SUPPORTING INFORMATION

Structure-based design of inhibitors selective for human proteasome \beta2c or \beta2i subunits

Bo-Tao Xin^{†,1}, Eva M. Huber^{§,1}, Gerjan de Bruin[†], Wolfgang Heinemeyer[§], Elmer Maurits[†], Christofer Espinal[†], Yimeng Du[†], Marissa Janssens[†], Emily S. Weyburne[#], Alexei F. Kisselev^{#&}, Bogdan I. Florea[†], Christoph Driessen[‡], Gijsbert A. van der Marel[†], Michael Groll^{§,*}and Herman S. Overkleeft^{†,*}

[†]Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Proteomics Centre, Einsteinweg 55, 2333 CC Leiden, The Netherlands

[§]Center for Integrated Protein Science at the Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, 85748 Garching, Germany

^{*}Department of Hematology and Oncology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland [#]Department of Molecular and Systems Biology and Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Centre Drive HB7936, Lebanon, New Hampshire 03756, United States of America.

*To whom correspondence should be addressed.

¹These authors contributed equally.

*Corresponding author:

Herman S. Overkleeft: h.s.overkleeft@chem.leidenuniv.nl Michael Groll: michael.groll@tum.de

Contents

page

4	Figure S1: Structure of the activity-based probes used.
4	Figure S2: Inhibition profiles of compounds 4, 6-36, as determined in Raji cell lysate
5	Table S1: The apparent IC_{50} values of compounds 4, 6-36, as determined in Raji cell lysate.
7	Table S2: The apparent pIC_{50} values of compounds 4, 6-36, as determined in Raji cell lysate.
8	Figure S3: Inhibition profiles of compounds 1, 4, 7, 13, 16, 18, 20, 22 and 25, determined in
	Raji cell lysate.
8	Table S3: The apparent pIC_{50} values of compounds 1, 4, 7, 13, 16, 18, 20, 22 and 25, determined
	in Raji cell lysate.
9	Figure S4: Inhibition profiles of compounds 1, 4, 7, 13, 16, 18, 20, 22 and 25, determined in
	intact RPMI-8226 cells.
9	Table S4: The apparent pIC_{50} values of compounds 13 and 16, determined in Raji cell lysates.
10	Figure S5: Inhibition profiles of compounds 5, 37-53, determined in Raji cell lysate.
10	Table S5: The apparent IC_{50} values of compounds 5, 37-53, determined in Raji cell lysate.
10	Table S6: The apparent pIC_{50} values of compounds 5, 37-53, determined in Raji cell lysate.
12	Figure S6: Inhibition profiles of compounds 5, 39, 44a and 44b, determined in Raji cell lysate.
12	Table S7: The apparent pIC_{50} values of compounds 5, 39, 44a and 44b, determined in Raji cell
	lysate.
12	Figure S7: Inhibition profiles of compounds 68, 71, 74, 77, 86 and 87, determined in Raji cell
	lysate.
13	Table S8: The apparent pIC_{50} values of compounds 68, 71, 74, 77, 86 and 87, determined in Raji
	cell lysate
13	Table S9: The apparent IC_{50} values of compounds 5 and 87, determined in Raji cell lysate
13	Table S10: The apparent pIC_{50} values of compounds 5 and 87, determined in Raji cell lysate.
13	Table S11: The apparent pIC_{50} values of compounds 5 and 87, determined in intact RPMI-8226
	cells.
14	Table S12: The apparent pIC ₅₀ values of compounds 5 and 87 , determined in Raji cell lysate

S2

- 14 Figure S8: Growth tests by dilution of WT and mutant yeast strains.
- Figure S9: Stereo representations of human-yeast chimeric β2 active sites in complex with ONX 0914.
- 16 Figure S10: ONX 0914 bound to mouse constitutive and immunoproteasomes.
- 18 Figure S11: The yβ2-G45A mutant active site in complex with theproteasome inhibitors bortezomib, carfilzomib and ONX 0914.
- 19 Figure S12: Structural comparison of WT y β 2 and y β 2-G45A mutant active sites.
- Figure S13: Stereo representations of the WT $y\beta 2$ active site in complex with compound 5.
- 23 Table S13: X-ray data collection and refinement statistics.
- 33 Table S14: Subunits targeted by $\beta 2c$ and $\beta 2i$ inhibitors in crystal soaking experiments.
- 33 Oligonucleotides used in this study.
- 34 Synthesis and characterization of compounds.
- 123 List of abbreviations.
- 123 references.
- 126 NMR-spectra of compounds **13**, **39**, **68**, **71**, **74**, **77**, **86**, **87**.
- 135 LC-MS-spectra of compounds **13**, **39**, **68**, **71**, **74**, **77**, **86**, **87**.

Figure S1. Structures of activity-based probes used.

Figure S2. Inhibition profiles of compounds 4, 6-36, determined in Raji cell lysate.

Compound	β2c	β2i	β5c	β5i	β1c	β 1i
6	23	106	>10000	>10000	>10000	>10000
7	160	6472	>10000	>10000	>10000	>10000
8	29	23	4469	>10000	>10000	>10000
9	69	346	5509	1833	>10000	>10000
10	32	47	>10000	>10000	>10000	>10000
11	72	697	>10000	>10000	>10000	>10000
12	35	22	1135	1301	>10000	>10000
13	11	514	5530	>10000	>10000	>10000
14	17	47	883	2337	>10000	>10000
15	8	197	>10000	5219	>10000	>10000
4 (LU-002c)	10	316	>10000	>10000	>10000	>10000
16	8	331	>10000	>10000	>10000	>10000
17	21	131	>10000	1834	>10000	>10000
18	26	5832	>10000	>10000	>10000	>10000
19	238	1350	>10000	>10000	>10000	>10000
20	72	>10000	>10000	>10000	>10000	>10000
21	47	61	2236	3144	>10000	>10000
22	18	537	>10000	>10000	>10000	>10000
23	206	204	460	410	>10000	>10000
24	383	322	>10000	>10000	>10000	>10000
25	281	>10000	>10000	>10000	>10000	>10000
26	2250	>10000	419	555	>10000	>10000
27	510	4076	1944	>10000	>10000	>10000

Table S1. The apparent IC_{50} (nM) values of compounds 4, 6-36, determined in Raji cell lysate.

28	3333	>10000	>10000	>10000	>10000	>10000
29	35	259	>10000	>10000	>10000	>10000
30	11	280	3641	3974	>10000	>10000
31	31	202	>10000	>10000	>10000	>10000
32	43	363	>10000	>10000	>10000	>10000
33	41	174	>10000	>10000	>10000	>10000
34	17	171	1193	3222	>10000	>10000
35	16	45	1041	>10000	>10000	>10000
36	40	420	>10000	>10000	>10000	>10000

Table S2. The apparent pIC_{50} values of compounds 4, 6-36, determined in Raji cell lysate.

Compound	β2c	β2i	β5c	β5i	β1c	β1i
6	7.65±0.18	6.97±0.10	<5	<5	<5	<5
7	6.80±0.12	5.19±0.51	<5	<5	<5	<5
8	7.57±0.17	7.64±0.10	5.35±0.39	<5	<5	<5
9	7.16±0.09	6.46±0.45	5.25±0.77	5.74±0.58	<5	<5
10	7.50±0.14	7.32±0.10	<5	<5	<5	<5
11	7.14±0.08	6.16±0.20	<5	<5	<5	<5
12	7.46±0.33	7.66±0.15	5.95±0.24	5.89±0.03	<5	<5
13	7.94±0.12	6.29±0.62	5.26±0.73	<5	<5	<5
14	7.76±0.20	7.33±0.08	6.05±0.26	5.63±0.48	<5	<5
15	8.10±0.09	6.71±0.11	<5	5.28±0.68	<5	<5
4 (LU-002c)	7.99±0.11	6.50±0.35	<5	<5	<5	<5
16	8.10±0.09	6.48±0.44	<5	<5	<5	<5

17	7.67±0.18	6.88±0.04	<5	5.74±0.65	<5	<5
18	7.58±0.03	5.23±0.42	<5	<5	<5	<5
19	6.62±0.08	5.87±0.13	<5	<5	<5	<5
20	7.14±0.16	<5	<5	<5	<5	<5
21	7.33±0.08	7.22±0.21	5.65±0.27	5.50±0.23	<5	<5
22	7.74±0.21	6.27±0.50	<5	<5	<5	<5
23	6.69±0.19	6.69±0.25	6.34±0.18	6.39±0.25	<5	<5
24	6.42±0.43	6.49±0.34	<5	<5	<5	<5
25	6.55±0.11	<5	<5	<5	<5	<5
26	5.65±0.34	<5	6.38±0.04	6.26±0.11	<5	<5
27	6.29±0.14	5.39±0.21	5.71±0.47	<5	<5	<5
28	5.48±0.24	<5	<5	<5	<5	<5
29	7.46±0.30	6.59±0.25	<5	<5	<5	<5
30	7.97±0.03	6.55±0.18	5.44±0.36	5.40±0.15	<5	<5
31	7.51±0.18	6.70±0.09	<5	<5	<5	<5
32	7.37±0.11	6.44±0.21	<5	<5	<5	<5
33	7.39±0.05	6.76±0.13	<5	<5	<5	<5
34	7.76±0.04	6.77±0.05	5.92±0.56	5.49±0.53	<5	<5
35	7.79±0.16	7.35±0.14	5.98±0.17	<5	<5	<5
36	7.40±0.04	6.38±0.09	<5	<5	<5	<5

Figure S3. Inhibition profiles of compounds 1, 4, 7, 13, 16, 18, 20, 22 and 25, determined in Raji cell lysate.

Table S3. The apparent pIC_{50} values of compounds 1, 4, 7, 13, 16, 18, 20, 22 and 25s, determined in Raji cell lysate.

Compound	β2c	β2i	β5c	β5i	β1c	β 1i
1 (LU102)	7.88±0.09	7.71±0.06	5.88±0.11	5.93±0.09	<4	<4
4 (LU-002c)	8.28±0.04	6.85±0.06	5.88±0.06	5.55±0.08	<4	<4
7	6.77±0.07	5.54±0.10	<4	<4	<4	<4
13	8.23±0.08	6.65±0.15	5.85±0.07	5.67±0.07	<4	<4
16	8.16±0.07	6.97±0.08	6.13±0.14	5.68±0.10	<4	<4
18	7.34±0.05	5.61±0.13	5.07±0.13	4.90±0.15	<4	<4
20	7.11±0.04	5.39±0.15	4.34±0.23	4.24±0.18	<4	<4
22	7.19±0.05	6.38±0.06	<4	<4	<4	<4
25	6.35±0.13	5.51±0.08	<4	<4	<4	<4

Figure S4. Inhibition profiles of compounds 1, 4, 7, 13, 16, 18, 20, 22 and 25, determined intact RPMI-8226 cells.

Table S4. The apparent pIC₅₀ values of compounds 13 and 16, determined in intact RPMI-8226 cells.

Compound	β2c	β2i	β5c	β5i	β1c	β 1i
13	5.70±0.07	<5	<5	<5	<5	<5
16	5.90±0.07	<5	<5	<5	<5	<5

 $(\mu M) \underbrace{0 \quad 0.01 \ 0.1 \quad 1 \quad 10 \quad 0.01 \ 0.1 \quad 1 \quad 10 \quad (\mu M) \ 0 \quad 0.01 \ 0.1 \quad 1 \quad 10 \quad 0.01 \ 0.1 \quad 0.01 \ 0.1 \quad 0.01 \quad \quad 0.01$

Figure S5. Inhibition profiles of compounds 5, 37-53, determined in Raji cell lysate.

compound	β2i	β2c	β5i	β5c	β1i	β1c
37	>10000	>10000	>10000	>10000	>10000	>10000
38	5530	>10000	122	>10000	>10000	>10000
39	215	>10000	126	>10000	>10000	>10000
40	8406	>10000	191	>10000	>10000	>10000
41a	4956	>10000	173	1742	2521	>10000
41b	264	6421	>10000	176	1412	>10000
42	2764	>10000	3978	>10000	>10000	>10000
5	319	>10000	>10000	>10000	>10000	>10000
43	2800	>10000	375	>10000	>10000	>10000
44a	>10000	>10000	399	>10000	>10000	>10000
44b	97	915	16	443	998	>10000
45	>10000	>10000	9678	>10000	>10000	>10000
46	4845	4242	>10000	>10000	>10000	>10000
47	13.4	38.9	>10000	>10000	>10000	>10000
48	73	97	430	145	133	>10000
49	287	850	>10000	8106	761	>10000
50	97	349	>10000	>10000	>10000	>10000
51	206	233	>10000	>10000	>10000	>10000
52	3615	2328	>10000	3735	>10000	>10000
53	3116	1160	>10000	6275	>10000	>10000

Table S5. The apparent IC_{50} (nM) values of compounds 5, 37-53, determined in Raji cell lysate.

Table S6. The apparent pIC_{50} values of compounds 5, 37-53, determined in Raji cell lysate.

compound	β2i	β2c	β5i	β5c	β1i	β1c
37	<5	<5	<5	<5	<5	<5
38	5.23±0.28	<5	6.92±0.13	<5	<5	<5
39	6.67±0.23	<5	6.90±0.23	<5	<5	<5
40	5.08±0.8	<5	6.72±0.27	<5	<5	<5

41a	5.31±0.29	<5	6.76±0.16	5.76±0.02	5.60±0.15	<5
41b	6.58±0.12	5.19±0.62	<5	6.75±0.22	5.85±0.29	<5
42	5.56±0.32	<5	5.4±0.12	<5	<5	<5
5	6.50±0.01	<5	<5	<5	<5	<5
43	5.55±0.06	<5	6.42±0.22	<5	<5	<5
44a	<5	<5	6.40±0.04	<5	<5	<5
44b	7.01±0.10	6.04±0.06	7.81±0.18	6.35±0.09	6.00±0.25	<5
45	<5	<5	5.01±0.33	<5	<5	<5
46	5.32±0.16	5.37±0.10	<5	<5	<5	<5
47	7.87±0.14	7.41±0.09	<5	<5	<5	<5
48	7.14±0.08	7.01±0.12	6.37±0.28	6.84±0.19	6.88±0.07	<5
49	6.54±0.16	6.07±0.09	<5	5.09±0.18	6.12±0.08	<5
50	7.02±0.09	6.46±0.09	<5	<5	<5	<5
51	6.69±0.34	6.63±0.23	<5	<5	<5	<5
52	5.44±0.49	5.63±0.46	<5	5.43±0.40	<5	<5
53	5.51±0.21	5.94±0.18	<5	5.20±0.44	<5	<5

Figure S6. Inhibition profiles of compounds 5, 39, 44a and 44b, determined in Raji cell lysate.

compound	β2i	β2c	β5i	β5c	β1i	β1c
5 (LU-002i)	6.74±0.05	4.92±0.14	<4	<4	<4	<4
39	7.24±0.05	5.60±0.09	7.34±0.05	5.30±0.07	<4	<4
44a	5.48±0.10	<4	6.63±0.06	5.13±0.15	<4	<4
44b	7.30±0.06	6.23±0.04	8.23±0.06	6.63±0.09	<4	5.82±0.10

Table S7. The apparent pIC₅₀ values of compounds 5, 39, 44a and 44b, determined in Raji cell lysates.

Figure S7. Inhibition profiles of compounds 68, 71, 74, 77, 86 and 87, determined in Raji cell lysate.

