
Information-Anchored Sensitivity Analysis 23

data under the sensitivity assumption. When the approach is used with its full flexibility
(with different assumptions for different groups of patients) this is awkward. Multiple
imputation provides a much more direct, computationally general, accessible approach
for busy trialists, without the need for sophisticated one-off programming which is often
required to directly fit MNAR pattern-mixture models or other MNAR models.

In conclusion, we believe that sensitivity analysis via controlled MI provides an ac-
cessible practical approach to exploring the robustness of inference under the primary
assumption to a range of accessible, contextually plausible alternative scenarios. It
is increasingly being used in the regulatory world (see, for example, the DIA pages
at www.missingdata.org.uk, and the code therein; Philipsen et al. (2015), Jans et al.
(2015), Billings et al. (2018), Atri et al. (2018), O’Kelly and Ratitch (2014) and refer-
ences therein). Our aim has been to provide a more formal underpinning. Information-
anchoring is a natural principle for such analysis, and we have shown this is an automatic
consequence of using MI in this setting.
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A. Appendix A: Algorithm for reference-based multiple imputation

For a continuous outcome, the generic algorithm of Carpenter et al. (2013) can be sum-
marized in full as follows:

(a) Separately for each treatment arm take all the observed data, and assuming MAR,
fit a multivariate normal (MVN) distribution with an unstructured mean (i.e. a
separate mean for each of the baseline and post-randomisation observation times)
and variance covariance matrix using a Bayesian approach with an improper prior
for the mean and an uninformative Jeffreys prior for the covariance matrix.

(b) Draw a mean vector and covariance matrix from the posterior distribution for
each treatment arm. Specifically we use the Markov-Chain Monte Carlo (MCMC)
method to draw from the appropriate Bayesian posterior, with a sufficient burn-
in and update the chain sufficiently in-between to ensure subsequent draws are
independent. The sampler is initiated using the Expectation-Maximization (EM)
algorithm.

(c) Use the draws in step 2 to form the joint distribution of each deviating individual’s
observed and missing outcome data as required. This can be done under a range
of assumptions, in order to explore the robustness of inference about treatment
effects. The options presented in Carpenter et al. (2013) that each translate to a
relevant assumption are described in Table 1.

(d) Construct the conditional distribution of missing (post-deviation) given observed
outcome data for each individual who deviated, using their joint distribution formed
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in step 3. Sample their missing post-deviation data from this conditional distribu-
tions to create a completed data set.

(e) Repeat steps 2–4 K times, resulting in K imputed data sets.

We now describe how step 3 works under ‘jump to reference’. This leads to a brief
presentation of the approach for the other options. Suppose there are two arms, active
(indexed below by a) and reference (indexed below by r). In step 2, denote the current
draw from the posterior for the 1+J reference arm means and variance-covariance matrix
by µr,0, . . . µr,J , and Σr. Use the subscript a for the corresponding draws from the other
arm in question (which will depend on the arm chosen as reference for the analysis at
hand).

Under ‘jump to reference’, suppose patient i is not randomised to the reference arm
and their last observation, prior to deviating, is at time di, di ∈ (1, . . . , J − 1). The joint
distribution of their observed and post-withdrawal outcomes is multivariate normal with
mean

µ̃i = (µa,0, . . . , µa,di , µr,di+1, . . . , µr,J)T ;

that is post-deviation they ‘jump to reference’.
We construct the new covariance matrix for these observations as follows. Denote

the covariance matrices from the reference arm (without deviation) and the other arm
in question (without deviation), partitioned at time di according to the pre- and post-
deviation measurements, by:

Reference Σr =

[
R11 R12

R21 R22

]
and other arm: Σa =

[
A11 A12

A21 A22

]
.

We want the new covariance matrix, Σ say, to match that from the active arm for the
pre-deviation measurements, and the reference arm for the conditional components for
the post-deviation given the pre-deviation measurements. This also guarantees positive
definiteness of the new matrix, since Σr and Σa are positive definite. That is, we want

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

subject to the constraints

Σ11 = A11,

Σ21Σ
−1
11 = R21R

−1
11 ,

Σ22 −Σ21Σ
−1
11 Σ12 = R22 −R21R

−1
11 R12.

