Supplementary table 1. Commonly used expression, peptide release and purification systems of antimicrobial peptides produced in *E.coli*

Expression					
Direct expression	Non-carrier bearing expression	 Large size and aggregation prone antimicrobial peptides are eligible His-tag is usually used for purification, and can block toxicity of antimicrobial peptides Refolding is time-consuming and may not guarantee recovery of activity 			
Fusion expression	Solubility- enhancing carriers	GST (26.9 kDa)	 Rapid purification of the GST-fused protein from crude lysate Blocks toxicity to the host cell o GST was highly susceptible to proteolytic degradation in several cases Reduced yield due to the large size of the GST due to low peptide-to-carrier ratio 		
		Thioredoxin (11.8 kDa)	 High yield due to high peptide-to-carrier ratio Chaperone-like activity can promote correct disulfide bond formation Blocks toxicity to the host cell and prevents proteolytic degradation of peptides Affinity tag such as His-tag is usually used for purification 		
		SUMO (11.2 kDa)	 High yield due to high peptide-to-carrier ratio Improves folding by the attachment of the carrier Peptide release by SUMO protease is both efficient and highly accurate, leaving no additional amino acids Blocks toxicity to the host cell and prevents proteolytic degradation of peptides Requires additional affinity tag such as His for purification 		
	Aggregation- promoting carriers	PurF fragment (16.3 kDa)/ PaP3.30 (17.6 kDa)/Ketosteroid isomerase (13.5 kDa)/ TAF12 domain (8.4 kDa)	 Rapid purification of fused peptides through insoluble expression Blocks toxicity to the host cell and prevents proteolytic degradation of peptides Requires refolding to restore activity 		
	Self-cleavable carriers	Intein (51.5 or 17.3 kDa) and N ^{pro} systems	 Exogenous proteases or chemicals are not required to remove tag Facile purification of target proteins Reduced yield due to large size of intein/chitin domain Uncontrolled autocleavage of the intein fusions could cause toxicity to host Requires extensive dilution and long incubation time for N^{pro} system, and possible incomplete cleavage 		
	Secretion signals	Signal peptide	 Eligible expression of cysteine-rich antimicrobial peptides in periplasmic space where disulfide bond formation is favored Possible secretion of the peptide to culture media can be toxic to host 		

• advantages o disadvantages

Peptide release					
Chemical	CNBr	Met ↓	o Limited use of chemical reagents due to methionine presence within the target peptide o Increased complexity and reduced yield of purification due to methionine presence within the target peptide o Side chain modification by reaction buffers such as 70% formic acid		
	Formic acid	Asp↓Pro	 Increased cleavage accuracy in comparison to CNBr due to residue pair recognition Esterification of serine and threonine residues by formic acid Modification of Asn or GIn to their hydroxamic acid forms by hydroxylamine 		
	Hydroxylamine	Asn↓Gly			
Enzyme	Enterokinase	AspAspAspAspLys↓	o More expensive and more sensitive to pH and chaotropes in comparison to SUMO and TEV proteases		
	Factor Xa	lleGluGlyArg↓			
	Thrombin	LeuValProArg↓GlySer			
	SUMO protease	SUMO ↓	 Cleaved target peptide maintains native N-terminus, without unwanted amino acid attached because the SUMO protease recognize SUMO's tertiary structure, rather than linear sequence Like the SUMO protease, TEV protease also can generate native N-terminus in many cases Urea-resistant property of the enzymes enables cleavage of peptides from the carriers in the presence of a small amount of urea which prevents protein aggregation and loosens compact structures Both enzymes can be manufactured in large quantities with relative ease compared to enterokinase, factor Xa and thrombin 		
	TEV protease	GluAsnLeuTyrPheGln↓ (Gly/Ser)			
Purification					
 Released peptides are usually purified by high performance liquid chromatography (HPLC) Liberated peptides can also be more efficiently purified using cation-exchange chromatography due to the high PI values of antimicrobial peptides compared to carrier proteins 					

• advantages o disadvantages

References

1. Li Y. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem. 2009;54:1–9.

2. Li Y. Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif. 2011;80:260–7.

3. Malakhov MP, Mattern MR, Malakhova OA, Drinker M, Weeks SD, Butt TR. SUMO fusions and SUMO-specific protease for efficient expression and purification of proteins. J Struct Funct Genomics. 2004;5:75–86.