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S1.1 Analysis of logarithmic scaling in eSS

The original scatter search method used for parameter estimation in dynamic models al-
ready incorporated logarithmic sampling of the search space (Rodriguez-Fernandez et al.,
2006). In that algorithm, a logarithm scaling was applied to the generation of the initial
reference set of the parameter values, allowing for an initial diversification of the explo-
ration of the parameter space. However, logarithm scaling was not used in other parts of
the search. In recent years, several studies (Raue et al., 2013; Fröhlich et al., 2017; Kreutz,
2016; Villaverde et al., 2018) have proposed to perform the whole parameter estimation
in logarithm space.

In this study we compared three different sets-ups: eSS with the entire search in log scale,
eSS with all the search except for the local solver in log scale and the default formulation
with only the initial reference set being in log scale. We tested each of the scaling set-ups
for all four case studies, for both noisy and noiseless data (the first fitting data set is used
as the noiseless data). To test the methods we run eSS 30 times for each case running eSS
with the stopping criteria of reach the global optima’s (known) cost value or a hard cut
off of 3 hours. We found that in every case running the local search in linear scale and
rest of eSS in log scale was the most efficient method.

S1.1.1 Analysis with noisy data
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Figure S1.1: FHN case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noisy data.
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Figure S1.2: GO case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noisy data
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Figure S1.3: RP case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noisy data.
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Figure S1.4: EO case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noisy data.
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S1.1.2 Analysis with noiseless data
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Figure S1.5: FHN case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noiseless data.
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Figure S1.6: GO case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noiseless data.

In summary, we found that, at least for the problems considered here, the most efficient
search scaling in eSS to perform the diversification search in logarithm scale but not the
local search. We found that this was the most efficient method when fitting to both noisy
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Figure S1.7: RP case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noiseless data.
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Figure S1.8: EO case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noiseless data.

and noiseless models, for all the oscillators case studies considered.
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S1.2 Computational reproducibility of eSS

Reproducibility is a major issue in computational research. The fact that eSS is a stochas-
tic solver needs to be taken into account. Stochastic optimisers use some type of random
number generator in their sampling of search space. Modern pseudo-random number
generators use a seed which, if fixed, determines the sequence of pseudo-random values.
Therefore, starting eSS runs with different seeds will result in different optimisation path
followed, although most runs will converge to essentially the same final solution (depending
on the stopping criteria chosen).

To illustrate this, in Figure S1.9 we plot the contours of the ENSO problem (considering
the projection for 2 parameters) and then use eSS to solve the problem starting from the
same initial guess multiple times, changing the seed randomly in each run. This results in
different optimisation paths which ultimately arrive to essentially the same final solution.

In theory, fixing the seed should result in the same optimisation path. However, in GEARS

we use all the information from the path taken in the form of parameter-cost distributions,
which can lead to different solutions when the procedure is re-run. That is, even when
starting from the same seed (so that the same pseudo-random sequence will be generated),
slight differences caused by the stopping criteria can affect the result. This is because some
types of stopping criteria are not checked during the local search phases. For example,
if we have set eSS to stop after 2000 function evaluations in one run, it might however
stop after 2003 evaluations in another. As all the information for every parameter point is
used, these 3 extra points would cause differences that would be passed downstream and
cause a lack of strict computational reproducibility.

20 25 30 35 40 45 50 55 60

b(4)

15

20

25

30

35

40

45

50

55

b
(7

)

ENSO b(4) vs b(7) contours with eSS multiple starts from one point

1
 - c

o
s
t/m

a
x
(c

o
s
t)

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure S1.9: ENSO case study: Contour plots with multiple starts of the
eSS solver from the same initial point showing that the stochastic nature of
the solver results in different paths being taken.
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S1.3 Multimodality in the ENSO case study

In the case of the ENSO model by plotting contour plots we can clearly see the multi-
modality of the model, even when only considering two of the parameters (for visualisation
purposes). In Figure S1.10 we can see the existence of many local optima in the search
space. This many peak situations is essentially a worst case scenario in parameter estima-
tion, showing extreme mulitmodality, making the parameter estimation problem extremely
challenging to solve.

Figure S1.10: ENSO case study: Contour plots of the b(4) and b(7) param-
eters plotted in three dimensions.

S1.4 GO problem: detailed results

The results for running the analysis on the GO case study can be found here.
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Table S1.1: GO case study: A summary of the results for the regularised fit
to the first fitting data set.

Parameter Value Confidence (95%) Coeff of variation (%) Bounds status

k1 2.4731 ± 0.034618 0.714172 Bounds not active
k2 0.0917 ± 0.011088 6.17051 Bounds not active
k3 0.9477 ± 0.13256 7.13619 Bounds not active
k4 0.1428 ± 0.019794 7.07017 Bounds not active
k5 1.2455 ± 0.24837 10.1739 Bounds not active
k6 0.0861 ± 0.015879 9.40842 Bounds not active
Ki 0.9638 ± 0.18518 9.80278 Bounds not active
n 11.7721 ± 2.1469 9.30473 Bounds not active

Table S1.2: GO case study: NRMSE values for the fitting for each fitting
data set, with and without regularisation.