Table S8. The apparent pIC_{50} values of compounds 68, 71, 74, 77, 86 and 87s, determined in Raji celllysates.

compound	β2i	β2c	β5i	β5c	β1i	β1c
68	<4	<4	<4	<4	<4	<4
71	5.60±0.09	<4	<4	<4	<4	<4
74	4.92±0.08	<4	<4	<4	<4	<4
77	6.42±0.05	4.56±0.08	<4	<4	<4	<4

86	4.47±0.07	<4	<4	<4	<4	<4
87	6.72±0.07	4.72±0.08	4.55±0.07	<4	<4	4.28±0.09

Table S9. The apparent IC₅₀ (μ M) values of compounds 5 and 87, determined in Raji cell lysates.

compound	β2i	β2c	β5i	β5c	β1i	β1c
5 (LU-002i)	0.293	>3	>3	>3	>3	>3
87	0.319	>3	>3	>3	>3	>3

Table S10. The apparent pIC_{50} values of compounds 5 and 87, determined in Raji cell lysates.

compound	β2i	β2c	β5i	β5c	β1i	β1c
5	6.53±0.04	<5.52	<5.52	<5.52	<5.52	<5.52
87	6.50±0.06	<5.52	<5.52	<5.52	<5.52	<5.52

Table S11. The apparent IC $_{50}$ (μ M) values of compounds 5 and 87, determined intact RPMI-8226 cells.

compound	β2i	β2c	β5i	β5c	β1i	β1c
39	0.124	>10	0.183	>10	>10	>10
87	0.159	>10	>10	>10	>10	>10

Table S12. The apparent pIC_{50} values of compounds 5 and 87, determined intact RPMI-8226 cells.

compound	β2i	β2c	β5i	β5c	β1i	β1c
39	6.91±0.12	<5	6.74±0.11	<5	<5	<5
87	6.80±0.14	<5	<5	<5	<5	<5

Figure S8: Growth tests by serial dilution of WT and mutant yeast strains. Serial dilutions of cells were spotted on YPD plates and incubated for 3 days either at 30 °C or 37 °C.

Figure S9. Stereo representations of human-yeast chimeric $\beta 2$ active sites in complex with ONX 0914. 2F₀-F_C electron density maps for the ligand bound to $\beta 2c$ (green) and $\beta 2i$ (purple) chimeric subunits respectively are shown as blue meshes contoured to 1 σ . Hydrogen bonds are depicted as black dashed lines, while hydrophobic contacts are highlighted by double arrows. PDB IDs: 6HTC (h $\beta 2c$ chimera:ONX 0914), 6HV4 (h $\beta 2i$ chimera:ONX 0914).

Figure S10. Structural superpositions of (A) the mouse $\beta 2c$ active site in its apo and ONX 0914 bound state; (B) the mouse $\beta 2i$ active site in its apo and ONX 0914 bound state; (C) the mouse $\beta 2c$ and $\beta 2i$ active sites bound to ONX 0914; (D) mouse $\beta 2c$ and $\beta 2i$ active sites in their ligand bound and ligand-free states shown in stereo. Color coding is according to Figure S1. Hydrogen bonds are depicted as black dashed lines, while hydrophobic contacts are highlighted by double arrows. PDB IDs: 3UNE (mouse cCP), 3UNH (mouse iCP), 3UNB (mouse cCP:ONX 0914), 3UNF (mouse iCP:ONX 0914).

Figure S11. Stereo representations of the y β 2-G45A mutant active site in complex with the proteasome inhibitors bortezomib (BRZ, A), carfilzomib (CFZ, B) and ONX 0914 (C). $2F_0$ - F_C electron density maps (blue meshes, contoured to 1σ) are displayed for the ligands and the catalytic Thr1. The site of mutation Ala45 is highlighted in magenta. Hydrogen bonds are depicted as black dashed lines. PDB IDs: 6HWD (yCP- β 2G45A:bortezomib), 6HWE (yCP- β 2G45A:carfilzomib), 6HWF (yCP- β 2G45A:ONX 0914).

Q22

Q22

Figure S12. Structural superpositions of (A) the WT (PDB ID 5CZ4¹) and G45A-mutant y β 2 active sites in their apo state; (B) the WT (PDB ID 4QVL²) and G45A-mutant y β 2 active sites in complex with bortezomib (BRZ); (C) the WT (PDB ID 4QW4²) and G45A-mutant y β 2 active sites in complex with carfilzomib (CFZ); (D) the WT (PDB ID 4QWX²) and G45A-mutant y β 2 active sites in complex with ONX 0914. All panels are shown in stereo. Color coding is according to Figure S4. Hydrogen bonds are depicted as black dashed lines. Ala45 does not alter the conformation of inhibitors bound to Thr1. Please note that the epoxyketone inhibitors (BRZ, CFZ) previously determined in complex with WT proteasomes have been modelled as a morpholine ring structure with Thr1, while more recent studies suggest formation of a seven-membered ring at the active site³. PDB IDs: 5CZ4 (yCP), 6HWC (yCP- β 2G45A), 4QVL (yCP:bortezomib), 6HWD (yCP- β 2G45A:bortezomib), 4QW4 (yCP:carfilzomib), 6HWE (yCP- β 2G45A;carfilzomib), 4QWX (yCP:ONX 0914), 6HWF (yCP- β 2G45A:ONX 0914).

Figure S13: Stereo representations of the WT y β 2 active site in complex with compound **5**. The covalent adduct of the active site Thr1 and the ligand is modelled as (A) six-membered morpholine ring and (B) seven-membered ring structure. The 2F₀-F_c electron density maps (blue meshes, contoured to 1 σ), displayed for the ligands and the catalytic Thr1, indicate that in this case the morpholine ring system fits

the experimental data better. (C) Superposition of the WT y β 2 active site in complex with the first-inclass β 2i-inhibitor **5** and the human-yeast chimeric β 2i subunit bound to the second-most selective inhibitor for β 2i, compound **39**. Hydrogen bonds are depicted as black dashed lines. PDB IDs: 6HVY (yCP:**5**), 6HVV (h β 2i chimera:**39**).

	hβ2c chimera	hβ2c chimera: ONX 0914	hβ2c chimera:4	hβ2c chimera:7
Crystal parameters				
Space group	P2 ₁	P2 ₁	P2 ₁	P2 ₁
Cell constants	a = 135.7 Å	a = 135.6 Å	a = 134.3 Å	a = 133.9 Å
	b = 300.6 Å	b = 300.8 Å	b=299.9 Å	b = 300.4 Å
	c = 145.1 Å	c = 144.6 Å	c = 144.2 Å	c = 144.0 Å
	$\beta = 113.1^{\circ}$	$\beta = 112.9^{\circ}$	$\beta = 112.7^{\circ}$	$\beta = 112.8^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	ID23, ESRF	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-2.7 (2.8-2.7)	50-2.8 (2.9-2.8)	50-3.0 (3.1-3.0)	50-3.0 (3.1-3.0)
No. observations	886780	787101	646229	618990
No. unique reflections ^c	288098	256275	206485	199569
Completeness (%) ^b	98.7 (99.7)	98.0 (98.5)	98.5 (99.5)	95.5 (97.5)
R _{merge} (%) ^{b, d}	9.0 (52.5)	9.6 (52.2)	8.2 (56.2)	8.3 (58.9)
I/σ (I) ^b	10.0 (2.4)	8.4 (2.0)	11.9 (3.0)	13.2 (2.8)
Refinement (REFMAC5)				
Resolution range (Å)	15-2.7	15-2.8	15-3.0	15-3.0
No. refl. working set	272120	241898	194640	189590
No. refl. test set	14332	12731	10245	9979
No. non hydrogen	49888	49695	49459	49350
No. of ligand atoms	-	252	172	164
Solvent (H ₂ O, ions, MES)	944	499	343	242
R_{work}/R_{free} (%) ^e	19.3 / 22.0	18.0 / 21.8	17.4 / 20.1	17.7 / 20.6
r.m.s.d. bond (Å) / angle (°) ^{f}	0.007 / 1.2	0.007 / 1.2	0.007 / 1.2	0.007 / 1.2
Average B-factor (Å ²)	59.6	72.4	72.2	81.8
Ramachandran Plot (%) ^g	98.1 / 1.8 / 0.1	97.8 / 2.1 / 0.1	97.7 / 2.1 / 0.2	97.5 / 2.3 / 0.2
PDB accession code	6HTB	6HTC	6HTD	6HTP

 Table S13. X-ray data collection and refinement statistics.

^[a] Asymmetric unit

 $^{[b]}$ The values in parentheses for resolution range, completeness, R_{merge} and $I/\sigma\left(I\right)$ correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

 $^{[d]} R_{merge}(I) = \Sigma_{hkl}\Sigma_j \mid I(hkl)_j - \langle I(hkl) \rangle \mid / \Sigma_{hkl} \Sigma_j I(hkl)_j, \text{ where } I(hkl)_j \text{ is the } j^{th} \text{ measurement of the intensity of reflection } hkl \text{ and } \langle I(hkl) \rangle \text{ is the average intensity }$

 $[e] R = \Sigma_{hkl} | |F_{obs}| - |F_{calc}| | \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	hβ2c chimera: 13	hβ2c chimera: 16	hβ2c chimera:18	hβ2c chimera:20
Crystal parameters				
Space group	P2 ₁	P2 ₁	P2 ₁	P2 ₁
Cell constants	a = 136.4 Å	a = 135.2 Å	a = 133.9 Å	a = 134.0 Å
	b = 300.5 Å	b = 299.4 Å	b = 300.4 Å	b = 299.3 Å
	c = 144.8 Å	c = 144.8 Å	c = 144.0 Å	c = 143.5 Å
	$\beta = 113.4^{\circ}$	$\beta = 113.1^{\circ}$	$\beta = 112.6^{\circ}$	$\beta = 112.2^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-2.6 (2.7-2.6)	50-2.9 (3.0-2.9)	50-3.0 (3.1-3.0)	50-3.0 (3.1-3.0)
No. observations	945971	710568	637428	635019
No. unique reflections ^c	317160	230576	205059	206139
Completeness (%) ^b	97.0 (99.3)	98.8 (99.4)	98.4 (99.4)	98.9 (99.6)
R_{merge} (%) ^{b, d}	7.1 (51.0)	9.8 (56.0)	9.1 (59.6)	9.1 (55.9)
I/σ (I) ^b	9.9 (2.0)	8.2 (2.0)	10.6 (2.5)	10.9 (2.0)
Dofinament (DEFMAC5)				
Remember (REFMAC5) Decolution range $\begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$	15.2.6	15.2.0	15 2 0	15.2.0
Ne reflected in a set	15-2.0	15-2.9	15-5.0	15-5.0
No. refl. working set	299709	21/409	193322	194272
No. Iell. test set	13///	11445	10174	10224
No. non nydrogen	49891	49/33	49488	49393
No. of figand atoms	1/0	180	108	100
Solvent (H_2O , lons, MES)	/05	011	3/0 19.1/21.9	289
K_{work}/K_{free} (%)	19.4 / 22.4	18.4 / 21.2	18.1/21.8	1/.8/20.7
r.m.s.d. bond (A) / angle $(^{\circ})^{f}$	0.007/1.2	0.007/1.2	0.007/1.2	0.007/1.2
Average B-factor (Å ²)	67.8	65.6	71.9	78.2
Ramachandran Plot (%) ^g	97.8 / 2.0 / 0.2	97.8 / 2.0 / 0.2	97.6 / 2.2 / 0.2	97.6 / 2.2 / 0.2
PDB accession code	6HTR	6HUB	6HUC	6HUQ

^[b] The values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \sum_{hkl} \sum_j |I(hkl)_j - \langle I(hkl) \rangle | / \sum_{hkl} \sum_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

^[e] $R = \Sigma_{hkl} ||F_{obs}| - |F_{calc}||/\Sigma_{hkl} ||F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	hβ2c chimera: 29	hβ2c chimera:39	hβ2i chimera	hβ2i chimera: ONX 0914
Curvetel neurometers				
Crystal parameters	DO	D2	D2	DO
Space group	PZ ₁	P21	PZ ₁	PZ ₁
Cell constants	a = 134. / A	a = 134.1 A	a = 135.4 A	a = 135.0 A
	b = 299.6 A	b = 299.9 A	b = 301. / A	b = 298.8 A
	c = 143.6 A	c = 143.5 A	c = 145.0 A	c = 143.4 A
	$\beta = 112.4^{\circ}$	$\beta = 112.7^{\circ}$	$\beta = 113.1^{\circ}$	$\beta = 112.5^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-2.8 (2.9-2.8)	50-3.1 (3.2-3.1)	50-2.7 (2.8-2.7)	50-3.0 (3.1-3.0)
No. observations	785120	576142	879669	642979
No. unique reflections ^c	255383	186168	283072	203267
Completeness (%) ^b	99.1 (99.4)	98.6 (99.3)	96.9 (98.7)	97.2 (99.0)
R_{merge} (%) ^{b, d}	7.9 (58.5)	9.8 (58.2)	7.7 (49.5)	9.3 (57.3)
I/σ (I) ^b	11.4 (2.0)	12.2 (2.6)	9.7 (2.5)	10.0 (3.2)
Refinement (RFFMAC5)				
Resolution range $(Å)$	15-2.8	15-3-1	15_27	15-3.0
No refl working set	242613	175330	267382	191584
No. refl. test set	12770	0228	14073	10084
No. non hydrogen	12770	9228 49440	14075	10084
No. of ligand atoms	176	172	49990	49730 252
Solvent (H_2O ions MES)	453	232	626	320
$\mathbf{R} = \sqrt{\mathbf{R}} = (\frac{9}{2})^{e}$	10 / / 22 1	16.8 / 21.3	177/209	18 A / 21 A
$\mathbf{K}_{\text{work}}/\mathbf{K}_{\text{free}}(70)$	19.4722.1	10.8721.3	0.007/11	10.4721.4
(°) ^f	0.00771.2	0.00771.2	0.00771.1	0.00771.2
Average B-factor (Å ²)	77.3	77.7	62.3	74.1
Ramachandran Plot (%) g	97.7 / 2.1 / 0.2	97.8 / 2.1 / 0.1	98.0 / 1.9 / 0.1	97.7 / 2.2 / 0.1
			(111/2	
PDB accession code	OHUU	OHUV	0HV3	0HV4

 $^{[b]}$ The values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

 $^{[d]} R_{merge}(I) = \Sigma_{hkl}\Sigma_j \mid I(hkl)_j - \langle I(hkl) \rangle \mid / \Sigma_{hkl}\Sigma_j I(hkl)_j, \text{ where } I(hkl)_j \text{ is the } j^{th} \text{ measurement of the intensity of reflection } hkl \text{ and } \langle I(hkl) \rangle \text{ is the average intensity }$

 $[e] R = \Sigma_{hkl} | |F_{obs}| - |F_{calc}| | \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections [f] Deviations from ideal bond lengths/angles

	hβ2i chimera:4	hβ2i chimera:7	hβ2i chimera: 13	hβ2i chimera: 16
Crystal parameters	DO	D 2	D2	D 2
Space group	P_{2_1}	PZ_1	P_{2_1}	P_{2_1}
Cell constants	a = 134. / A	a = 134.1 A	a = 134.9 A	a = 135.8 A
	b = 300.4 A	b = 302.1 A	b = 300.6 A	b = 299.6 A
	c = 144.1 A	c = 143.2 A	c = 144.8 A	c = 144.6 A
	$\beta = 112.6^{\circ}$	$\beta = 112.6^{\circ}$	$\beta = 112.8^{\circ}$	$\beta = 113.2^{\circ}$
CPs / AU ^a	1	1	I	I
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-3.0 (3.1-3.0)	50-3.4 (3.5-3.4)	50-2.9 (2.8-2.9)	50-2.7 (2.8-2.7)
No. observations	660230	407662	736625	873416
No. unique reflections ^c	205492	137474	229426	286280
Completeness (%) ^b	97.6 (99.3)	95.4 (96.4)	97.9 (96.5)	98.7 (99.7)
R_{merge} (%) ^{b, d}	8.1 (57.0)	12.7 (64.7)	9.5 (59.4)	8.9 (52.9)
I/σ (I) ^b	12.5 (3.2)	7.8 (2.0)	11.9 (2.6)	8.7 (2.1)
Dafinament (DEEMACS)				
Reinfellent (REF MACS)	15.2.0	15 2 4	15.2.0	15 2 7
Ne refl working est	102604	13-3.4	13-2.9	13-2.7
No. refl. working set	193094	129100	210415	270398
No. ren. test set	10194	0/95	11390	14231 50166
No. non nydrogen atoms	49771	49514	49895	50100
No. of figand atoms	172	104	1/6	180
Solvent (H ₂ O, Ions, MES)	259	10	3/9	646
R_{work}/R_{free} (%) ^e	17.3/20.4	17.4/22.9	18.2 / 20.8	19.1 / 21.9
r.m.s.d. bond (A) / angle	0.007/1.2	0.007/1.2	0.007/1.2	0.007/1.2
				(D. 0
Average B-factor (A^2)	78.2	103.1	64.5	68.0
Kamachandran Plot (%) ^g	97.8 / 2.1 / 0.1	97.8 / 2.1 / 0.1	97.9 / 2.0 / 0.1	97.9 / 2.0 / 0.1
PDB accession code	6HV5	6HV7	6HVA	6HVR