The solution is:

Σ11 = A11,

Σ21 = R21R
−1
11 A11,

Σ22 = R22 −R21R
−1
11 (R11 −A11)R

−1
11 R12.

Under ‘jump to reference’ we have now specified the joint distribution for a patient’s
pre- and post-deviation outcomes, when deviation is at time di. This is what we require
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for step 4. For ‘copy increments in reference’ we use the same Σ as for ‘jump to reference’
but now

µi = {µa,0, . . . , µa,di−1, µa,di , µa,di + (µr,di+1 − µr,di),
µa,di + (µr,di+2 − µr,di), . . .}

T .

For ‘last mean carried forward’, Σ equals the covariance matrix from the randomisation
arm. The important change is the way we put together µ. Thus, for patient i in arm a
under ‘last mean carried forward’,

µi = (µa,0, . . . , µa,di−1, µa,di , µa,di , . . . ...)
T ; Σ = Σa.

Finally for ‘copy reference’ the mean and covariance both come from the reference (typ-
ically, but not necessarily, control) arm, irrespective of deviation time. A SAS macro
implementing this approach can be downloaded from,
www.missingdata.org.uk (Roger, 2012) and Stata software from
https://ideas.repec.org/c/boc/bocode/s457983.html (Cro, 2015; Cro et al., 2016).

B. Appendix B: Proofs

B.1. Proof of Proposition 1
Here we outline the argument for Proposition 1. Consider the baseline (time 1) and J−1
follow-up setting where Yz,i,j denotes the continuous outcome measure for patient i in
arm z (z = a indicates active arm allocation and z = r reference arm allocation) at time
j for i = 1, ..., n and j = 1, ..., J . nd,j patients deviate at time j in a monotone fashion,

for j > 1 such that nd =
∑J

j=2 nd,j . Interest lies in the unadjusted mean treatment
group difference at time J . Conditioning on nd,j for j > 1, the expected value of the
treatment estimate at time J when the post-deviation data can be observed is,no

n
µa,J +

J∑
j=2

nd,j
n
µd,j,J

− µr,1.
The variance of this estimate is calculated using the usual sample variance formula as,

1
n−1

∑n
i=1

(
Yr,i,J − Ȳr,J

)2
n

+

1
n−1

∑n
i=1

(
Ya,i,J − no

n Ȳa,J,o −
∑J

j=2
nd,j

n Ȳa,J,d,j

)2
n

where Ȳr,J = 1
n

∑n
i=1 Yr,i,J , Ȳa,J,o = 1

no

∑
i∈o Ya,i,J and Ȳa,J,d,j = 1

nd,j

∑
i∈d,j Ya,i,J for

j = 2, ..., J . When expanding this expression and letting (n− 1)→ n this has expected
value,

E
[
V̂full, sensitivity

]
=
σ2J,J
n

+
σ2J,J
n

+
J∑
j=2

nond,j∆
2
d,j

n3
+

J∑
p=2

J

q 6=p∑
q=2

nd,pnd,q∆
2
d,p,q

n3

where ∆d,j = µa,J − µd,j,J ,∆d,p,q = µd,p,J − µd,q,J , µd,j,J is the mean proposed under
the controlled scenario at time J , for patients who deviate at time j and µd,p,J and
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µd,q,J are the means proposed under the controlled scenario at time J , for patients who
deviate at times p and q for p = 2, ..., J and q = 2, ..., J . For the δ-method of MI where
imputed values at final time J are edited by (J + 1 − j)δ, for patients who deviate at
time j, we replace ∆d,j = µa,J − µd,j,J = (J + 1 − j)δ and ∆d,p,q = µd,p,J − µd,q,J =
(J + 1− p)δ − (J + 1− q)δ.