Regularised Non-regularised

Fitting set 1 5.96798 4.77509
Fitting set 2 37.3928 4.28762
Fitting set 3 23.0941 5.07253
Fitting set 4 9.13458 7.46763
Fitting set 5 30.7735 30.7977
Fitting set 6 21.6336 5.21221
Fitting set 7 30.5141 30.3792
Fitting set 8 12.699 10.3537
Fitting set 9 29.6946 29.6743
Fitting set10 29.0661 8.60332

8



Table S1.3: GO case study: NRMSE values for the cross-validation for each regularised fit to the fitting data. Here, CV denotes
cross-validation data set and F denotes fitting data set.

F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10

All CV 49.1531 45.6818 92.87566 82.02807 124.931 43.5472 45.5031 64.29963 132.8635 237.2202
CV 1 90.2766 44.5872 91.60485 98.67496 160.9028 42.7661 44.6539 54.58628 139.1305 81.22797
CV 2 17.4337 55.6168 108.2136 102.4116 137.4336 51.4413 55.3724 75.44783 181.2703 154.689
CV 3 59.2786 41.4897 132.7566 81.33378 190.7445 41.0993 41.7198 100.1812 151.4091 55.42433
CV 4 49.6364 41.3489 56.58716 57.79468 77.52544 37.2885 41.3348 65.96083 50.11638 364.066
CV 5 15.5789 48.1839 103.2592 87.23705 107.1258 48.9272 47.8465 37.84106 135.5939 46.12598
CV 6 33.8966 45.9419 66.3954 64.4661 96.05532 46.6294 45.4043 82.39392 75.67943 85.2841
CV 7 45.3068 40.5613 52.82711 76.48417 70.68241 36.401 40.1927 33.8625 44.96142 396.7472
CV 8 77.0161 45.5434 81.13562 90.45528 127.3902 43.8462 45.1954 55.16384 139.7722 258.7255
CV 9 14.8661 42.0491 111.9855 83.81761 126.1179 38.2899 42.1025 52.71671 186.9935 62.97651
CV10 11.4834 49.3559 91.35434 65.43839 105.2309 46.1197 49.1384 55.64005 135.0444 398.5941
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Table S1.4: GO case study: NRMSE values for the cross-validation for each non-regularised fit to the fitting data. Here, CV denotes
cross-validation data set and F denotes fitting data set.

F 1 F 2 F 3 F 4 F 5 F 6 F 7 F 8 F 9 F 10

All CV 52.0968 446.13711 188.8501 157.9609 183.2273 101.2102 45.2463 77.25336 179.9307 379.0375
CV 1 87.4309 70.334685 230.7914 97.35506 234.9919 105.9857 44.8763 62.66137 191.5425 49.92867
CV 2 19.8086 21.002245 206.6961 22.64062 209.0168 108.3317 54.5939 61.06428 245.0328 44.90806
CV 3 85.5105 81.308119 230.8422 86.60813 277.54 104.0653 41.9434 53.90163 207.3404 18.88773
CV 4 45.554 695.14654 120.9753 329.22 85.05097 98.38078 41.7637 138.5818 56.63287 692.9271
CV 5 19.4379 15.11765 202.2991 25.42743 161.2799 109.9085 47.6127 30.18765 182.0685 17.9874
CV 6 58.6734 72.38579 145.8185 17.15099 126.1488 106.6444 44.6755 81.10734 95.45583 39.55832
CV 7 60.3253 1218.8307 103.5804 347.3703 83.11907 90.66787 40.1697 115.7737 48.90935 972.3396
CV 8 39.6467 58.424156 196.2636 36.97415 195.5502 98.56097 44.6943 82.0453 193.4304 50.32223
CV 9 16.1404 15.545342 205.9824 16.43928 197.5051 64.82991 41.7203 34.1444 254.2339 31.86496
CV 10 20.6174 21.998584 197.1481 19.87449 162.6939 115.6165 48.5776 33.53653 184.7171 28.27294
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Figure S1.11: GO case study: reduction in the parameter bounds with the
estimated values and their 95% confidence intervals for the first fitting data
set.
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Figure S1.12: GO case study: convergence curve of the final regularised
estimation for the first fitting data set.

Figure S1.13: GO case study: distribution of local solutions found using the
nl2sol local solver fitting to noiseless data.
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Figure S1.14: GO case study: distribution of local solutions found using the
nl2sol local solver, with examples of local solutions and overfitting for the first
fitting data set.
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Figure S1.15: GO case study: violin plotss showing the distribution of the
NRMSE for the fit and cross-validation for all the data sets considered, both
with and without regularisation.
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Figure S1.16: GO case study: final regularised fit with uncertainty intervals
for the first fitting data set.
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Figure S1.17: GO case study: parameter correlation matrix for the final
estimated regularised solution for the first fitting data set.
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Figure S1.18: GO case study: predicted versus measured values for the first
fitting data set.
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Figure S1.19: GO case study: normalised residuals for the regularised fit for
the first fitting data set.
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Figure S1.20: GO case study: sampling from the initial estimation with the
new parameter bound box, where the height of said box is the cost cut off for
the first fitting data set.
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Figure S1.21: GO case study: comparison of the fits with and without
regularisation for the first fitting data set.
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Figure S1.22: GO case study: comparison of the cross-validation with and
without regularisation for the fit to the first fitting data set.
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Figure S1.23: GO case study: results of the VisId analysis performed at the
regularised solution for the first fitting data set.
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