 $^{[b]}$ The values in parentheses for resolution range, completeness, R_{merge} and $I/\sigma\left(I\right)$ correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \Sigma_{hkl}\Sigma_j | I(hkl)_j - \langle I(hkl) \rangle | / \Sigma_{hkl}\Sigma_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

 $[e] R = \Sigma_{hkl} | |F_{obs}| - |F_{calc}| | \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	hβ2i chimera:18	hβ2i chimera:20	hβ2i chimera: 29	hβ2i chimera:39
Crystal parameters	D2	DA	DA	D2
Space group	P2 ₁	P2 ₁	P2 ₁	P2 ₁
Cell constants	a = 134.1 A	a = 135.6 A	a = 135.3 A	a = 136.1 A
	b = 300.6 A	b = 300.1 A	b = 299.5 A	b = 299.4 A
	c = 143.5 Å	c = 144.5 Å	c = 143.9 Å	c = 144.5 Å
	$\beta = 112.8^{\circ}$	$\beta = 112.9^{\circ}$	$\beta = 112.4^{\circ}$	$\beta = 113.1^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range $(Å)^{b}$	50-3.1 (3.2-3.1)	50-2.9 (3.0-2.9)	50-2.9 (3.0-2.9)	50-2.7 (2.8-2.7)
No. observations	569816	717608	699266	828589
No unique reflections ^c	184642	229119	227714	283962
Completeness (%) ^b	97 6 (99 3)	97 7 (96 6)	97 5 (98 8)	97 8 (98 9)
$R_{marga} (\%)^{b, d}$	9.3 (52.3)	8.3 (47.8)	8.2 (52.8)	7.4 (59.6)
I/σ (I) ^b	10.6 (2.7)	10.5 (2.4)	10.2 (2.5)	11.4 (2.1)
Reinement (REFMAC5)	15.2.1	15.0.0	15.2.0	15.0.7
Resolution range (A)	15-3.1	15-2.9	15-2.9	15-2.7
No. refl. working set	173892	216112	214/96	268224
No. refl. test set	9153	11374	11305	14118
No. non hydrogen atoms	49747	49844	49892	50097
No. of ligand atoms	168	160	176	172
Solvent (H_2O , ions, MES)	239	344	376	585
R_{work}/R_{free} (%) ^e	17.6 / 20.5	17.9 / 20.6	19.0 / 22.0	18.4 / 21.9
r.m.s.d. bond (Å) / angle	0.007 / 1.2	0.007 / 1.2	0.007 / 1.2	0.007 / 1.2
(°) ^f				
Average B-factor (Å ²)	71.4	67.4	75.0	63.8
Ramachandran Plot (%) ^g	97.7 / 2.2 / 0.2	97.9 / 2.0 / 0.1	97.9 / 2.0 / 0.1	97.8 / 2.1 / 0.1
DDD according as do				<u> </u>
PDB accession code	0018	0011	ΟΠΥΟ	υπνν

^[b] The values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \sum_{hkl} \sum_j |I(hkl)_j - \langle I(hkl) \rangle | / \sum_{hkl} \sum_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

^[e] $R = \Sigma_{hkl} ||F_{obs}| - |F_{calc}||/\Sigma_{hkl} ||F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	hβ2i chimera:43	yCP:4	yCP:5 7- and 6-	у СР: 7
			membered ring	
Crustal navamatana				
Crystal parameters	D)	DJ	DJ	D)
Cell constants	12_1 a = 134.2 Å	12_1 2 - 1368 Å	12_1 a = 136.6 Å	12_1 a = 137.3 Å
Centeolistants	a = 134.2 A b = 200.0 Å	a = 130.8 A b = 300.1 Å	a = 130.0 A b = 301.8 Å	a = 137.3 A b = 200.7 Å
	0 = 233.3 A 0 = 143.2 Å	0 = 300.1 A c = 145.7 Å	0 = 301.8 A c = 145.6 Å	0 = 299.7 A 0 = 145.4 Å
	C = 143.2 A $B = 112.5^{\circ}$	C = 143.7 A $B = 113.1^{\circ}$	C = 143.0 A $B = 113.1^{\circ}$	C = 143.4 A $B = 113.4^{\circ}$
	p = 112.5	p = 115.1 1	p = 115.1 1	p = 115.4 1
	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-3.0 (3.1-3.0)	50-2.8 (2.9-2.8)	50-2.7 (2.8-2.7)	50-2.8 (2.9-2.8)
No. observations	639472	902685	885917	814744
No. unique reflections ^c	204830	256585	290007	253749
Completeness (%) ^b	98.2 (99.2)	97.0 (94.0)	97.9 (98.6)	96.1 (98.6)
R_{merge} (%) ^{b, d}	9.1 (59.2)	6.3 (42.9)	7.4 (55.2)	7.4 (54.0)
I/σ (I) ^b	11.8 (2.2)	16.6 (3.9)	12.5 (2.4)	12.0 (2.6)
Refinement (REFMAC5)				
Resolution range (Å)	15-3.0	15-2.8	15-2.7	15-2.8
No. refl. working set	193054	243755	273927	239545
No. refl. test set	10161	12830	14418	12608
No. non hydrogen atoms	49804	49813	50046	49856
No. of ligand atoms	184	172	92	164
Solvent (H ₂ O, ions, MES)	280	337	578	388
R _{work} /R _{free} (%) ^e	16.5 / 20.2	18.7 / 20.6	18.1 / 21.8	17.4 / 20.6
r.m.s.d. bond (Å) / angle (°) $^{\rm f}$	0.007 / 1.2	0.004 / 0.9	0.006 / 1.1	0.007 / 1.1
Average B-factor (Å ²)	75.1	63.5	61.4	68.0
Ramachandran Plot (%) ^g	97.6 / 2.3 / 0.1	97.3 / 2.5 / 0.2	97.9 / 1.9 / 0.2	97.6 / 2.2 / 0.2
PDB accession code	6HVW	6HVX	6HVY	6HW0
No. refl. test set No. non hydrogen atoms No. of ligand atoms Solvent (H ₂ O, ions, MES) R _{work} /R _{free} (%) ^e r.m.s.d. bond (Å) / angle (°) ^f Average B-factor (Å ²) Ramachandran Plot (%) ^g PDB accession code	10161 49804 184 280 16.5 / 20.2 0.007 / 1.2 75.1 97.6 / 2.3 / 0.1 6HVW	12830 49813 172 337 18.7 / 20.6 0.004 / 0.9 63.5 97.3 / 2.5 / 0.2 6HVX	14418 50046 92 578 18.1 / 21.8 0.006 / 1.1 61.4 97.9 / 1.9 / 0.2 6HVY	12608 49856 164 388 17.4 / 20.6 0.007 / 1.1 68.0 97.6 / 2.2 / 0.2

 $^{[b]}$ The values in parentheses for resolution range, completeness, R_{merge} and $I/\sigma\left(I\right)$ correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \Sigma_{hkl}\Sigma_j | I(hkl)_j - \langle I(hkl) \rangle | / \Sigma_{hkl}\Sigma_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

 $[e] R = \Sigma_{hkl} | |F_{obs}| - |F_{calc}| | \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections [f] Deviations from ideal bond lengths/angles

	yCP:13	yCP:16	<i>yCP:18</i>	yCP:20
Crystal parameters				
Space group	P2 ₁	$P2_1$	$P2_1$	P2 ₁
Cell constants	a = 135.5 Å	a = 137.0 Å	a = 138.4 Å	a = 137.0 Å
	b = 299.3 Å	b = 299.3 Å	b = 299.5 Å	b = 299.9 Å
	c = 145.4 Å	c = 145.6 Å	c = 147.3 Å	c = 145.5 Å
	$\beta = 113.0^{\circ}$	$\beta = 113.0^{\circ}$	$\beta = 113.2^{\circ}$	$\beta = 113.2^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	ID30B, ESRF	X06SA, SLS	ID30B, ESRF	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-2.6 (2.7-2.6)	50-2.9 (3.0-2.9)	50-2.9 (3.0-2.9)	50-2.7 (2.8-2.7)
No. observations	990364	731924	745220	921732
No. unique reflections ^c	321242	233034	239026	296671
Completeness (%) ^b	98.5 (99.2)	98.0 (99.5)	98.3 (99.6)	98.7 (99.7)
R _{merge} (%) ^{b, d}	6.6 (57.2)	8.5 (53.5)	6.4 (55.1)	7.1 (49.2)
I/σ (I) ^b	12.3 (2.7)	11.3 (2.7)	13.8 (2.8)	11.4 (2.1)
Refinement (REFMAC5)				
Resolution range (Å)	15-2.6	15-2.9	15-2.9	15-2.7
No. refl. working set	303621	219799	225482	274527
No. refl. test set	15980	11568	11868	1449
No. non hydrogen atoms	50186	49798	49715	49868
No. of ligand atoms	176	180	168	160
Solvent (H ₂ O, ions, MES)	700	314	243	404
Rwork/Rfree (%)e	19.1 / 21.5	17.3 / 21.0	18.0 / 21.1	17.5 / 20.6
r.m.s.d. bond (Å) / angle (°) ^f	0.006 / 1.1	0.007 / 1.1	0.007 / 1.1	0.007 / 1.2
Average B-factor (Å ²)	69.0	72.6	87.6	66.9
Ramachandran Plot (%) ^g	97.6 / 2.2 / 0.2	97.6 / 2.2 / 0.2	97.5 / 2.3 / 0.2	97.7 / 2.1 / 0.2
PDB accession code	6HW3	6HW4	6HW5	6HW6

 $^{[b]}$ The values in parentheses for resolution range, completeness, R_{merge} and $I/\sigma\left(I\right)$ correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \Sigma_{hkl}\Sigma_j | I(hkl)_j - \langle I(hkl) \rangle | / \Sigma_{hkl}\Sigma_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

 $[e] R = \Sigma_{hkl} | |F_{obs}| - |F_{calc}| | \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	yCP:29	у СР:3 9	yCP:41b	<i>yCP:43</i>
Crystal parameters				
Space group	P2 ₁	P2 ₁	P2 ₁	P2 ₁
Cell constants	a = 136.3 Å	a = 137.2 Å	a = 136.9 Å	a = 136.5 Å
	b = 299.4 Å	b = 299.7 Å	b = 299.9 Å	b = 300.4 Å
	c = 145.0 Å	c = 145.5 Å	c = 145.4 Å	c = 146.3 Å
	$\beta = 112.7^{\circ}$	$\beta = 113.1^{\circ}$	$\beta = 113.1^{\circ}$	$\beta = 113.6^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-2.7 (2.8-2.7)	50-2.8 (2.9-2.8)	50-2.8 (2.9-2.8)	50-2.8 (2.9-2.8)
No. observations	995443	789628	793875	873523
No. unique reflections ^c	290015	255698	257255	260396
Completeness (%) ^b	99.0 (99.3)	96.7 (94.8)	97.5 (97.3)	98.4 (98.1)
R_{merge} (%) ^{b, d}	7.7 (54.1)	7.7 (50.6)	7.4 (57.9)	8.0 (50.1)
I/σ (I) ^b	10.9 (2.0)	10.6 (1.7)	12.8 (2.5)	12.7 (2.6)
Refinement (REFMAC5)				
Resolution range (Å)	15-2.7	15-2.8	15-2.8	15-2.8
No. refl. working set	275514	241316	242842	245757
No. refl. test set	14501	12701	12781	12934
No. non hydrogen atoms	49784	49764	49834	49763
No. of ligand atoms	176	172	172	92
Solvent (H_2O , ions, MES)	304	285	358	367
R_{work}/R_{free} (%) ^e	20.2 / 22.5	17.0 / 20.6	17.4 / 20.5	18.5 / 21.6
r.m.s.d. bond (Å) / angle (°) ^{f}	0.004 / 0.9	0.006 / 1.1	0.006 / 1.1	0.006 / 1.1
Average B-factor $(Å^2)$	77.4	72.9	65.5	64.0
Ramachandran Plot (%) ^g	97.5 / 2.2 / 0.3	97.6 / 2.2 / 0.2	97.5 / 2.2 / 0.3	97.6 / 2.2 / 0.2
PDB accession code	6HW7	6HW8	6HW9	6HWA

^[b] The values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \Sigma_{hkl}\Sigma_j | I(hkl)_j - \langle I(hkl) \rangle | / \Sigma_{hkl}\Sigma_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

 $[e] R = \Sigma_{hkl} | |F_{obs}| - |F_{calc}| | \Sigma_{hkl} | F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	yCP:44b	yCP-β2G45A	yCP-β2G45A: bortezomib	yCP-β2G45A: carfilzomib
Crystal parameters				
Space group	P21	P21	P21	P21
Cell constants	a = 136.6 Å	a = 1354 Å	a = 135.5 Å	a = 136.8 Å
	b = 299.9 Å	b = 301.2 Å	b = 300.1 Å	b = 300.2 Å
	c = 145.6 Å	c = 144.6 Å	c = 144.9 Å	c = 145.5 Å
	$\beta = 113.2^{\circ}$	$\beta = 113.0^{\circ}$	$\beta = 113.1^{\circ}$	$\beta = 113.3^{\circ}$
CPs / AU ^a	1	1	1	1
Data collection				
Beam line	X06SA, SLS	X06SA, SLS	X06SA, SLS	X06SA, SLS
Wavelength (Å)	1.0	1.0	1.0	1.0
Resolution range (Å) ^b	50-2.6 (2.7-2.6)	50-2.8 (2.9-2.8)	50-2.8 (2.9-2.8)	50-2.3 (2.4-2.3)
No. observations	976104	766765	772253	1356610
No. unique reflections ^c	321591	250653	255734	467751
Completeness (%) ^b	97.6 (98.8)	96.0 (98.6)	98.1 (98.9)	98.4 (99.1)
R_{merge} (%) ^{b, d}	7.0 (55.0)	9.1 (49.3)	8.0 (46.4)	5.3 (54.8)
I/σ (I) ^b	11.3 (2.4)	9.5 (2.5)	11.0 (2.9)	15.2 (2.3)
Refinement (REFMAC5)				
Resolution range (Å)	15-2.6	15-2.8	15-2.8	15-2.3
No. refl. working set	303954	236637	241378	442835
No. refl. test set	15998	12455	12704	23307
No. non hydrogen atoms	50242	50127	50223	52020
No. of ligand atoms	192	-	168	312
Solvent (H ₂ O, ions, MES)	746	734	677	2278
R_{work}/R_{free} (%) ^e	18.9 / 22.1	19.5 / 22.4	18.6 / 21.1	20.4 / 23.1
r.m.s.d. bond (Å) / angle (°) $^{\rm f}$	0.006 / 1.1	0.007 / 1.1	0.007 / 1.1	0.007 / 1.2
Average B-factor (Å ²)	62.9	63.2	64.8	56.4
Ramachandran Plot (%) ^g	97.7 / 2.1 / 0.2	98.0 / 1.9 / 0.1	97.9 / 2.0 / 0.1	98.0 / 1.9 / 0.1
PDB accession code	6HWB	6HWC	6HWD	6HWE

^[b] The values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \sum_{hkl} \sum_j |I(hkl)_j - \langle I(hkl) \rangle | / \sum_{hkl} \sum_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

^[e] $R = \Sigma_{hkl} ||F_{obs}| - |F_{calc}||/\Sigma_{hkl} ||F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	<i>уСР-β2G45A:</i>
	ONX 0914
Crystal narameters	
Space group	P21
Cell constants	a = 136.6 Å
	b = 299.7 Å
	c = 145.1 Å
	$\beta = 113.4^{\circ}$
CPs / AU ^a	1
Data collection	
Beam line	X06SA, SLS
Wavelength (Å)	1.0
Resolution range (Å) ^b	50-2.5 (2.6-2.5)
No. observations	1105580
No. unique reflections ^c	359000
Completeness (%) ^b	97.5 (99.1)
R_{merge} (%) ^{b, d}	6.6 (59.0)
I/σ (I) ^b	12.0 (2.4)
Refinement (REFMAC5)	
Resolution range (Å)	15-2.5
No. refl. working set	339515
No. refl. test set	17869
No. non hydrogen	50768
No. of ligand atoms	252
Solvent (H ₂ O, ions, MES)	1086
R_{work}/R_{free} (%) ^e	18.9 / 21.6
r.m.s.d. bond (Å) / angle (°) ^{f}	0.007 / 1.3
Average B-factor (Å ²)	58.2
Ramachandran Plot (%) ^g	97.6 / 2.2 / 0.2
PDB accession code	6HWF

^[b] The values in parentheses for resolution range, completeness, R_{merge} and I/σ (I) correspond to the highest resolution shell

^[c] Data reduction was carried out with XDS and from a single crystal. Friedel pairs were treated as identical reflections

^[d] $R_{merge}(I) = \sum_{hkl} \sum_j |I(hkl)_j - \langle I(hkl) \rangle | / \sum_{hkl} \sum_j I(hkl)_j$, where $I(hkl)_j$ is the jth measurement of the intensity of reflection hkl and $\langle I(hkl) \rangle$ is the average intensity

^[e] $R = \Sigma_{hkl} ||F_{obs}| - |F_{calc}||/\Sigma_{hkl} ||F_{obs}|$, where R_{free} is calculated without a sigma cut off for a randomly chosen 5% of reflections, which were not used for structure refinement, and R_{work} is calculated for the remaining reflections ^[f] Deviations from ideal bond lengths/angles

	wt yβ1	wt yβ2	wt yβ5	β2c	β2i
ONX 0914	+	+	+	+	+
4	-	+	+	+	+
5	-	+	-	-	-
7	-	+	+	+	+
13	-	+	+	+	+
16	-	+	+	+	+
18	-	+	+	+	+
20	-	+	+	+	+
29	-	+	+	+	+
39	-	+	+	+	+
41b	-	+	+	n.d.	n.d.
43	-	-	+	-	+
44b	-	+	+	n.d.	n.d.