B.2. Proof of Theorem 1
Let D and O define the sets of indices for the patients who do and do not deviate
in the active arm respectively. Further let DJ denote the set of indices for deviating
patients who deviate at time j, so that the total number of deviating patients in the
active arm nd =

∑J
j=2 nd,j . The follow-up outcome data at the final time point for the

reference patients are contained in the vector Yr,J = (Yr,1,J , ...Yr,n,J)T . The final visit
outcome data for the observed non-deviating active patients are contained in the vector
Ya,J,o = {Ya,i,J ; i ∈ O}T .

We suppose that each deviating patient has two potential outcomes at time J : the
one that would occur if they remain on active treatment post-deviation (primary on-
treatment data model, indexed below with the subscript P ) and the other that would
occur under the controlled sensitivity scenario data model (indexed below with the sub-
script S). The potentially observable primary on-treatment data for the nd deviating
patients at time J are contained in the vector Ya,J,P,d and the alternative outcome data
under the sensitivity scenario in the vector Ya,J,S,d. Define

Y = (Yr,J ,Ya,J,o,Ya,J,P,d,Ya,J,S,d)
T as the collection of observed and potentially ob-

servable outcome data at time J , which has dimensions [(n+ no + 2nd)× 1].
For each deviating patient we can only observe one of the potential outcomes, either

primary on-treatment or under the sensitivity scenario. Consider two
[(n+ no + 2nd)× (n+ no + 2nd)] matrices, DP and DS of 0’s and 1’s such that DPY
gives the [(n+ no + 2nd)× 1] on-treatment (primary) data and DSY
gives the [(n+ no + 2nd)× 1] sensitivity scenario data at time J .

Let a be a [(n+ no + 2nd)× 1] vector such that aTDPY returns the primary on-
treatment treatment estimate and aTDSY returns the sensitivity scenario treatment
estimate. When the deviating patients experience primary on-treatment behaviour post-
deviation and are fully observed the expectation of the variance of the primary on-
treatment estimand can be expressed as,

E
[
V̂full, primary

]
= E [ V

(
aTDPY

)]
= E

[
aTDP V (Y)DT

Pa
]

= aTDPΣDT
Pa. (7)

Under the conditions of Proposition 1 and using Corollary 1 and 2, the variance estimator
for the sensitivity estimand where post-deviation data are fully observed can be expressed
as,

E
[
V̂full, sensitivity

]
= aTDPΣDT

Pa +O(n−2). (8)

We now suppose that post-deviation data are unobserved, i.e. the potentially observ-
able primary on-treatment and sensitivity scenario entries in Y are missing for the nd
active patients. We alternatively multiply impute these outcomes, using primary on-
treatment (MAR) imputation and imputation under the sensitivity scenario. This gives
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K ‘complete’ data samples Yk, of size [(n+ no + 2nd)× 1]. For this we need appro-
priate imputation distributions for each missing data pattern under each scenario, with
suitable posteriors for the included parameters.

Under our primary on-treatment assumption (MAR), the imputation model for pa-
tients deviating at time j, for each j > 1 is formed from the regression of Ya,J,o on Pa,o,j

where Pa,o,j is the design matrix for the imputation model, which contains the values
of the 1, ..., j − 1 outcomes and covariates included in the imputation model (excluding
treatment) for the no observed active patients, along with a vector of 1’s to include
an intercept in the model. This is appropriate since we are not imputing any interim
missing outcomes here. We only consider monotone missing data patterns. We are in-
terested in the treatment effect at time J . As described by Carpenter and Kenward
(2013, p. 77–78), under MAR, each of the regressions will be validly estimated from
those observed in the data set. The parameter estimates for the primary on-treatment
(MAR) imputation model for the nd,j patients missing outcomes j to J for each j > 1

are found as β̂primary,j = (PT
a,o,jPa,o,j)

−1PT
a,o,jYa,J,o with assumed known covariance

matrix Vprimary,j = (PT
a,o,jPa,o,j)

−1σ2j .

We assume the large sample posterior for the parameter estimates for the primary
on-treatment imputation model, denoted β̂primary,j , is normal and centered on the ML

estimator β̂primary,j with covariance matrix Vprimary,j . That is,

β̂primary,j |Ya,J,o ∼ N(β̂primary,j ; Vprimary,j).

