA}	0.91	0.03		
Genotype A	Genotype B	P value	Summary		
ASPP-/-	ASPP ^{-/-} ubi- ASPP ^{wt}	0.0002	***		
ASPP ^{-/-} ubi- ASPP ^{wt}	ASPP ^{-/-} ubi- ASPP ^{FA}	<0.0001	***		

MS1096> ASPP ^{wt}	MS1096> ASPP ^{FA}	<0.0001	***
Figure 8			
Panel A			
Bait	Interactor	Mean	Std
ASPP2	PP1a	0.477	0.087
ASPP2	ΡΡ1β	0.015	0.027
ASPP2	PP1y	0.083	0.049
ASPP2 ^{KVK}	PP1a	0.135	0.083
ASPP2 ^{KVK}	ΡΡ1β	0.008	0.015
ASPP2 ^{KVK}	PP1y	0.088	0.044
ASPP2	ASPP2 ^{KVK}	P value	Summary
ΡΡ1α	ΡΡ1α	<0.0001	***
ΡΡ1β	ΡΡ1β	>0.999	ns
PP1 _Y	PP1y	>0.999	ns
Panel B			
Bait	Interactor	Mean	Std
PP1a	ASPP1	100	42.178
ΡΡ1α ^{ΔC}	ASPP1	0.134	0.077
ΡΡ1β	ASPP1	85.051	16.114
PP1y	ASPP1	122.560	24.440
PP1a	ASPP2	100	30.541
PP1a ^{∆C}	ASPP2	0.002	0.004
ΡΡ1β	ASPP2	14.702	0.425
ΡΡ1γ	ASPP2	28.366	0.674
ΡΡ1α	iASPP	100	23.206
ΡΡ1α ^{ΔC}	iASPP	0.027	0.027
ΡΡ1β	iASPP	64.673	9.296
PP1y	iASPP	3.116	0.635
ASPP1			•
Α	В	P value	Summary
PP1a	ΡΡ1α ^{ΔC}	**	0.003

PP1a	ΡΡ1β	ns	>0.999
PP1a	ΡΡ1γ	ns	>0.999
ASPP2			
Α	В	P value	Summary
PP1a	ΡΡ1α ^{ΔC}	**	0.003
ΡΡ1α	ΡΡ1β	*	0.011
ΡΡ1α	PP1y	*	0.038
iASPP			
Α	В	P value	Summary
ΡΡ1α	ΡΡ1α ^{ΔC}	**	0.0029
PP1a	ΡΡ1β	ns	0.5898
PP1a	ΡΡ1γ	**	0.0039
Panel E			
		Mean	Std
GFP		1	0
ASPP ^{WT}		0.552	0.102
ASPPVFAA		1.184	0.305
ASPP ^{KVK}		1.194	0.364
Α	В	P value	Summary
ASPP ^{WT}	ASPPVFAA	0.026	*
ASPP ^{WT}	ASPP ^{KVK}	0.024	*
Figure9			
Panel	Name	Mean	Std
A	ctrl	12.20	0.41
В	ccdc85-/-	13.30	1.40
С	ccdc85 ^{-/-} ASPP ^{-/-}	16.70	2.10
D	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{wt}	13.16	1.058
E	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{FA}	16.22	1.44
F	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{KVK}	14.64	1.38
G	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{wk}	15.64	1.97

н	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{FA WK}	15.60	1.49
Genotype A	Genotype B	P value	Summary
ctrl	ccdc85 ^{-/-}	0.0381	*
ccdc85 ^{-/-} ASPP-/-	ccdc85 ^{-/-} ASPP-/- ubi-ASPP ^{wt}	<0.0001	***
ccdc85 ^{-/-} ASPP-/- ubi-ASPP ^{wt}	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{FA}	<0.0001	***
ccdc85 ^{-/-} ASPP-/- ubi-ASPP ^{wt}	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{KVK}	0.0016	**
ccdc85 ^{-/-} ASPP-/- ubi-ASPP ^{wt}	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{FA WK}	<0.0001	***
ccdc85 ^{-/-} ASPP-/- ubi-ASPP ^{wt}	ccdc85 ^{-/-} ASPP ^{-/-} ubi-ASPP ^{wк}	<0.0001	***
ccdc85 ^{-/-}	ccdc85 ^{-/-} ASPP ^{-/-}	<0.0001	***
Panel	Name	Mean	Std
К	YFP-PP1-β9C	67.31	7.45
L	YFP-PP1-β9C; ASPP ^{-/-}	69.23	6.29
М	YFP-PP1-β9C; ccdc85 ^{-/-} ASPP ^{-/-}	60.92	5.51
Genotype A	Genotype B	P value	Summary
YFP-PP1-β9C	YFP-PP1-β9C; ASPP ^{-/-}	0.42	ns
YFP-PP1-β9C	YFP-PP1-β9C; ASPP ^{-/-} ccdc85 ^{-/-}	<0.0001	***
YFP-PP1-β9C; ASPP ^{-/-}	YFP-PP1-β9C; ASPP ^{-/-} ccdc85 ^{-/-}	<0.0001	***
FigureS10			
Panel	Name	Mean	Std
А	ctrl	12.12	0.70
В	ASPP-/-	13.92	1.32
С	ASPP ^{-/-} ubi- ASPP ^{wt}	12.25	0.63
D	ASPP ^{-/-} ubi- ASPP ^{FA}	13.02	0.90
E	ASPP ^{-/-} ubi- ASPP ^{KVK}	12.60	0.93
F	ASPP ^{-/-} ubi- ASPP ^{FA-WK}	13.18	1.26

Genotype A	Genotype B	P value	Summary
ctrl	ASPP-/-	<0.0001	***
ctrl	ASPP ^{-/-} ubi- ASPP ^{FA}	0.0029	**
ctrl	ASPP ^{-/-} ubi- ASPP ^{KVK}	0.2638	ns
ctrl	ASPP ^{-/-} ubi- ASPP ^{FA-WK}	<0.0001	***
Panel	Name	Mean	Std
L	ΡΡ1α96Α	67.78	7.58
М	ASPP ^{-/-} ccdc85 ^{-/-} ; PP1α96A	54.08	7.18
Genotype A	Genotype B	P value	Summary
PP1α96A	ASPP ^{-/-} ccdc85 ^{-/-} ; PP1a96A	<0.0001	***

Figure 1C

MYC IP

Figure 1D

Figure S1B

Figure S1C

FLAG extracts

PP1 extracts

V5 Extracts

•	

Figure 4B

FLAG IP