Table S14: Subunits targeted by $\beta 2c$ and $\beta 2i$ inhibitors in crystal soaking experiments.

Table S15. Oligonucleotides used in this study.

Oligonucleotide	Sequence 5' – 3'
PSMB-for	CCT GAT TGT AGA AAA TAG AAT TGA GTG AGC
PSMB-rev	GAT TTA CTA TAC TAA AAT ATA CTT AAG TTC TAT GTT TTA C
PUP1-prom-rev	GCT CAC TCA ATT CTA TTT TCT ACA ATC AGG
PUP1-ter-for	GTA AAA CAT AGA ACT TAA GTA TAT TTT AGT ATA GTA AAT C
PUP1-Age-rev	GGT ACC GGT GGA AGT TGC CTT AGG
pBS-uni	TTG TAA AAC GAC GGC CAG TG
pBS-rev	GAA ACA GCT ATG ACC ATG ATT ACG
PSMB7-S171G-for	CTT GGG TCC GGT GGG AAC ATT GAT TTG TG
PSMB7-S171G-rev	CAA ATC AAT GTT CCC ACC GGA CCC AAG G
beta2i-129-for	GGG ATC TGG TTC TCT AGC GGC AAT GGC TGT G

beta2i-129-rev	CCG CTA GAG AAC CAG ATC CCA AGG CTG TAA ATG
beta2i-1-93-for	CAT TAT TCA GAT ACC AAG GTC ATA TTG GTG C
beta2i-1-93-rev	CCT TGG TAT CTG AAT AAT GTT TGC CGT AG
beta2i-1-52-for	CTG ATG CTG AGG CAG TTA CGC AGT TGA TC
beta2i-1-52-rev	GCG TAA CTG CCT CAG CAT CAG CGG CTA CG
y93-rev	CAT GAC CTT GGT ACT TAA ATA GGT GCT GC
2i93-for	TTT AAG TAC CAA GGT CAT GTT GGC GCT TC

Synthesis and characterization of compounds.

General procedures

All reagents were of commercial grade and used as received unless indicate otherwise. Dried solvents were stored over 4 Å molecular sieves. Column chromatography was performed on Screening Devices b.v. Silica Gel, with a particle size of 40-63 µm and pore diameter of 60 Å. TLC analysis was conducted on Merck aluminium sheets (Silica gel 60 F254). Compounds were visualized by UV absorption (254 nm), by spraying with a solution of KMnO₄ (20 g/L) and K₂CO₃ (10 g/L) in water, followed by charring at ca. 150 °C. ¹H and ¹³C NMR spectra were recorded on a Bruker AV-400 (400 MHz) or AV-600 (600 MHz) spectrometer. Chemical shifts are given in ppm (δ) relative to CD₃OD or CDCl₃ as internal standard. Coupling constants are given in Hz and peak assignments are based on 2D ¹H COSY and ¹³C HSQC NMR experiments. All presented ¹³C APT spectra are proton decoupled. LC-MS analysis was performed on a Finnigan Surveyor HPLC system with a Gemini C18 50 × 4.60 mm column (detection at 200–600 nm) coupled to a Finnigan LCQ Advantage Max mass spectrometer with ESI. The applied buffers were H₂O, MeCN and 1.0% TFA in H₂O (0.1% TFA end concentration). Methods used are: 15 min (0 \rightarrow 0.5 min: 10% MeCN; 0.5 \rightarrow 10.5 min: 10% \rightarrow 90% MeCN; 10.5 \rightarrow 12.5 min: 90% MeCN; 12.5 \rightarrow 15 min: 90% MeCN; 10.5 \rightarrow 12.5 min: 90% MeCN; 10.5 \rightarrow 12.5 min: 10% \rightarrow 90% MeCN). HRMS was recorded on a

LTQ Orbitrap (ThermoFinnigan). For reverse phase HPLC purification, an automated Gilson HPLC system equipped with a C18 semiprep column (Phenomenex Gemini C18, 5 μ m 250×10 mm) and a GX281 fraction collector. H-Phe(4-CH₂NH₂)VS⁴, Mop-Ala-Tyr(Me)-NHNH₂⁵, N₃Phe-Phe(4-CH₂NHBoc)-Leu-NHNH₂⁴ were synthesized according to literature procedures.

General procedure A

Free amine (1.0 eq.) and free acid (1.2 eq.) were dissolved in DCM, followed by addition of HCTU (1.2 eq.) and DiPEA (3.5 eq.). After stirring overnight, the reaction mixture was concentrated *in vacuo* and re-dissolved in EtOAc, washed with 1M HCl ($2\times$), sat. aq. NaHCO₃ ($3\times$) and brine (in case of morpholino acetic acid coupling, no 1M HCl washing). The organic layer was dried over MgSO₄ and concentrated *in vacuo*. Purification by silica gel flash column chromatography yielded the target compound.

General procedure B

The appropriate Boc-protected C-terminally modified leucine derivative was dissolved in TFA and stirred for 20 min. Co-evaporation with toluene (3x) afforded the TFA-salt, which was used without further purification.

General procedure C

The starting material was dissolved in MeOH, follow by the addition of hydrazine monohydrate (30 eq.). The reaction mixture was stirred overnight at room temperature and then refluxed for 2h. The reaction mixture was concentrated *in vacuo* and co-evaporated with toluene (3x) to give the product in a quantitative yield. The product was directly used in next step without any further purification.

General procedure D

The hydrazide was dissolved in 1:1 DMF:DCM (v/v) and cooled to -30 °C. *t*BuONO (1.1 eq.) and HCl (4M solution in 1,4-dioxane, 2.8 eq.) were added, and the mixture was stirred for 3 h at -30 °C after which TLC analysis (10% MeOH/DCM, v/v) showed complete consumption of the starting material.

The epoxyketone amine or vinyl sulfone amine was added to the reaction mixture as a solution in DMF with 5.0 eq. of DiPEA and this mixture was allowed to warm up to room temperature slowly overnight. The mixture was diluted with EtOAc and washed with $H_2O(2x)$ and brine. The organic layer was dried over MgSO₄ and concentrated *in vacuo*.

Standard procedures of amino acid epoxyketone synthesis

Scheme S1. Reagents and conditions: (a) NH(Me)OMe·HCl, HCTU, DiPEA, DCM; (b) 2bromopropene, *t*BuLi, Et₂O, -78 °C; (c) NaBH₄, CeCl₃·7H₂O, MeOH, 0 °C; (d) *t*BuOOH, VO(acac)₂, DCM, 0 °C; (e) Dess-Martin periodinane, DCM.

General procedure E: Boc-AA-N(OMe)Me. Boc-AA-OH (1.0 eq.) and *N*,*O*-dimethylhydroxylamine (2.0 eq.) are dissolved, followed by the addition of HCTU (1.2 equiv) and DiPEA (3.5 equiv). After stirring overnight, the reaction mixture was concentrated *in vacuo* and re-dissolved in EtOAc, washed with 1M HCl ($2\times$), sat. aq. NaHCO₃ ($3\times$) and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. Purification by silica gel flash column chromatography yielded the target compound.

General procedure F: Boc-AA-C(CH₃)=CH₂. A solution of 2-bromopropene (3.0 eq.) in dry Et₂O was cooled down to -78 °C under argon atmosphere and stirred for 15 min before adding tBuLi (4.5 eq.). The reaction mixture was stirred for 15 min. The Weinreb amide was coevaporated with toluene and dissolved in dried Et₂O. This solution was added dropwise to the reaction mixture during 30 min. The
resulting reaction mixture was allowed to warm up to rt and quenched after 2 h with sat. aq. NH_4Cl . The water layer was extracted with EtOAc (3×) and the combined organics were washed with brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by flash column chromatography yielded the product.

General procedure G: Boc-AA-OH-C(CH₃)=CH₂. The product obtained from last step was dissolved in methanol, followed by addition of $CeCl_3 \cdot 7H_2O(1.5 \text{ eq.})$. After the solution turned clear, it was cooled down to 0 °C and NaBH₄ (1.4 eq.) was added portion-wise. After 5 min TLC analysis indicated complete conversion and the reaction mixture was quenched with glacial AcOH. The mixture was concentrated, coevaporated with toluene, dissolved in EtOAc, washed with H₂O and brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by column chromatography yielded the title compound.

General procedure H: Boc-AA-EK. The alcohol was coevaporated with toluene, dissolved in DCM and cooled down to 0 °C. After addition of VO(acac)₂ (0.05 eq.) the solution turned light blue-green and subsequent addition of tBuOOH (3.0 eq.) resulted in a dark brown-purple reaction mixture. After stirring for 1 h the reaction mixture was removed from the ice bath. After 15 min, the reaction mixture was concentrated *in vacuo*, dissolved in EtOAc and washed with a 1 : 1 mixture of sat. aq. NaHCO₃ and H₂O. The aqueous layer was extracted with EtOAc (3×) and the combined organics were washed with H₂O and brine, dried over MgSO₄ and concentrated *in vacuo* to give the crude intermediate. Dess–Martin periodinane (1.5 eq.) was dissolved in DCM and cooled down to 0 °C. The intermediate was coevaporated with toluene, dissolved in DCM and added to the Dess–Martin periodinane solution. After 1.5 h the reaction mixture was removed from the ice bath. After TLC analysis indicated full conversion of the intermediate and the reaction was quenched with sat. aq. NaHCO₃. The aqueous layer was extracted with EtOAc (3×) and brine, dried over MgSO₄ and concentrated in *P*₂O (3×) and brine, dried over MgSO₄ and concentrate the intermediate was coevaporated with toluene, dissolved in DCM and added to the Dess–Martin periodinane solution. After 1.5 h the reaction mixture was removed from the ice bath. After TLC analysis indicated full conversion of the intermediate and the reaction was quenched with sat. aq. NaHCO₃. The aqueous layer was extracted with DCM. The combined organics were washed with H₂O (3×) and brine, dried over MgSO₄ and concentrated in vacuo. Purification by column chromatography yielded the title compound.

Tert-butyl (S)-(1-cyclohexyl-2-(methoxy(methyl)amino)-2-oxoethyl)carbamate (**98**). This compound was prepared according to general procedure E on a 2.0 mmol scale. Purification by silica gel flash

column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (570 mg, 1.9 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 5.36 (d, J = 9.8 Hz, 1H), 4.59 (t, J = 8.1 Hz, 1H), 3.78 (s, 3H), 3.21 (s, 3H), 1.87-1.51 (m, 6H), 1.43 (s, 9H), 1.32-0.95 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 172.55, 155.41, 78.79, 61.18, 54.12, 40.69, 31.42, 29.26, 28.00, 27.93, 25.83, 25.75, 25.65. HRMS calculated for C₁₅H₂₈N₂O₄ 301.21218 [M+H]⁺; found 301.21222.

Tert-butyl (S)-(1-cyclohexyl-3-methyl-2-oxobut-3-en-1-yl)carbamate (**99**). This compound was prepared according to general procedure F on a 1.9 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (365 mg, 1.3 mmol, 68%). ¹H NMR (500 MHz, CDCl₃) δ 6.08 (s, 1H), 5.89 (d, J = 1.9 Hz, 1H), 5.29 (d, J = 9.2 Hz, 1H), 4.93-4.90 (m, 1H), 1.98-1.82 (m, 3H), 1.84-1.53 (m, 5H), 1.43 (s, 9H), 1.35-0.80 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 201.53, 155.75, 143.18, 126.33, 79.42, 58.20, 41.92, 30.28, 28.36, 27.63, 26.23, 26.05, 26.02, 17.69. HRMS calculated for C₁₆H₂₇NO₃ 282.20637 [M+H]⁺; found 282.20640.

Tert-butyl ((1S,2R)-1-cyclohexyl-2-hydroxy-3-methylbut-3-en-1-yl)carbamate (100). This compound was prepared according to general procedure G on a 1.3 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (354 mg, 1.2 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 4.96 (s, 1H), 4.92 (s, 1H), 4.57 (d, J = 10.1 Hz, 1H), 4.09 (d, J = 6.6 Hz, 1H), 3.67-3.61 (m, 1H), 2.51 (s, 1H), 1.90-1.54 (m, 9H), 1.42 (s, 9H), 1.30-0.87 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 156.38, 145.74, 112.95, 79.23, 76.68, 56.84, 37.78, 31.23, 28.44, 27.32, 26.43, 26.27, 18.33. HRMS calculated for C₁₆H₂₉NO₃ 284.22202 [M+H]⁺; found 284.22204.

Boc-Chg-EK (101). This compound was prepared according to general procedure H on a 1.2 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (119 mg, 0.40 mmol, 33%). ¹H NMR (400 MHz, CDCl₃) δ 5.01 (d, J = 9.4 Hz, 1H), 4.25-4.21 (m, 1H), 3.27 (d, J = 5.0 Hz, 1H), 2.87 (d, J = 5.0 Hz, 1H), 1.75-1.54 (m, 5H), 1.51 (s, 3H), 1.41 (s, 9H), 1.29-0.90 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 210.07, 155.70,

79.65, 59.32, 56.61, 51.79, 40.30, 30.05, 28.36, 27.88, 26.20, 26.06, 26.04, 16.41. HRMS calculated for C₁₆H₂₇NO₄ 298.20128 [M+H]⁺; found 298.20133. [α]_D20 +122 (C=1.0, CHCl₃).

Scheme S2. Reagents and conditions: (a) TsCl/TEA/DCM; (b) NaCN/DMF; (c) i) KOH/ethylene glycol; ii) N,O-dimethylhydroxylamine hydrochloride, HCTU/DiPEA/DCM; (d) i) LiAlH₄/Et₂O; ii) 58/CuSO₄/DCM; (e) Et₂AlCN/i-PrOH/THF; (f) i) 6M HCl, reflux; ii) Boc₂O/TEA/THF/H₂O; iii) N,O-dimethylhydroxylamine hydrochloride, HCTU/DiPEA/DCM.

