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S1.1 Analysis of logarithmic scaling in eSS

The original scatter search method used for parameter estimation in dynamic models al-
ready incorporated logarithmic sampling of the search space (Rodriguez-Fernandez et al.|
2006). In that algorithm, a logarithm scaling was applied to the generation of the initial
reference set of the parameter values, allowing for an initial diversification of the explo-
ration of the parameter space. However, logarithm scaling was not used in other parts of
the search. In recent years, several studies (Raue et al., 2013; Frohlich et al., 2017} |Kreutz,
2016; Villaverde et all 2018]) have proposed to perform the whole parameter estimation
in logarithm space.

In this study we compared three different sets-ups: eSS with the entire search in log scale,
eSS with all the search except for the local solver in log scale and the default formulation
with only the initial reference set being in log scale. We tested each of the scaling set-ups
for all four case studies, for both noisy and noiseless data (the first fitting data set is used
as the noiseless data). To test the methods we run eSS 30 times for each case running eSS
with the stopping criteria of reach the global optima’s (known) cost value or a hard cut
off of 3 hours. We found that in every case running the local search in linear scale and
rest of eSS in log scale was the most efficient method.

S1.1.1 Analysis with noisy data
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Figure S1.1: FHN case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noisy data.
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Figure S1.2: GO case study: A comparison of how the using eSS with

different sections of the solver in log scale effects eSS’ efficiency when fitting
to noisy data
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Figure S1.3: RP case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noisy data.
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Figure S1.4: EO case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to

noisy data.




S1.1.2 Analysis with noiseless data
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Figure S1.5: FHN case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noiseless data.
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Figure S1.6: GO case study: A comparison of how the using eSS with
different sections of the solver in log scale effects eSS’ efficiency when fitting
to noiseless data.

In summary, we found that, at least for the problems considered here, the most efficient
search scaling in eSS to perform the diversification search in logarithm scale but not the
local search. We found that this was the most efficient method when fitting to both noisy
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Figure S1.7: RP case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noiseless data.
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Figure S1.8: EO case study: A comparison of how the using eSS with dif-
ferent sections of the solver in log scale effects eSS’ efficiency when fitting to
noiseless data.

and noiseless models, for all the oscillators case studies considered.



S1.2 Computational reproducibility of eSS

Reproducibility is a major issue in computational research. The fact that eSS is a stochas-
tic solver needs to be taken into account. Stochastic optimisers use some type of random
number generator in their sampling of search space. Modern pseudo-random number
generators use a seed which, if fixed, determines the sequence of pseudo-random values.
Therefore, starting eSS runs with different seeds will result in different optimisation path
followed, although most runs will converge to essentially the same final solution (depending
on the stopping criteria chosen).

To illustrate this, in Figure we plot the contours of the ENSO problem (considering
the projection for 2 parameters) and then use eSS to solve the problem starting from the
same initial guess multiple times, changing the seed randomly in each run. This results in
different optimisation paths which ultimately arrive to essentially the same final solution.

In theory, fixing the seed should result in the same optimisation path. However, in GEARS
we use all the information from the path taken in the form of parameter-cost distributions,
which can lead to different solutions when the procedure is re-run. That is, even when
starting from the same seed (so that the same pseudo-random sequence will be generated),
slight differences caused by the stopping criteria can affect the result. This is because some
types of stopping criteria are not checked during the local search phases. For example,
if we have set eSS to stop after 2000 function evaluations in one run, it might however
stop after 2003 evaluations in another. As all the information for every parameter point is
used, these 3 extra points would cause differences that would be passed downstream and
cause a lack of strict computational reproducibility.

ENSO b(4) vs b(7) contours with eSS multiple starts from one point
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Figure S1.9: ENSO case study: Contour plots with multiple starts of the
eSS solver from the same initial point showing that the stochastic nature of
the solver results in different paths being taken.