The primary on-treatment imputation model for active patient i deviating at time j, for
each j > 1 and imputation k can therefore be expressed as,

Ỹa,i,J,k|Ya,J,o = Pa,d,j,i

[
β̂primary,j + bprimary,j,k

]
+ ei,j,k for i ∈ {DJ },

where, bprimary,j,k ∼ N(0,Va,o,j), ei,j,k ∼ N(0, σ2j ) and Pa,d,j,i contains the values of
the 1, ..., j − 1 outcomes and covariates included in the imputation model (excluding
treatment, plus a 1 for the intercept) for each deviating active patient i, who deviates
at time j.

For sensitivity analysis we conduct imputation under the proposed sensitivity scenario
and assume the large sample posterior for the imputation parameters for the nd,j patients

missing outcomes j to J for each j > 1, β̂sensitivity,j is normal and centered on the ML

estimator β̂sensitivity,j with known covariance matrix Vsensitivity,j , that is for each j > 1,

β̂sensitivity,j |Ysensitivity,J ∼ N(β̂sensitivity,j ; Vsensitivity,j),

where Ysensitivity,J consists of the relevant observed outcome data under the particular
sensitivity scenario setting of interest. The imputation model used in the sensitivity
analysis for active patient i deviating following time j, for each j > 1 and imputation k
can therefore be expressed as,

Y̆a,i,J,k|Ysensitivity,J = Pa,d,j,i

[
β̂sensitivity,j + bsensitivity,j,k

]
+ ei,j,k for i ∈ {DJ },
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where, bsensitivity,j,k ∼ N(0,Vsensitivity,j) and ei,j,k ∼ N(0, σ2j ). Under the assumption
of equal variance-covariance matrix of baseline and follow-up by treatment arm we con-
sequently assume the same variance for the residuals in the primary and sensitivity
imputation models for patients deviating at the same time j, for each j > 1.

We are interested in imputation inference for, 1
K

∑K
k=1 aTDPYk or 1

K

∑K
k=1 aTDSYk.

Letting the number of imputations, K → ∞, the variance of our MI treatment esti-
mate as estimated by Rubin’s rules is, V̂MI, primary = Ŵprimary + B̂primary or V̂MI, sensitivity =
Ŵsensitivity + B̂sensitivity where under the conditions required in the proposition,

E
[
Ŵprimary

]
= E

[
1
K

∑K
k=1 aTDPΣ̂kDT

Pa
]
→ aTDPΣDT

Pa and,

E
[
Ŵsensitivity

]
= E

[
1
K

∑K
k=1 aTDSΣ̂kDT

S a
]
→ aTDPΣDT

Pa +O(n−2).

Under primary (on-treatment) imputation,

B̂primary =
1

K − 1

K∑
k=1

 J∑
j=2

πd,j (ēj,k − ēj) + πd,j
(
P̄a,d,jbprimary,j,k − P̄a,d,jb̄primary,j

)2

where ēj,k = 1
nd,j

∑
i∈DJ ei,j,k, ēj = 1

K

∑K
k=1 ēj,k, P̄a,d,j = 1

nd,j

∑
i∈DJ Pa,d,j,i and

b̄primary,j = 1
K

∑K
k=1 bprimary,j,k. Which has expectation,

E
[
B̂primary

]
=
∑J

j=2 π
2
d,j

[
σ2
j+nd,jP̄a,d,jVprimary,jP̄T

a,d,j

nd,j

]
.

When imputation is conducted under the sensitivity scenario,

B̂sensitivity =
1

K − 1

K∑
k=1

 J∑
j=2

πd,j (ēj,k − ēj) + πd,j
(
P̄a,d,jbsensitivity,j,k − P̄a,d,jb̄sensitivity,j

)2

,

where b̄sensitivity,j = 1
K

∑K
k=1 bsensitivity,j,k. Which has expectation,

E
[
B̂sensitivity

]
=
∑J

j=2 π
2
d,j

[
σ2
j+nd,jP̄a,d,jVsensitivity,jP̄T

a,d,j

nd,j

]
.