(4,4-difluorocyclohexyl)methyl 4-methylbenzenesulfonate (**103**). (4,4-difluorocyclohexyl)methanol 102 (3.0 g, 20.0 mmol) was dissolved in anhydrous DCM, followed by the addition of TsCl (7.6 g, 40 mmol, 2.0 eq.) and TEA (5.6 mL, 40 mmol, 2.0 eq.). After stirring at r.t. for 48 h, the reaction mixture was concentrated *in vacuo*. The residue was re-dissolved in EtOAc and washed with sat. aq. NaHCO₃ (2×) and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (5.6 g, 18.4 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.0 Hz, 2H), 7.36 (d, J = 8.1 Hz, 2H), 3.86 (d, J = 6.0 Hz, 2H), 2.43 (s, 3H), 2.07-1.99 (m, 2H), 1.89-1.53 (m, 5H), 1.31-1.20 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.89, 132.56, 129.84, 127.66, 125.37, 122.99, 120.58, 73.47, 35.11, 32.80, 32.57, 32.32, 25.02, 24.93, 21.39.

2-(4,4-difluorocyclohexyl)acetonitrile (**104**). Compound **103** (5.6 g, 18.4 mmol) was dissolved in DMF, followed by the addition of NaCN (1.8 g, 36.8 mmol, 2 eq.). After refluxing overnight, the reaction mixture was diluted with EtOAc, washed with H₂O (2×), sat. aq. NaHCO₃ (2×) and brine, dried over MgSO₄ and concentrated in vacuo. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (2.7 g, 17.0 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 2.33 (d, J = 6.7 Hz, 2H), 2.19-2.01 (m, 2H), 1.98-1.64 (m, 5H), 1.52-1.31 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 125.04, 122.66, 120.25, 118.19, 32.98, 32.75, 32.72, 32.64, 32.63, 32.49, 27.98, 23.04.

2-(4,4-difluorocyclohexyl)-N-methoxy-N-methylacetamide (**105**). Compound **104** (2.7 g, 17.0 mmol) was dissolved in ethylene glycol, followed by addition of KOH (7.6 mL, 136 mmol, 1 g/mL solution, 8.0 eq.). The reaction was stirred at 170 °C overnight. The reaction mixture was poured in to H₂O and the pH was adjusted to 2-3 with conc. HCl. The mixture was extracted with EtOAc ($3\times$) and the combined organic layer was washed by H₂O ($3\times$), brine, dried over MgSO₄ and concentrated *in vacuo*. The crude intermediate was directly coupled with N,O-dimethylhydroxylamine hydrochloride (1.2 eq.) according to general procedure E on a 17.0 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (3.6 g, 16.1 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 3H), 3.19 (s, 3H), 2.37 (d, J = 7.0 Hz, 2H), 2.16-1.66 (m, 7H), 1.38-1.26 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.19, 125.89, 123.51, 121.10, 61.26, 37.61, 33.67, 33.42, 33.20, 32.33, 32.06, 28.97. HRMS calculated for C₁₀H₁₇F₂NO₂ 222.13001 [M+H]⁺; found 222.13002.

(S,E)-N-(2-(4,4-difluorocyclohexyl)ethylidene)-2-methylpropane-2-sulfinamide (**106**). Compound **105** (3.6 g, 16.1 mmol) was dissolved in Et₂O and the reaction solution was cooled to 0 °C. LiAlH₄ (20.9 mL, 20.9 mmol, 1 M solution in Et₂O, 1.3 eq.) was slowly added and the reaction was stirred at 0 °C for 2 h. The reaction was quenched with 0.1 M HCl and the suspension solution was filtrated. The filtrate was concentrated *in vacuo* and co-evaporated with toluene ($3\times$). The obtained aldehyde intermediate was dissolved in anhydrous DCM, followed by the addition of (S)-2-methylpropane-2-sulfinamide 58

(2.9 g, 24.2 mmol, 1.5 eq.) and anhydrous CuSO₄ (10.3 g, 64.4 mmol, 4.0 eq.). After stirring at r.t. for 48 h, the suspension solution was filtrated through Celite and concentrated *in vacuo*. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 25% EtOAc/pentane) yielded the title compound (3.3 g, 12.4 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (t, J = 4.9 Hz, 1H), 2.51-2.48 (m, 2H), 2.15-2.01 (m, 2H), 2.01-1.58 (m, 5H), 1.46-1.32 (m, 2H), 8.81 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.03, 125.35, 122.94, 120.56, 56.48, 41.75, 33.42, 33.17, 33.12, 32.91, 28.82, 28.69, 22.22. HRMS calculated for C¹²H²¹F²NOS 266.13847 [M+H]⁺; found 266.13837.

(S)-N-((S)-1-cyano-2-(4,4-difluorocyclohexyl)ethyl)-2-methylpropane-2-sulfinamide (107). Compound 106 (3.3 g, 12.4 mmol) was dissolved in anhydrous THF and the solution was cooled to -78 °C. Et₂AlCN (18.6 mL, 18.6 mmol, 1M solution in toluene, 1.5 eq.) was added to anhydrous THF, followed by the addition of i-PrOH (2.8 mL, 37.2 mmol, 3.0 eq.). After stirring at r.t. for 15 min, this solution was slowly added to a cooled solution of compound 106 in anhydrous THF. The reaction was stirred at r.t. until TLC-MS analysis showed the complete conversion of the starting material. The reaction mixture was cooled to -78 °C again and sat. aq. NaHCO₃ (16 mL) was added. The reaction mixture was allowed to warm up to r.t. and the suspension solution was filtrated. The filtrate was concentrated in vacuo and purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (3.3 g, 11.3 mmol, 91%) as a single diastereoisomer (de > 90%). ¹H NMR (400 MHz, CDCl₃) δ 4.71 (d, J = 9.1 Hz, 1H), 4.22-4.15 (m, 1H), 2.14-2.00 (m, 2H), 1.89-1.80 (m, 5H), 1.70-1.62 (m, 2H), 1.37-1.29 (m, 2H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 125.49, 123.08, 120.70, 119.66, 57.06, 44.59, 40.23, 33.04, 31.85, 28.19, 22.46. HRMS calculated for C₁₃H₂₂F₂N₂OS 293.14937 [M+H]⁺; found 293.14936.

(S)-tert-butyl3-(4,4-difluorocyclohexyl)-1-(methoxy(methyl)amino)-1-oxopropan-2-ylcarbamate

(108). Compound 107 (3.3 g, 11.3 mmol) was dissolved in 6M HCl and refluxed for 48 h. The mixture was co-evaporated with toluene ($3\times$) to give the unprotected amino acid as the HCl salt. Subsequently, the amino acid was re-dissolved in THF/H₂O (1:1, v/v), followed by the addition of Boc₂O (5.1 g, 23.4 mmol, 1.5 eq.) and TEA (8.7 mL, 62.4 mmol, 4 eq.). After stirring overnight, the mixture was

concentrated in vacuo and re-dissolved in EtOAc. The organic layer was washed with H₂O, brine, dried over MgSO₄ and concentrated in vacuo.Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane with 0.1% acetic acid) yielded the crude Boc protected amino acid. The crude intermediate was directly used in peptide coupling according to general procedure E. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.5 g, 4.3 mmol, 38%). ¹H NMR (400 MHz, CDCl₃) δ 5.25 (d, J = 9.6 Hz, 1H), 4.84-4.66 (m, 1H), 3.78 (s, 3H), 3.20 (s, 3H), 2.13-1.94 (m, 3H), 1.80-1.51 (m, 5H), 1.44 (s, 9H), 1.36-1.18 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 173.29, 155.68, 125.90, 123.52, 121.11, 79.57, 61.57, 48.48, 38.94, 33.67, 33.48, 33.25, 33.00, 32.16, 29.68, 29.59, 28.29, 27.86, 27.77. HRMS calculated for C₁₆H₂₈F₂N₂O₄ 351.20899 [M+H]⁺; found 351.20898.

(S)-Tert-butyl 1-(4,4-difluorocyclohexyl)-4-methyl-3-oxopent-4-en-2-ylcarbamate (**109**). This compound was prepared according to general procedure F on a 0.68 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (157 mg, 0.47 mmol, 69%). ¹H NMR (400 MHz, CDCl₃) δ 6.06 (s, 1H), 5.91 (d, J = 1.8 Hz, 1H), 5.30 (d, J = 8.9 Hz, 1H), 5.23-5.02 (m, 1H), 2.18-1.97 (m, 3H), 1.90 (s, 3H), 1.75-1.56 (m, 4H), 1.44 (s, 9H), 1.39-1.22 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 200.99, 155.65, 142.15, 126.41, 125.88, 123.50, 121.10, 79.80, 52.09, 40.36, 33.80, 33.55, 33.38, 33.15, 32.53, 29.86, 29.76, 28.35, 28.12, 28.02, 17.84. HRMS calculated for C₁₇H₂₇F₂NO₃ 332.20318 [M+H]⁺; found 332.20319.

Tert-butyl(2S,3R)-1-(4,4-difluorocyclohexyl)-3-hydroxy-4-methylpent-4-en-2- ylcarbamate (110). This compound was prepared according to general procedure G on a 0.47 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (133 mg, 0.40 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 5.04 (s, 1H), 4.95-4.94 (m, 1H), 4.92-4.83 (m, 1H), 4.18-4.05 (m, 1H), 3.94-3.76 (m, 1H), 2.66 (s, 1H), 2.13-1.93 (m, 3H), 1.75 (d, J = 6.3 Hz, 3H), 1.70-1.61 (m, 2H), 1.50-1.35 (m, 11H), 1.35-1.25 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 156.08, 144.83, 126.19, 123.81, 121.41, 112.01, 111.47, 79.56, 77.68, 50.19, 34.21, 33.95, 33.69, 33.44,

33.20, 32.38, 30.25, 30.15, 28.46, 27.98, 27.89, 19.43. HRMS calculated for C₁₇H₂₉F₂NO₃ 334.21883 [M+H]⁺; found 334.21889.

Boc-Cha(4,4-2F)-EK (111). This compound was prepared according to general procedure H on a 0.40 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (40 mg, 0.12 mmol, 30%). ¹H NMR (400 MHz, CDCl₃) δ 4.93 (d, J = 9.2 Hz, 1H), 4.36-4.31 (m, 1H), 3.26 (d, J = 4.9 Hz, 1H), 2.90 (d, J = 4.9 Hz, 1H), 2.19-1.89 (m, 3H), 1.80-1.59 (m, 4H), 1.55 (s, 3H), 1.42 (s, 9H), 1.37-1.13 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 209.26, 155.74, 125.96, 123.56, 121.18, 80.12, 59.06, 52.46, 51.00, 37.74, 33.77, 33.51, 33.29, 33.03, 32.65, 29.85, 29.76, 28.41, 27.85, 27.76, 16.83. HRMS calculated for C₁₇H₂₇F₂NO₄ 348.19809 [M+H]⁺; found 348.19812. [α]_D20 +80 (C 0.5, CHCl₃).

Tert-butyl (S)-(4-cyclohexyl-1-(methoxy(methyl)amino)-1-oxobutan-2-yl)carbamate (**112**). Boc-HomoCha-OH was prepared according to literature procedures6, followed by the peptide coupling according to general procedure E on a 2.1 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (588 mg, 1.8 mmol, 86%). ¹H NMR (400 MHz, CDCl₃) δ 5.37 (d, J = 9.2 Hz, 1H), 4.66-4.61 (m, 1H), 3.78 (s, 3H), 3.20 (s, 3H), 1.79-1.69 (m, 6H), 1.43 (s, 9H), 1.30-1.08 (m, 7H), 0.99-0.80 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.14, 155.34, 78.92, 61.25, 50.32, 37.08, 33.13, 32.71, 32.61, 29.81, 29.36, 28.08, 26.34, 26.04, 26.02. HRMS calculated for C₁₇H₃₂N₂O₄ 329.24348 [M+H]⁺; found 329.24346.

Tert-butyl (S)-(1-cyclohexyl-5-methyl-4-oxohex-5-en-3-yl)carbamate (**113**). This compound was prepared according to general procedure F on a 0.91 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (224 mg, 0.72 mmol, 79%). ¹H NMR (500 MHz, CDCl₃) δ 6.06 (s, 1H), 5.88 (d, J = 1.8 Hz, 1H), 5.36 (d, J = 8.4 Hz, 1H), 5.02-4.98 (m, 1H), 1.90 (s, 3H), 1.84-1.77 (m, 1H), 1.69-1.60 (m, 5H), 1.50-1.47 (m, 10H), 1.25-1.07 (m, 7H), 0.90-0.80 (m, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 201.07, 155.43, 142.36, 125.92, 79.42,

54.30, 37.44, 33.29, 33.05, 32.65, 31.25, 28.34, 26.57, 26.26, 26.24, 17.79. HRMS calculated for C₁₈H₃₁NO₃ 310.23767 [M+H]⁺; found 310.23775.

Tert-butyl ((3S,4R)-1-cyclohexyl-4-hydroxy-5-methylhex-5-en-3-yl)carbamate (**114**). This compound was prepared according to general procedure G on a 0.72 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (208 mg, 0.67 mmol, 93%). ¹H NMR (400 MHz, CDCl₃) δ 5.02 (s, 1H), 4.93 (s, 1H), 4.83-4.73 (m, 1H), 4.16-4.04 (m, 1H), 3.73-3.67 (m, 1H), 2.77 (s, 1H), 1.75-1.60 (m, 8H), 1.53-1.42 (m, 10H), 1.33-1.08 (m, 7H), 0.93-0.79 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.36, 145.12, 111.79, 111.50, 79.36, 77.72, 53.39, 37.71, 33.98, 33.65, 33.21, 28.48, 26.74, 26.45, 26.40, 25.78, 19.50. HRMS calculated for C₁₈H₃₃NO₃ 312.25332 [M+H]⁺; found 312.25336.

Boc-HomoCha-EK (**115**). This compound was prepared according to general procedure H on a 0.67 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (52 mg, 0.16 mmol, 24%). ¹H NMR (400 MHz, CDCl₃) δ 4.96 (d, J = 8.0 Hz, 1H), 4.28-4.22 (m, 1H), 3.25 (d, J = 5.0 Hz, 1H), 2.88 (d, J = 5.0 Hz, 1H), 1.81-1.56 (m, 6H), 1.52 (s, 3H), 1.43 (s, 9H), 1.38-1.06 (m, 7H), 0.96-0.78 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 209.40, 155.67, 79.81, 59.13, 53.17, 52.33, 37.45, 33.49, 33.15, 33.02, 29.01, 28.43, 26.69, 26.39, 26.35, 16.82. HRMS calculated for C₁₈H₃₁NO₄ 326.23258 [M+H]⁺; found 326.23271. [*a*]D20 +106 (C 1.0, CHCl3).

Boc-Cha(4-CF₃)-OH (116). Boc-Phe(4-CF₃)-OH (1.0 g, 3.0 mmol) was dissolved in MeOH, followed by the addition of Rh on activated alumina (5 wt.%, 300 mg). The mixture was placed under H₂ (4 bar, Parr apparatus) for 48 h. The mixture was filtrated through Celite and concentrated *in vacuo* to give the title product in a quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 12.09 (s, 1H), 6.78 (d, J = 7.8 Hz, 0.4 H), 5.32 (d, J = 8.6 Hz, 0.5 H), 4.47-3.97 (m, 1H), 2.10-0.91 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 177.55, 177.12, 177.03, 157.21, 155.85, 132.12, 131.87, 129.35, 129.12, 126.57, 126.35, 123.80, 123.57, 81.94, 80.11, 52.92, 51.87, 40.60, 40.33, 39.65, 35.27, 33.39, 33.16, 31.61, 30.63, 29.39, 29.18,

28.99, 28.76, 28.19, 28.08, 27.36, 27.26, 24.79, 24.66, 20.67, 20.42. HRMS calculated for C₁₅H₂₄F₃NO₄ 340.17302 [M+H]⁺; found 340.17316.

Tert-butyl (S)-(1-(methoxy(methyl)amino)-1-oxo-3-(4-(trifluoromethyl)cyclohexyl)propan-2yl)carbamate (117). This compound was prepared according to general procedure E on a 3.0 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.33-5.28 (m, 1H), 4.72-4.67 (m, 1H), 3.79 (s, 3H), 3.22-3.20 (m, 3H), 2.13-0.86 (m, 21H). ¹³C NMR (100 MHz, CDCl₃) δ 173.34, 155.67, 155.56, 132.03, 131.82, 129.26, 129.05, 126.49, 126.29, 123.71, 79.31, 77.36, 61.43, 48.73, 48.10, 41.87, 41.61, 40.70, 40.44, 39.94, 35.13, 33.26, 32.00, 31.92, 30.38, 29.45, 29.04, 28.17, 26.78, 24.78, 24.62, 20.57, 20.11. HRMS calculated for C₁₇H₂₉F₃N₂O₄ 383.21522 [M+H]⁺; found 383.21544.