S1.3 Multimodality in the ENSO case study

In the case of the ENSO model by plotting contour plots we can clearly see the multi-
modality of the model, even when only considering two of the parameters (for visualisation
purposes). In Figure we can see the existence of many local optima in the search
space. This many peak situations is essentially a worst case scenario in parameter estima-

tion, showing extreme mulitmodality, making the parameter estimation problem extremely
challenging to solve.

o
o
l

1 - cost/max(cost)
o =)
N B
!

70

20
b(7) 10 b(4)

Figure S1.10: ENSO case study: Contour plots of the b(4) and b(7) param-
eters plotted in three dimensions.

S1.4 GO problem: detailed results

The results for running the analysis on the GO case study can be found here.



Table S1.1: GO case study: A summary of the results for the regularised fit
to the first fitting data set.

Parameter | Value | Confidence (95%) | Coeff of variation (%) Bounds status
ky 2.4731 + 0.034618 0.714172 Bounds not active
ko 0.0917 + 0.011088 6.17051 Bounds not active
ks 0.9477 + 0.13256 7.13619 Bounds not active
k4 0.1428 + 0.019794 7.07017 Bounds not active
ks 1.2455 + 0.24837 10.1739 Bounds not active
ke 0.0861 + 0.015879 9.40842 Bounds not active
K; 0.9638 + 0.18518 9.80278 Bounds not active
n 11.7721 + 2.1469 9.30473 Bounds not active

Table S1.2: GO case study: NRMSE values for the fitting for each fitting
data set, with and without regularisation.

Regularised | Non-regularised
Fitting set 1 5.96798 4.77509
Fitting set 2 37.3928 4.28762
Fitting set 3 23.0941 5.07253
Fitting set 4 9.13458 7.46763
Fitting set 5 30.7735 30.7977
Fitting set 6 21.6336 5.21221
Fitting set 7 30.5141 30.3792
Fitting set 8 12.699 10.3537
Fitting set 9 29.6946 29.6743
Fitting set10 29.0661 8.60332




Table S1.3: GO case study: NRMSE values for the cross-validation for each regularised fit to the fitting data.

cross-validation data set and F denotes fitting data set.

Here, CV denotes

F1 F2 F3 F4 Fb5 F6 Fr F8 F9 F 10
All CV | 49.1531 | 45.6818 | 92.87566 | 82.02807 | 124.931 | 43.5472 | 45.5031 | 64.29963 | 132.8635 | 237.2202
CV1 |90.2766 | 44.5872 | 91.60485 | 98.67496 | 160.9028 | 42.7661 | 44.6539 | 54.58628 | 139.1305 | 81.22797
CV 2 | 17.4337 | 55.6168 | 108.2136 | 102.4116 | 137.4336 | 51.4413 | 55.3724 | 75.44783 | 181.2703 | 154.689
CV 3 | 59.2786 | 41.4897 | 132.7566 | 81.33378 | 190.7445 | 41.0993 | 41.7198 | 100.1812 | 151.4091 | 55.42433
CV 4 | 49.6364 | 41.3489 | 56.58716 | 57.79468 | 77.52544 | 37.2885 | 41.3348 | 65.96083 | 50.11638 | 364.066
CV 5 | 15.5789 | 48.1839 | 103.2592 | 87.23705 | 107.1258 | 48.9272 | 47.8465 | 37.84106 | 135.5939 | 46.12598
CV 6 | 33.8966 | 45.9419 | 66.3954 | 64.4661 | 96.05532 | 46.6294 | 45.4043 | 82.39392 | 75.67943 | 85.2841
CV 7 | 45.3068 | 40.5613 | 52.82711 | 76.48417 | 70.68241 | 36.401 | 40.1927 | 33.8625 | 44.96142 | 396.7472
CV 8 | 77.0161 | 45.5434 | 81.13562 | 90.45528 | 127.3902 | 43.8462 | 45.1954 | 55.16384 | 139.7722 | 258.7255
CV 9 | 14.8661 | 42.0491 | 111.9855 | 83.81761 | 126.1179 | 38.2899 | 42.1025 | 52.71671 | 186.9935 | 62.97651
CV10 | 11.4834 | 49.3559 | 91.35434 | 65.43839 | 105.2309 | 46.1197 | 49.1384 | 55.64005 | 135.0444 | 398.5941
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Table S1.4: GO case study: NRMSE values for the cross-validation for each non-regularised fit to the fitting data. Here, CV denotes
cross-validation data set and F denotes fitting data set.