The information-anchored variance can be expressed as,

E
[
V̂anchored

]
=
E
[
V̂full, sensitivity

] (
E
[
Ŵprimary

]
+ E

[
B̂primary

])
E
[
V̂full, primary

] = E
[
V̂full, sensitivity

]1 +
E
[
B̂primary

]
E
[
Ŵprimary

]
 .

Since E
[
Ŵprimary

]
= E

[
V̂full, primary

]
and using (7) and (8) that is,

E
[
V̂anchored

]
= aTDPΣDT

Pa +O(n−2) +
E

[
B̂primary

]
E

[
Ŵprimary

] [aTDPΣDT
Pa +O(n−2)

]

= aTDPΣDT
Pa +O(n−2) + E

[
B̂primary

]
+

E

[
B̂primary

]
E

[
Ŵprimary

]O(n−2).
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If Rubin’s rules are information-anchoring and preserve the information loss in the pri-
mary analysis under MAR then the following holds,

E
[
Ŵsensitivity

]
+E

[
B̂sensitivity

]
≈ aTDPΣDT

Pa+O(n−2)+E
[
B̂primary

]
+
E
[
B̂primary

]
E
[
Ŵprimary

]O(n−2).

That is,

aTDPΣDT
Pa +O(n−2) + E

[
B̂sensitivity

]
≈ aTDPΣDT

Pa +O(n−2)

+E
[
B̂primary

]
+

E

[
B̂primary

]
E

[
Ŵprimary

]O(n−2).

After simplification and rearrangement this becomes,

0 ≈ E
[
B̂primary

]
− E

[
B̂sensitivity

]
+
E
[
B̂primary

]
E
[
Ŵprimary

] [O(n−2)
]
.

Which is,

0 ≈
J∑
j=2

[
π2d,jP̄a,d,j (Vprimary,j −Vsensitivity,j) P̄T

a,d,j

]
+
E
[
B̂primary

]
E
[
Ŵprimary

] [O(n−2)
]

This gives the required result in the longitudinal trial setting with monotone miss-
ingness in the active treatment arm with K = ∞. In practice K 6= ∞, however
the information-anchoring approximation results will still hold for finite K. For fi-
nite K the variance of our MI treatment estimate as estimated by Rubin’s rules is,
V̂MI, primary = Ŵprimary +

(
1 + 1

K

)
B̂primary or V̂MI, sensitivity = Ŵsensitivity +

(
1 + 1

K

)
B̂sensitivity. We

will therefore have additional terms in the difference between Rubin’s variance estimator
and the ideal information-anchored variance, but these will also be very small. They
will be the same order of the terms already presented multiplied by K−1, hence in-
deed smaller. Thus following the reasons discussed in the main text the approximation
remains with finite K.

We note that when we relax the equal variance by trial arm assumption, we can no
longer assume the variance of the residuals in the primary de jure imputation model
for patients with missingness pattern j matches the variance of the residuals in the
sensitivity de facto imputation model for patients with missingness pattern j, for each
missing data pattern j.

In this setting we denote the variance of the residuals in the primary on-treatment
imputation model for patients missing outcomes j, ..., J as σ2P,j and in the sensitivity

imputation model as σ2S,j for j > 1. Then the information-anchoring performance of
Rubin’s MI variance estimator is driven by,

0 ≈
J∑
j=2

π2d,j

[
σ2P,j − σ2S,j

nd,j
+ P̄a,d,j (Vprimary,j −Vsensitivity,j) P̄T

a,d,j

]
+
E
[
B̂primary

]
E
[
Ŵprimary

] [O(n−2)
]
.
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The additional components in the difference between Rubin’s variance and the ideal
information-anchored variance are driven by the degree of difference in the variance
structure of the data by trial arm for each missingness pattern. Since the variance
structure is not likely to differ too markedly by trial arm for each missingness pattern,
and these extra components are each multiplied by π2d,j/nd,j , the overall impact will in
practice be relatively small.