Tert-butyl (S)-(4-methyl-3-oxo-1-(4-(trifluoromethyl)cyclohexyl)pent-4-en-2-yl)carbamate (**118**). This compound was prepared according to general procedure F on a 3.0 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (795 mg, 2.2 mmol, 73%). ¹H NMR (400 MHz, CDCl₃) δ 6.09 (s, 1H), 5.99-5.80 (m, 1H), 5.43-5.39 (m, 1H), 5.27-4.95 (m, 1H), 2.25-1.10 (m, 24H). ¹³C NMR (100 MHz, CDCl₃) δ 201.11, 201.03, 155.57, 142.23, 142.16, 132.08, 129.30, 129.06, 126.53, 126.06, 79.46, 52.27, 51.76, 41.90, 41.63, 41.03, 40.45, 40.19, 36.62, 33.55, 32.12, 30.58, 29.57, 29.44, 28.19, 27.14, 24.86, 24.69, 20.83, 20.62, 17.69. HRMS calculated for C₁₈H₂₈F₃NO₃ 364.20940 [M+H]⁺; found 364.20946.

Tert-butyl ((2S,3R)-3-hydroxy-4-methyl-1-(4-(trifluoromethyl)cyclohexyl)pent-4-en-2-yl)carbamate (119). This compound was prepared according to general procedure G on a 2.2 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.09-4.85 (m, 3H), 4.19-4.03 (m, 1H), 3.81-3.76 (m, 1H), 3.24 (s, 1H), 1.78-1.13 (m, 24H). ¹³C NMR (100 MHz, CDCl₃) δ 156.74, 156.16, 144.89, 144.47, 132.23, 129.45, 129.23, 126.68, 126.45, 111.75, 111.42, 79.39, 77.77, 77.66, 50.70, 49.95, 40.70, 40.44, 35.19, 32.60, 30.59, 30.04, 29.52, 28.37, 28.28, 26.89, 25.07, 24.83, 20.94, 20.48, 19.35. HRMS calculated for C₁₈H₃₀F₃NO₃ 366.22505 [M+H]⁺; found 366.22509.

Boc-Cha(4-CF₃)-EK (**120**). This compound was prepared according to general procedure H on a 2.2 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (191 mg, 0.50 mmol, 23%). ¹H NMR (400 MHz, CDCl₃) δ 4.97 (t, J = 9.3 Hz, 1H), 4.41-4.19 (m, 1H), 3.28 (d, J = 4.9 Hz, 1H), 2.91 (d, J = 4.9 Hz, 1H), 2.12-1.78 (m, 4H), 1.71-1.66 (m, 3H), 1.59-1.49 (m, 7H), 1.41 (s, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 209.39, 209.35, 155.76, 155.70, 132.19, 131.97, 129.41, 129.20, 126.64, 126.43, 123.87, 79.91, 59.07, 52.44, 51.19, 50.66, 41.98, 41.72, 40.80, 40.53, 38.62, 33.72, 32.26, 30.31, 29.69, 28.34, 26.72, 24.95, 24.71, 20.83, 20.32, 16.75. HRMS calculated for C₁₈H₂₈F₃NO₄ 380.20432 [M+H]⁺; found 380.20444. [α]_D20 + 82 (C 1.0, CHCl₃).

Tert-butyl (S)-(1-(methoxy(methyl)amino)-3-(4-methylcyclohexyl)-1-oxopropan-2-yl)carbamate (121). Boc-Cha(4-Me)-OH was prepared according to the literature procedure⁶, followed by peptide coupling according to general procedure E on a 3.1 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.0 g, 3.0 mmol, 97%). ¹H NMR (400 MHz, CDCl₃) δ 5.25-5.21 (m, 1H), 4.89-4.53 (m, 1H), 3.79-3.75 (m, 3H), 3.21-3.19 (m, 3H), 2.10-1.13 (m, 20H), 0.97-0.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.76, 155.55, 155.48, 79.07, 61.38, 48.62, 48.24, 40.27, 36.88, 35.04, 34.83, 33.80, 33.66, 32.53, 32.03, 31.93, 31.05, 30.62, 30.23, 30.10, 29.75, 29.49, 28.18, 27.31, 22.47, 20.25, 14.02. HRMS calculated for C₁₇H₃₂N₂O₄ 329.24348 [M+H]⁺; found 329.24354.

Tert-butyl (S)-(4-methyl-1-(4-methylcyclohexyl)-3-oxopent-4-en-2-yl)carbamate (122). This compound was prepared according to general procedure F on a 3.0 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (703 mg, 2.3 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 5.96 (s, 1H), 5.82-5.65 (m, 1H), 5.24-5.20 (m, 1H), 5.00-4.91 (m, 1H), 1.76-1.75 (m, 3H), 1.68-.96 (m, 20H), 0.74 (dd, J = 13.0, 6.7 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 201.33, 155.45, 155.41, 142.21, 142.17, 125.75, 79.19, 52.21,

51.93, 41.37, 38.22, 35.06, 34.85, 33.95, 33.89, 32.55, 32.26, 31.49, 30.67, 30.50, 29.93, 29.71, 28.20, 27.49, 22.49, 20.10, 17.72. HRMS calculated for C₁₈H₃₁NO₃ 310.23767 [M+H]⁺; found 310.23774.

Tert-butyl ((2S,3R)-3-hydroxy-4-methyl-1-(4-methylcyclohexyl)pent-4-en-2-yl)carbamate (**123**). This compound was prepared according to general procedure G on a 2.3 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.15-4.79 (m, 2H), 4.15-4.06 (m, 1H), 3.92-3.80 (m, 1H), 2.10-0.64 (m, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 156.07, 144.85, 144.38, 111.66, 111.07, 79.06, 77.64, 77.57, 60.39, 50.50, 50.11, 35.33, 35.03, 34.34, 33.76, 32.72, 31.50, 30.95, 30.53, 29.98, 29.52, 28.33, 27.19, 22.62, 20.09, 19.40, 14.08. HRMS calculated for C₁₈H₃₃NO₃ 312.25332 [M+H]⁺; found 312.25341.

Boc-Cha(4-CH₃)-EK (**124**). This compound was prepared according to general procedure H on a 2.3 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (209 mg, 0.64 mmol, 28%). ¹H NMR (400 MHz, CDCl₃) δ 5.03-4.83 (m, 1H), 4.37-4.27 (m, 1H), 3.30-3.29 (m, 1H), 2.90-2.88 (m, 1H), 1.95-0.70 (m, 27H). ¹³C NMR (100 MHz, CDCl₃) δ 209.65, 155.74, 155.70, 79.73, 59.09, 59.06, 52.43, 52.39, 51.22, 50.95, 38.93, 35.81, 35.24, 34.96, 34.22, 34.11, 32.68, 32.03, 31.72, 30.86, 30.39, 30.22, 30.05, 28.48, 28.38, 27.22, 22.67, 20.34. HRMS calculated for C₁₈H₃₁NO₄ 326.23258 [M+H]+; found 326.23272. [α]_D20 +103 (C 1.0, CHCl₃).

Tert-butyl (S)-(1-(methoxy(methyl)amino)-3-(4-methoxycyclohexyl)-1-oxopropan-2-yl)carbamate (125). Boc-Cha(4-OMe)-OH was prepared according to the literature procedures¹⁰ followed by peptide coupling according to general procedure E on a 2.0 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (449 mg, 1.3 mmol, 65%). ¹H NMR (400 MHz, CDCl₃) δ 5.31-5.08 (m, 1H), 4.74 (s, 1H), 3.78 (s, 3H), 3.39 (s, 1H), 3.33-3.29 (m, 3H), 3.19 (s, 3H), 2.09-1.55 (m, 5H), 1.49-1.24 (m, 15H). ¹³C NMR (100 MHz, CDCl₃) δ 173.76, 173.68, 155.54, 155.48, 79.26, 79.12, 75.26, 61.35, 55.34, 48.35, 48.25, 39.60, 39.21, 33.32,

32.64, 31.95, 31.67, 31.53, 31.33, 28.75, 28.60, 28.17, 27.84, 25.82. HRMS calculated for C₁₇H₃₂N₂O₅ 345.23840 [M+H]⁺; found 345.23842.

Tert-butyl (S)-(1-(4-methoxycyclohexyl)-4-methyl-3-oxopent-4-en-2-yl)carbamate (**126**). This compound was prepared according to general procedure F on a 1.3 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (217 mg, 0.67 mmol, 52%). ¹H NMR (400 MHz, CDCl₃) δ 6.07 (s, 1H), 5.88 (d, J = 1.8 Hz, 1H), 5.27 (d, J = 8.9 Hz, 1H), 5.13-5.03 (m, 1H), 3.42-3.37 (m, 1H), 3.29 (s, 3H), 1.93-1.79 (m, 5H), 1.53-1.24 (m, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 201.41, 155.57, 142.13, 126.01, 79.43, 75.23, 55.52, 52.04, 40.74, 33.10, 29.65, 28.94, 28.82, 28.30, 27.98, 26.11, 17.81. HRMS calculated for C₁₈H₃₁NO₄ 326.23258 [M+H]⁺; found 326.23279.

Tert-butyl ((2S,3R)-3-hydroxy-1-(4-methoxycyclohexyl)-4-methylpent-4-en-2-yl)carbamate (127). This compound was prepared according to general procedure G on a 0.67 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.03 (s, 1H), 4.94-4.86 (m, 2H), 4.14-4.11 (m, 1H), 3.88-3.83 (m, 1H), 3.40-3.38 (m, 1H), 3.28 (s, 3H), 1.90-1.77 (m, 2H), 1.63-1.55 (m, 1H), 1.50-1.26 (m, 17H). ¹³C NMR (100 MHz, CDCl₃) δ 156.10, 144.90, 111.18, 79.24, 77.64, 75.71, 55.54, 50.20, 34.48, 32.85, 29.14, 28.74, 28.44, 28.36, 26.04, 19.51. HRMS calculated for C₁₈H₃₃NO₄ 328.24824 [M+H]⁺; found 328.24846.

Boc-Cha(4-OMe)-EK (128). This compound was prepared according to general procedure H on a 0.67 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (56 mg, 0.16 mmol, 24%). ¹H NMR (400 MHz, CDCl₃) δ 4.88 (d, J = 8.9 Hz, 1H), 4.36-4.26 (m, 1H), 3.43-3.36 (m, 1H), 3.30-3.29 (m, 3H), 3.27 (d, J = 5.0 Hz, 1H), 2.88 (d, J = 5.1 Hz, 1H), 1.94-1.79 (m, 2H), 1.68-1.55 (m, 2H), 1.46-1.23 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 209.55, 155.63, 79.72, 58.94, 55.50, 52.29, 50.92, 37.99, 33.24, 29.67, 29.16, 28.43,

28.30, 28.06, 25.87, 16.76. HRMS calculated for $C_{18}H_{31}NO_5$ 342.22750 [M+H]⁺; found 342.22755. [α]_D20 +89 (C=1.0, CHCl₃).

Tert-butyl (S)-3-(decahydronaphthalen-2-yl)-1-(methoxy(methyl) amino)-1-oxopropan-2-ylcarbamate (**129**). Boc-2-DecAla-OH was prepared according to the literature procedure⁶, followed by peptide coupling according to general procedure E on a 1.5 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (442 mg, 1.2 mmol, 80%). ¹H NMR (400 MHz, CDCl₃) δ 5.18 (d, J = 9.4 Hz, 1H), 4.75 (d, J = 9.4 Hz, 1H), 3.79 (s, 3H), 3.20 (s, 3H), 1.87-0.85 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 173.81, 155.51, 79.13, 77.36, 61.42, 48.21, 40.63, 40.47, 35.88, 35.60, 34.72, 33.16, 32.02, 31.96, 31.52, 29.53, 28.20, 26.86, 26.53, 25.60, 20.79. HRMS calculated for C₂₀H₃₆N₂O₄ 369.27478 [M+H]⁺; found 369.27489.

Tert-butyl ((2S)-1-(decahydronaphthalen-2-yl)-4-methyl-3-oxopent-4-en-2-yl)carbamate (**130**). This compound was prepared according to general procedure F on a 1.2 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (297 mg, 0.85 mmol, 71%). ¹H NMR (400 MHz, CDCl₃) δ 6.05 (d, J = 7.7 Hz, 1H), 5.85-5.78 (m, 1H), 5.20-5.16 (m, 1H), 5.11-5.04 (m, 1H), 1.86 (s, 3H), 1.68-1.17 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 201.59, 155.53, 142.30, 125.98, 79.46, 52.04, 41.95, 41.69, 36.03, 35.80, 35.70, 35.10, 33.39, 32.34, 32.32, 32.16, 31.85, 28.43, 28.34, 27.01, 27.00, 26.90, 25.76, 25.74, 20.95, 20.91, 17.88. HRMS calculated for C₂₁H₃₅NO₃ 350.26897 [M+H]⁺; found 350.26910.

Tert-butyl ((2S,3R)-1-(decahydronaphthalen-2-yl)-3-hydroxy-4-methylpent-4-en-2-yl)carbamate (131). This compound was prepared according to general procedure G on a 0.85 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (287 mg, 0.82 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 5.03 (s, 1H), 4.95-4.78 (m, 2H), 4.14-4.11 (m, 1H), 3.88 (d, J = 8.9 Hz, 1H), 2.98 (s, 1H), 1.80-1.07 (m, 31H). ¹³C NMR (100 MHz, CDCl₃) δ 156.12, 144.96, 111.27, 111.18, 79.25, 77.80, 77.71, 50.36, 50.27, 36.17, 35.88, 34.93, 34.84,

33.76, 32.48, 32.42, 32.26, 28.80, 28.43, 28.36, 27.06, 26.73, 25.80, 25.76, 20.97, 19.56. HRMS calculated for C₂₁H₃₇NO₃ 352.28462 [M+H]⁺; found 352.28476.

Boc-2-DecAla-EK (**132**). This compound was prepared according to general procedure H on a 0.82 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (76 mg, 0.21 mmol, 26%). ¹H NMR (400 MHz, CDCl₃) δ 4.88-4.85 (m, 1H), 4.38-4.32 (m, 1H), 3.32-3.26 (m, 1H), 2.93-2.86 (m, 1H), 1.74-1.12 (m, 31H). ¹³C NMR (100 MHz, CDCl₃) δ 209.79, 209.71, 155.72, 79.81, 59.18, 59.11, 52.47, 50.92, 39.29, 39.09, 36.13, 35.87, 35.83, 35.80, 35.27, 35.21, 33.52, 32.41, 32.14, 31.43, 29.79, 28.61, 28.42, 27.12, 27.08, 26.56, 25.84, 25.80, 21.01, 16.91. HRMS calculated for C₁₂H₃₀N₂O₄ 366.26389 [M+H]⁺; found 366.26393. [α]_D20 + 90 (C 1.0, CHCl₃).

Tert-butyl (S)-(3-([1,1'-bi(cyclohexan)]-4-yl)-1-(methoxy(methyl)amino)-1-oxopropan-2-yl) carbamate (133). Boc-BiCha-OH was prepared according to the literature procedure⁶, followed by peptide coupling according to general procedure E on a 1.8 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (627 mg, 1.6 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ 5.10-5.06 (m, 1H), 4.63-4.58 (m, 1H), 3.72-3.67 (m, 3H), 3.13-3.12 (m, 3H), 1.80-0.66 (m, 32H). ¹³C NMR (100 MHz, CDCl₃) δ 173.81, 155.64, 79.22, 61.49, 48.85, 43.20, 41.77, 40.50, 40.42, 36.21, 34.19, 34.14, 32.45, 32.04, 30.72, 30.69, 30.45, 30.39, 30.17, 29.79, 29.59, 28.28, 28.17, 26.78, 26.76, 26.69, 26.67, 25.52, 25.10. HRMS calculated for C₂₂H₄₀N₂O₄ 397.30608 [M+H]⁺; found 397.30569.