F1 F2 F3 F4 Fb5 F6 Fr F8 F9 F 10
All CV | 52.0968 | 446.13711 | 188.8501 | 157.9609 | 183.2273 | 101.2102 | 45.2463 | 77.25336 | 179.9307 | 379.0375
CV 1 | 87.4309 | 70.334685 | 230.7914 | 97.35506 | 234.9919 | 105.9857 | 44.8763 | 62.66137 | 191.5425 | 49.92867
CV 2 | 19.8086 | 21.002245 | 206.6961 | 22.64062 | 209.0168 | 108.3317 | 54.5939 | 61.06428 | 245.0328 | 44.90806
CV 3 | 85.5105 | 81.308119 | 230.8422 | 86.60813 | 277.54 | 104.0653 | 41.9434 | 53.90163 | 207.3404 | 18.88773
CV 4 | 45.554 | 695.14654 | 120.9753 | 329.22 | 85.05097 | 98.38078 | 41.7637 | 138.5818 | 56.63287 | 692.9271
CV 5 | 19.4379 | 15.11765 | 202.2991 | 25.42743 | 161.2799 | 109.9085 | 47.6127 | 30.18765 | 182.0685 | 17.9874
CV 6 | 58.6734 | 72.38579 | 145.8185 | 17.15099 | 126.1488 | 106.6444 | 44.6755 | 81.10734 | 95.45583 | 39.55832
CV 7 |60.3253 | 1218.8307 | 103.5804 | 347.3703 | 83.11907 | 90.66787 | 40.1697 | 115.7737 | 48.90935 | 972.3396
CV 8 | 39.6467 | 58.424156 | 196.2636 | 36.97415 | 195.5502 | 98.56097 | 44.6943 | 82.0453 | 193.4304 | 50.32223
CV 9 | 16.1404 | 15.545342 | 205.9824 | 16.43928 | 197.5051 | 64.82991 | 41.7203 | 34.1444 | 254.2339 | 31.86496
CV 10 | 20.6174 | 21.998584 | 197.1481 | 19.87449 | 162.6939 | 115.6165 | 48.5776 | 33.53653 | 184.7171 | 28.27294
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set.
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Figure S1.12: GO case study: convergence curve of the final regularised
estimation for the first fitting data set.
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Figure S1.13: GO case study: distribution of local solutions found using the
nl2sol local solver fitting to noiseless data.
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GO distribution of local solutions for noisy data (for 988 runs performed in a budget of 53 3055 seconds)
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Figure S1.14: GO case study: distribution of local solutions found using the

nl2sol local solver, with examples of local solutions and overfitting for the first

fitting data set.
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Figure S1.15: GO case study: violin plotss showing the distribution of the

NRMSE for the fit and cross-validation for all the data sets considered, both
with and without regularisation.
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Figure S1.16: GO case study: final regularised fit with uncertainty intervals
for the first fitting data set.
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Figure S1.17: GO case study: parameter correlation matrix for the final
estimated regularised solution for the first fitting data set.
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Figure S1.18: GO case study: predicted versus measured values for the first
fitting data set.
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Normalised residuals
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Figure S1.19: GO case study: normalised residuals for the regularised fit for
the first fitting data set.
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Figure S1.20: GO case study: sampling from the initial estimation with the
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the first fitting data set.
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Figure S1.21: GO case study: comparison of the fits with and without
regularisation for the first fitting data set.
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Figure S1.22: GO case study: comparison of the cross-validation with and
without regularisation for the fit to the first fitting data set.

Figure S1.23: GO case study: results of the Visld analysis performed at the
regularised solution for the first fitting data set.
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