Tert-butyl (S)-(1-([1,1'-bi(cyclohexan)]-4-yl)-4-methyl-3-oxopent-4-en-2-yl)carbamate (**134**). This compound was prepared according to general procedure F on a 1.6 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (491 mg, 1.3 mmol, 81%). ¹H NMR (400 MHz, CDCl₃) δ 6.09 (s, 1H), 5.97-5.79 (m, 1H), 5.31-5.26 (m, 1H), 5.13-5.03 (m, 1H), 1.91-1.89 (m, 3H), 1.75-0.81 (m, 32H). ¹³C NMR (100 MHz, CDCl₃) δ 201.41, 155.51, 142.31, 142.23, 125.81, 79.31, 52.40, 52.04, 43.19, 41.60, 41.51, 40.27, 37.49,

34.51, 34.25, 32.65, 31.06, 30.61, 30.47, 30.43, 30.19, 29.80, 29.61, 28.33, 28.27, 26.79, 26.77, 26.69, 26.67, 25.58, 25.39, 17.80. HRMS calculated for C₂₃H₃₉NO₃ 378.30027 [M+H]⁺; found 378.30036.

Tert-butyl ((2S,3R)-1-([1,1'-bi(cyclohexan)]-4-yl)-3-hydroxy-4-methylpent-4-en-2-yl)carbamate (**135**). This compound was prepared according to general procedure G on a 1.3 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (488 mg, 1.29 mmol, 99%). ¹H NMR (400 MHz, CDCl₃) δ 5.07-5.03 (m, 1H), 5.00-4.86 (m, 2H), 4.17-4.09 (m, 1H), 3.94-3.59 (m, 1H), 1.80-0.77 (m, 36H). ¹³C NMR (100 MHz, CDCl₃) δ 156.15, 144.95, 144.86, 111.72, 111.15, 79.16, 77.74, 77.68, 60.43, 50.81, 43.41, 43.30, 41.64, 40.12, 34.67, 31.54, 31.11, 31.05, 30.54, 30.51, 30.26, 30.23, 30.00, 29.73, 28.39, 28.32, 27.96, 26.84, 26.74, 25.82, 25.37, 19.48. HRMS calculated for C₂₃H₄₁NO₃ 380.31592 [M+H]⁺; found 380.31602.

Boc-BiCha-EK (**136**). This compound was prepared according to general procedure H on a 1.29 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (228 mg, 0.58 mmol, 45%). ¹H NMR (400 MHz, CDCl₃) δ 4.92-4.89 (m, 1H), 4.40-4.18 (m, 1H), 3.30 (d, J = 4.9 Hz, 1H), 2.89 (d, J = 4.9 Hz, 1H), 1.89-0.82 (m, 35H). ¹³C NMR (100 MHz, CDCl₃) δ 209.63, 155.75, 79.71, 59.11, 59.05, 52.45, 52.38, 51.31, 50.98, 43.32, 41.75, 40.32, 38.95, 35.09, 34.72, 34.39, 32.35, 31.32, 30.87, 30.81, 30.63, 30.59, 30.32, 30.29, 29.90, 29.75, 29.64, 28.38, 27.88, 26.91, 26.83, 26.81, 26.78, 25.75, 25.26, 16.84. HRMS calculated for C₂₃H₃₉NO₄ 394.29519 [M+H]⁺; found 394.29511. [α]_D20 +83 (C 1.0, CHCl₃).

Tert-butyl(S)-3-(bicyclo[2.2.1]heptan-2-yl)-1-(methoxy(methyl)amino)-1-oxopropan-2-ylcarbamate (137). Boc-NorAla-OH was prepared according to the literature procedure⁶, followed by peptide coupling according to general procedure E on a 1.0 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (254 mg, 0.78 mmol, 78%). ¹H NMR (400 MHz, CDCl₃) δ 5.17-5.09 (m, 1H), 4.75-4.54 (m, 1H), 3.79 (s, 3H), 3.20 (s, 3H), 2.27-1.98 (m, 2H), 1.98-1.65 (m, 2H), 1.58-1.41 (m, 13H), 1.38-1.23 (m, 3H), 1.23-1.02 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 173.57, 155.55, 79.38, 61.60, 61.60, 50.28, 50.09, 49.64, 49.00, 41.89, 40.74, 40.57, 40.04, 39.84, 39.58, 38.55, 38.44, 38.32, 37.16, 37.09, 36.32, 35.56, 35.51, 35.22, 32.13, 30.10, 29.95, 28.38, 22.74, 22.05. HRMS calculated for C₁₇H₃₀N₂O₄ 327.22783 [M+H]⁺; found 327.22794.

Tert-butyl (S)-1-(bicyclo[2.2.1]heptan-2-yl)-4-methyl-3-oxopent-4-en-2-ylcarbamate (**138**). This compound was prepared according to general procedure F on a 0.78 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (183 mg, 0.60 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 6.10 (d, J = 6.9 Hz, 1H), 5.88 (d, J = 5.7 Hz, 1H), 5.27-5.19 (m, 1H), 5.11-4.82 (m, 1H), 2.25-1.97 (m, 2H), 1.94-1.65 (m, 5H), 1.52-1.38 (m, 13H), 1.34-1.02 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 201.64, 155.49, 142.61, 126.15, 79.54, 53.73, 53.66, 53.24, 52.70, 41.89, 41.37, 41.05, 40.84, 40.74, 40.03, 40.00, 39.88, 38.72, 38.60, 38.53, 38.34, 37.26, 37.19, 37.15, 37.01, 36.80, 36.73, 36.58, 35.57, 35.29, 30.23, 30.08, 30.03, 28.67, 28.58, 28.42, 22.71, 22.51, 17.92. HRMS calculated for C₁₈H₂₉NO₃ 308.22202 [M+H]⁺; found 308.22215.

Tert-butyl(2S,3R)-1-(bicyclo[2.2.1]heptan-2-yl)-3-hydroxy-4-methylpent-4-en-2-ylcarbamate (139). This compound was prepared according to general procedure G on a 0.60 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (170 mg, 0.55 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 5.10-4.86 (m, 2H), 4.77-4.70 (m, 1H), 4.22-3.97 (m, 1H), 3.74-3.62 (m, 1H), 2.80-2.45 (m, 1H), 2.23-1.95 (m, 2H), 1.95-1.56 (m, 4H), 1.56-0.84 (m, 19H). ¹³C NMR (100 MHz, CDCl₃) δ 156.29, 145.08, 111.93, 111.43, 79.41, 78.08, 52.70, 52.52, 52.14, 42.31, 40.99, 40.24, 39.91, 39.39, 38.81, 37.29, 37.18, 36.82, 36.72, 36.61, 35.62, 35.16, 31.56, 30.73, 30.32, 30.16, 28.52, 22.93, 22.23, 19.57. HRMS calculated for C₁₈H₃₁NO₃ 310.23767 [M+H]⁺; found 310.23777.

Boc-NorAla-EK (140). This compound was prepared according to general procedure H on a 0.55 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (48 mg, 0.15 mmol, 27%). ¹H NMR (400 MHz, CDCl₃) δ 5.02-4.69 (m, 1H), 4.39-4.12 (m, 1H), 3.28 (d, J = 4.8 Hz, 1H), 2.91-2.86 (m, 1H), 2.35-2.03 (m, 2H),

S52

1.83-0.94 (m, 23H). ¹³C NMR (100 MHz, CDCl₃) δ 209.64, 155.57, 79.72, 59.07, 52.53, 52.39, 51.24, 41.98, 40.82, 40.08, 39.83, 39.32, 38.63, 38.43, 37.27, 37.18, 37.08, 36.73, 36.60, 35.44, 35.21, 34.38, 30.13, 30.03, 29.83, 29.70, 28.58, 28.33, 22.73, 22.03, 16.79. HRMS calculated for C₁₈H₂₉NO₄ 324.21693 [M+H]⁺; found 324.21705. [α]_D20 +81 (C 0.3, CHCl₃).

(S)-(1,2,3,4-tetrahydronaphthalen-1-yl)methanol (55i). (S)-1,2,3,4-Tetrahydronaphthalene-1carboxylic acid 54 (2.0 g, 11.4 mmol) was dissolved in anhydrous Et₂O and the reaction solution was cooled to 0 °C. LiAlH₄ (14.8 mL, 14.8 mmol, 1M solution in Et₂O, 1.3 eq.) was slowly added and the reaction was stirred at 0 °C for 2 h. The reaction was quenched with 0.1 M HCl and the mixture was filtrated. The filtrate was concentrated in vacuo and purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) gave the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 7.25-6.85 (m, 4H), 3.77-3.50 (m, 3H), 2.91-2.85 (m, 1H), 2.78-2.57 (m, 2H), 2.01-1.57 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 137.64, 136.70, 128.99, 128.72, 125.77, 125.36, 66.51, 60.38, 40.08, 29.51, 24.70, 19.31. HRMS calculated for C₁₁H₁₄O 163.11174 [M+H]⁺; found 163.11164.

(S)-(1,2,3,4-tetrahydronaphthalen-1-yl)methyl-4-methylbenzenesulfonate (**55ii**). Compound **55i** (1.85 g, 11.4 mmol) was dissolved in anhydrous DCM, followed by the addition of TsCl (4.3 g, 22.8 mmol, 2.0 eq.) and TEA (3.2 mL, 22.8 mmol, 2.0 eq.). After stirring at r.t. for 48 h, the reaction mixture was concentrated *in vacuo*. The residue was dissolved in EtOAc and washed with sat. aq. NaHCO₃ (2×) and brine. The organic layer was dried over MgSO₄ and concentrated in vacuo. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (3.5 g, 11.1 mmol, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.09-6.89 (m, 4H), 4.15-4.12 (m, 1H), 4.00 (t, J = 9.7 Hz, 1H), 3.09-3.03 (m, 1H), 2.71-2.48 (m, 2H), 2.34 (s, 3H), 1.91-1.48 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 144.43, 137.44, 133.87, 132.64, 129.56, 129.07, 128.51, 127.42, 126.32, 125.46, 72.79, 36.79, 28.89, 24.20, 21.14, 18.43.

(R)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)acetonitrile (**55**). Compound **55ii** (3.5 g, 11.1 mmol) was dissolved in DMF, followed by the addition of NaCN (1.1 g, 22.2 mmol, 2 eq.). After refluxing overnight, the reaction mixture was diluted with EtOAc, washed with H₂O (2×), sat. aq. NaHCO₃ (2×) and brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (1.8 g, 10.5 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.10-6.97 (m, 4H), 3.06-3.00 (m, 1H), 2.77-2.59 (m, 2H), 2.57-2.35 (m, 2H), 1.99-1.61 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 136.62, 136.23, 129.00, 127.57, 126.28, 125.58, 118.55, 34.09, 28.86, 27.67, 23.99, 19.06. HRMS calculated for C₁₂H₁₃N 172.11208 [M+H]⁺; found 172.11197.

(R)-N-methoxy-N-methyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl)acetamide (**56**). Compound **55** (1.8 g, 10.5 mmol) was dissolved in ethylene glycol, followed by the addition of KOH (4.7 mL, 84 mmol, 1 g/mL solution, 8.0 eq.). The reaction was stirred at 170 °C overnight. The reaction mixture was poured in H₂O and the pH was adjusted to 2-3 with conc. HCl. The mixture was extracted with EtOAc (3×) and the combined organic layer was washed by H₂O (3×), brine, dried over MgSO₄ and concentrated *in vacuo*. The crude intermediate was directly coupled with N,O-dimethylhydroxylamine hydrochloride (1.2 eq.) according to general procedure B on a 10.5 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.2 g, 5.1 mmol, 49%). ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.01 (m, 4H), 3.59 (s, 3H), 3.48-3.42 (m, 1H), 3.20 (s, 3H), 2.85-2.66 (m, 4H), 2.00-1.64 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.62, 139.98, 137.09, 129.15, 128.46, 125.80, 125.72, 61.15, 39.34, 33.85, 33.85, 29.58, 28.05, 19.48. HRMS calculated for C₁₄H₁₉NO₂ 234.14886 [M+H]⁺; found 234.14874.

(S)-2-methyl-N-((E)-2-((R)-1,2,3,4-tetrahydronaphthalen-1-yl)ethylidene)propane-2-sulfinamide (**59**). Compound **56** (1.2 g, 5.1 mmol) was dissolved in Et₂O and the reaction solution was cooled to 0 °C. LiAlH₄ (6.6 mL, 6.6 mmol, 1 M solution in Et₂O, 1.3 eq.) was slowly added and the reaction was stirred at 0 °C for 2 h. The reaction was quenched with 0.1 M HCl and the suspension was filtrated. The filtrate was concentrated *in vacuo* and co-evaporated with toluene ($3\times$). The obtained aldehyde intermediate **57** was dissolved in anhydrous DCM, followed by the addition of (S)-2-methylpropane-2-sulfinamide **58** (0.92 g, 7.7 mmol, 1.5 eq.) and anhydrous CuSO₄ (3.3 g, 20.4 mmol, 4.0 eq.). After stirring at r.t. for 48 h, the suspension solution was filtrated through Celite and concentrated *in vacuo*. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 25% EtOAc/pentane) yielded the title compound (1.2 g, 4.3 mmol, 84%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (t, J = 4.8 Hz, 1H), 7.22-6.96 (m, 4H), 3.34-3.28 (m, 1H), 2.96-2.65 (m, 4H), 1.98-1.61 (m, 4H), 1.18 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.64, 138.95, 137.11, 129.24, 128.14, 125.94, 125.82, 56.64, 43.17, 34.97, 29.46, 28.11, 22.33, 19.76. HRMS calculated for C₁₆H₂₃NOS 278.15731 [M+H]⁺; found 278.15723.

(S)-N-((S)-1-cyano-2-((R)-1,2,3,4-tetrahydronaphthalen-1-yl)ethyl)-2-methylpropane-2-sulfinamide (**60**). Compound **59** (1.2 g, 4.3 mmol) was dissolved in anhydrous THF and the solution was cooled to -78 °C. Et₂AlCN (6.5 mL, 6.5 mmol, 1M solution in toluene, 1.5 eq.) was added to anhydrous THF, followed by the addition of i-PrOH (1.0 mL, 12.9 mmol, 3.0 eq.). After stirring at r.t. for 15 min, this solution was slowly added to a cooled solution of compound **130** in anhydrous THF. The reaction was stirred at r.t. until TLC-MS analysis showed complete conversion of the starting material. The reaction mixture was cooled to -78 °C again and sat. aq. NaHCO₃ (5.5 mL) was added. The reaction mixture was allowed to warm up to r.t. and the suspension solution was filtrated. The filtrate was concentrated *in vacuo* and purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound(1.1 g, 3.6 mmol, 84%) as a single diastereoisomer (de > 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.20-6.92 (m, 4H), 4.48 (d, J = 8.5 Hz, 1H), 4.31-4.25 (m, 1H), 3.13-3.07 (m, 1H), 2.85-2.67 (m, 2H), 2.30-2.23 (m, 1H), 2.16-2.01 (m, 1H), 1.99-1.59 (m, 4H), 1.24 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 138.57, 136.89, 129.43, 128.35, 126.23, 125.86, 119.47, 57.06, 44.91, 41.94, 34.11, 29.09, 27.26, 22.54, 19.21. HRMS calculated for C₁₇H₂₄N₂OS 305.16821 [M+H]⁺; found 305.16827.

Boc-1-(R)-TetraNal-OH (**61**). Compound **60** (1.1 g, 3.6 mmol) was dissolved in 6M HCl and refluxed for 48 h. The mixture was co-evaporated with toluene ($3\times$) to give the unprotected amino acid as the HCl salt. Subsequently, the amino acid was dissolved in THF/H2O (1:1, v/v), followed by the addition

of Boc₂O (1.2 g, 5.4 mmol, 1.5 eq.) and TEA (2.0 mL, 14.4 mmol, 4 eq.). After stirring overnight, the mixture was concentrated *in vacuo* and the residue dissolved in EtOAc. The organic layer was washed with H₂O and brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane with 0.1% acetic acid) yielded the title compound (670 mg, 2.1 mmol, 58 %). ¹H NMR (400 MHz, CDCl₃) δ 10.46 (s, 1H), 7.16-7.01 (m, 4H), 5.08 (d, J = 8.4 Hz, 1H), 4.46-4.24 (m, 1H), 3.12-2.88 (m, 1H), 2.88-2.61 (m, 2H), 2.24-2.17 (m, 1H), 2.04-1.68 (m, 5H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 177.91, 177.20, 155.55, 155.51, 139.90, 137.07, 129.35, 128.77, 126.01, 125.86, 114.20, 52.36, 40.01, 34.36, 29.81, 29.45, 28.42, 19.43. HRMS calculated for C₁₈H₂₅NO₄ 320.18563 [M+H]⁺; found 320.18567.

Tert-butyl ((S)-1-(methoxy(methyl)amino)-1-oxo-3-((R)-1,2,3,4-tetrahydronaphthalen-1-yl) propan-2yl)carbamate (**62**). This compound was prepared according to general procedure E on a 1.3 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (355 mg, 1.0 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (d, J = 7.5 Hz, 1H), 7.17-7.00 (m, 3H), 5.24 (d, J = 9.6 Hz, 1H), 4.95-4.80 (m, 1H), 3.57 (s, 3H), 3.16 (s, 3H), 2.94-2.67 (m, 3H), 2.09-1.62 (m, 6H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.62, 155.57, 140.20, 136.63, 129.17, 129.11, 125.82, 125.56, 79.58, 61.49, 49.20, 34.33, 32.13, 29.09, 28.82, 28.40, 19.11. HRMS calculated for C₂₀H₃₀N₂O₄ 363.22783 [M+H]⁺; found 363.22791.

Tert-butyl ((S)-4-methyl-3-oxo-1-((R)-1,2,3,4-tetrahydronaphthalen-1-yl)pent-4-en-2-yl) carbamate (63). This compound was prepared according to general procedure F on a 1.0 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (267 mg, 0.78 mmol, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.26 (m, 1H), 7.21-6.98 (m, 3H), 5.81 (s, 1H), 5.78-5.74 (m, 1H), 5.35 (d, J = 8.8 Hz, 1H), 5.22-5.16 (m, 1H), 2.92-2.86 (m, 1H), 2.85-2.62 (m, 2H), 2.16-1.97 (m, 1H), 1.97-1.59 (m, 8H), 1.46 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 201.41, 155.47, 142.26, 140.07, 136.58, 129.29, 129.07, 126.59, 126.00, 125.79, 79.73, 52.64, 41.72, 34.18, 29.09, 28.76, 28.41, 19.06, 17.83. HRMS calculated for C₂₁H₂₉NO₃ 344.22202 [M+H]+; found 344.22205. Tert-butyl ((2S,3R)-3-hydroxy-4-methyl-1-((R)-1,2,3,4-tetrahydronaphthalen-1-yl)pent-4-en-2-yl)carbamate (**64**). This compound was prepared according to general procedure G on a 0.78 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (158 mg, 0.46 mmol, 59%). ¹H NMR (400 MHz, CDCl₃) δ 7.23-6.97 (m, 4H), 5.02 (s, 1H), 4.98-4.77 (m, 2H), 4.14 (s, 1H), 4.02-3.94 (m, 1H), 2.93-2.80 (m, 1H), 2.80-2.68 (m, 2H), 2.61-2.51 (m, 1H), 1.95-1.67 (m, 6H), 1.62 (s, 3H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.14, 144.95, 140.71, 136.70, 129.28, 128.86, 125.80, 125.63, 111.57, 79.54, 77.84, 51.68, 36.11, 34.98, 29.26, 29.09, 28.51, 19.37. HRMS calculated for C₂₁H₃₁NO₃ 346.23767 [M+H]⁺; found 346.23772.

Boc-1-(R)-TetraNal-EK (**65**). This compound was prepared according to general procedure H on a 0.46 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (53 mg, 0.15 mmol, 33%). ¹H NMR (400 MHz, CDCl₃) δ 7.20-7.02 (m, 4H), 4.96 (d, J = 9.0 Hz, 1H), 4.49-4.44 (m, 1H), 3.28 (d, J = 5.0 Hz, 1H), 2.99-2.89 (m, 1H), 2.85 (d, J = 5.0 Hz, 1H), 2.81-2.65 (m, 2H), 2.11-1.69 (m, 6H), 1.50 (s, 3H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 209.84, 155.50, 140.00, 136.97, 129.31, 128.83, 126.05, 125.88, 79.99, 59.12, 52.34, 51.92, 39.38, 35.16, 29.41, 28.60, 28.44, 19.49, 16.76. HRMS calculated for C₂₁H₂₉NO₄ 360.21693 [M+H]⁺; found 360.21690. [α]_D20 + 78(C 1.0, CHCl₃).

Scheme S3. Synthesis of compound **70**. Reagents and conditions: (a) i) LiAlH₄/Et₂O; ii)TsCl/TEA/DCM; iii) NaCN/DMF; (b) i) KOH/ethylene glycol; ii) N,O-dimethylhydroxylamine hydrochloride, HCTU/DiPEA/DCM; (c) LiAlH₄/Et₂O; d) **58**/CuSO₄/DCM; (e) Et₂AlCN/i-PrOH/THF; (f) i) 6 M HCl, reflux; ii) Boc₂O/TEA/THF/H2O.

(R)-(1,2,3,4-tetrahydronaphthalen-1-yl)methanol (**141i**). This compound was obtained using the same procedures as described above for the preparation of compound **55i** on a 11.4 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (1.8 g, 11.1 mmol, 97%). ¹H NMR (400 MHz, CDCl₃) δ 7.18-7.09 (m, 1H), 7.09-6.94 (m, 3H), 3.72-3.68 (m, 1H), 3.67-3.57 (m, 2H), 2.91-2.85 (m, 1H), 2.68 (t, J = 5.6 Hz, 2H), 2.00-1.57 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 137.66, 136.71, 129.00, 128.73, 125.78, 125.37, 66.52, 40.09, 29.52, 24.71, 19.31. HRMS calculated for C₁₁H₁₄O 163.11174 [M+H]⁺; found 163.11152.

(R)-(1,2,3,4-tetrahydronaphthalen-1-yl)methyl 4-methylbenzenesulfonate (**141ii**). This compound was obtained using the same procedures as described above for the preparation of compound **55ii** on a 11.1 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (3.2 g, 10.1 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.67 (m, 2H), 7.27 (d, J = 8.1 Hz, 2H), 7.10-6.91 (m, 4H), 4.17-4.13 (m, 1H), 4.01 (t, J = 9.7 Hz, 1H), 3.12-3.05 (m, 1H), 2.72-2.58 (m, 2H), 2.37 (s, 3H), 1.90-1.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 144.59, 137.63, 133.99, 132.70, 129.68, 129.21, 128.69, 127.58, 126.46, 125.58, 72.94, 36.92, 29.03, 24.30, 21.34, 18.52.

(S)-2-(1,2,3,4-tetrahydronaphthalen-1-yl)acetonitrile (141). This compound was obtained using the same procedures as described above for the preparation of compound 55 on a 10.1 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (1.7 g, 9.9 mmol, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.17-6.94 (m, 4H), 3.08-3.02 (m, 1H), 2.77-2.61 (m, 2H), 2.61-2.36 (m, 2H), 2.02-1.64 (m, 4H). ¹³C NMR (100 MHz,

CDCl₃) δ 136.70, 136.30, 129.08, 127.63, 126.36, 125.66, 118.59, 34.19, 28.93, 27.75, 24.09, 19.13. HRMS calculated for C₁₂H₁₃N 172.11208 [M+H]⁺; found 172.11194.

(S)-N-methoxy-N-methyl-2-(1,2,3,4-tetrahydronaphthalen-1-yl)acetamide (**142**). This compound was obtained using the same procedures as described above for the preparation of compound **56** on a 9.9 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (0.7 g, 3.0 mmol, 30%). ¹H NMR (400 MHz, CDCl₃) δ 7.18-6.93 (m, 4H), 3.54 (s, 3H), 3.50-3.33 (m, 1H), 3.16 (s, 3H), 2.79-2.61 (m, 4H), 1.97-1.62 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.07, 139.64, 136.68, 128.83, 128.11, 125.49, 125.41, 60.79, 39.07, 33.57, 29.28, 27.83, 19.24. HRMS calculated for C₁₄H₁₉NO₂ 234.14886 [M+H]⁺; found 234.14883.

(S)-2-methyl-N-((E)-2-((S)-1,2,3,4-tetrahydronaphthalen-1-yl)ethylidene)propane-2-sulfinamide

(144). This compound was obtained using the same procedures as described above for the preparation of compound **59** on a 3.0 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 25% EtOAc/pentane) yielded the title compound (584 mg, 2.1 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.13-8.11 (m, 1H), 7.22-6.94 (m, 4H), 3.30-3.24 (m, 1H), 2.93-2.61 (m, 4H), 1.98-1.58 (m, 4H), 1.17 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 168.64, 138.64, 136.93, 129.16, 128.04, 125.88, 125.68, 56.43, 42.99, 34.99, 29.32, 28.13, 22.22, 19.68. HRMS calculated for C₁₆H₂₃NOS 278.15731 [M+H]⁺; found 278.15724.

(S)-N-((S)-1-cyano-2-((S)-1,2,3,4-tetrahydronaphthalen-1-yl)ethyl)-2-methylpropane-2-sulfinamide (145). This compound was obtained using the same procedures as described above for the preparation of compound 60 on a 2.1 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (506 mg, 1.7 mmol, 81%). ¹H NMR (400 MHz, CDCl₃) δ 7.21-7.02 (m, 4H), 4.30 (d, J = 8.9 Hz, 1H), 4.24-4.18 (m, 1H), 3.10-3.04 (m, 1H), 2.88-2.62 (m, 2H), 2.33-2.26 (m, 1H), 2.13-2.05 (m, 1H), 1.97-1.63 (m, 4H), 1.26 (s, 9H). 13C NMR (100 MHz, CDCl₃) δ 138.56, 137.04, 129.51, 128.51, 126.35, 125.97, 119.89, 57.27, 45.25, 42.03, 33.58, 29.19, 27.08, 22.65, 19.13. HRMS calculated for $C_{17}H_{24}N_2OS$ 305.16821 [M+H]⁺; found 305.16828.

Tert-butyl ((S)-1-(methoxy(methyl)amino)-1-oxo-3-((S)-1,2,3,4-tetrahydronaphthalen-1-yl)propan-2yl)carbamate (**146**). Compound **70** was obtained using the same procedures as described above for the preparation of compound **61** on a 1.7 mmol scale. The crude product was directly coupled with N,Odimethylhydroxylamine according to general procedure E. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (430 mg, 1.2 mmol, 71%). ¹H NMR (400 MHz, CDCl₃) δ 7.17-6.97 (m, 4H), 5.54 (d, J = 9.6 Hz, 1H), 4.83 (t, J = 10.0 Hz, 1H), 3.78 (s, 3H), 3.16 (s, 3H), 3.00-2.85 (m, 1H), 2.77-2.69 (m, 2H), 2.05-1.67 (m, 6H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.49, 155.92, 140.23, 136.94, 128.94, 128.49, 125.56, 125.49, 79.36, 61.48, 48.85, 39.79, 33.67, 32.08, 29.56, 28.25, 26.24, 19.19. HRMS calculated for C₂₀H₃₀N₂O₄ 363.22783 [M+H]⁺; found 363.22782.

Tert-butyl ((S)-4-methyl-3-oxo-1-((S)-1,2,3,4-tetrahydronaphthalen-1-yl)pent-4-en-2-yl)carbamate (147). This compound was prepared according to general procedure F on a 1.2 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (320 mg, 0.93 mmol, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.13-6.96 (m, 4H), 6.08 (s, 1H), 5.87 (d, J = 1.8 Hz, 1H), 5.47 (d, J = 9.0 Hz, 1H), 5.25-5.19 (m, 1H), 3.07-2.92 (m, 1H), 2.81-2.67 (m, 2H), 2.09-2.01 (m, 1H), 1.99-1.59 (m, 8H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 201.12, 155.89, 142.21, 140.20, 137.13, 129.17, 128.58, 126.00, 125.77, 79.73, 52.45, 41.44, 34.11, 29.73, 28.37, 26.58, 19.53, 17.89. HRMS calculated for C₂₁H₂₉NO₃ 344.22202 [M+H]⁺; found 344.22206.

Tert-butyl ((2S,3R)-3-hydroxy-4-methyl-1-((S)-1,2,3,4-tetrahydronaphthalen-1-yl)pent-4-en-2-yl) carbamate (148). This compound was prepared according to general procedure G on a 0.93 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (221 mg, 0.64 mmol, 69%). ¹H NMR (400 MHz, CDCl₃) δ 7.17-6.95 (m, 4H), 5.07 (d, J = 9.5 Hz, 1H), 5.00 (s, 1H), 4.91-4.89 (m, 1H), 4.25-4.04 (m, 1H), 4.04-3.83 (m, 1H),

2.92-2.59 (m, 4H), 1.99-1.56 (m, 9H), 1.45 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 156.27, 144.80, 141.23, 137.27, 129.10, 128.68, 125.67, 125.50, 112.40, 111.39, 79.51, 77.81, 50.44, 35.43, 33.75, 29.82, 28.49, 26.77, 19.53, 19.49. HRMS calculated for C₂₁H₃₁NO₃ 346.23767 [M+H]⁺; found 346.23773.

Boc-1-(S)-TetraNal-EK (149). This compound was prepared according to general procedure H on a 0.64 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (50 mg, 0.14 mmol, 22%). ¹H NMR (400 MHz, CDCl₃) δ 7.10-6.93 (m, 4H), 4.99 (d, J = 9.2 Hz, 1H), 4.41-4.35 (m, 1H), 3.21 (d, J = 5.0 Hz, 1H), 2.90-2.82 (m, 2H), 2.75-2.55 (m, 2H), 2.03-1.61 (m, 6H), 1.40 (s, 3H), 1.37 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 209.23, 156.01, 140.19, 137.48, 129.39, 128.73, 125.95, 125.83, 80.09, 59.17, 52.59, 51.41, 38.79, 34.16, 29.72, 28.45, 26.02, 19.13, 16.87. HRMS calculated for C₂₁H₂₉NO₄ 360.21693 [M+H]⁺; found 360.21695. [α]_D20 +116 (C 1.0, CHCl₃).

Scheme S4. Synthesis of compound **73**. Reagents and conditions: (a) PtO₂/AcOH, 4 bar H₂; (b) i) LiAlH₄/Et₂O; ii) TsCl/TEA/DCM; iii) NaCN/DMF; (c) i) KOH/ethylene glycol; ii) N,O-dimethylhydroxylamine hydrochloride, HCTU/DiPEA/DCM; (d) LiAlH₄/Et₂O; (e) **58**/CuSO₄/DCM; (f) Et₂AlCN/i-PrOH/THF; (g) i) 6 M HCl, reflux; ii) Boc₂O/TEA/THF/H₂O.

(1S)-decahydronaphthalene-1-carboxylic acid (72). (S)-1,2,3,4-tetrahydronaphthalene-1-carboxylic acid 54 (2 g, 11.4 mmol) was dissolved in AcOH, followed by the addition of PtO_2 (130 mg). The mixture was placed under H₂ (4 bar, Parr apparatus) for 48 h. The mixture was filtrated through Celite

and concentrated *in vacuo* to give the title product in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 12.12 (s, 1H), 2.50-2.45 (m, 1H), 2.18-2.12 (m, 1H), 1.85-1.16 (m, 15H). ¹³C NMR (100 MHz, CDCl₃) δ 181.96, 47.44, 38.58, 36.79, 32.33, 26.51, 25.48, 24.88, 21.85, 21.48, 20.80. HRMS calculated for C₁₁H₁₈O₂ 183.13796 [M+H]⁺; found 183.13792.

((1S)-decahydronaphthalen-1-yl)methanol (150i). This compound was obtained using the same procedures as described above for the preparation of compound 55i on a 11.4 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (1.1 g, 6.5 mmol, 57%). 1H NMR (400 MHz, CDCl3) δ 3.51-3.36 (m, 2H), 3.14 (s, 1H), 1.86-0.97 (m, 17H). 13C NMR (100 MHz, CDCl3) δ 65.50, 44.18, 37.54, 37.10, 32.61, 26.71, 26.40, 25.81, 23.82, 21.27, 20.05. HRMS calculated for C11H20O 169.15869 [M+H]+; found 169.15840.

((1S)-decahydronaphthalen-1-yl)methyl 4-methylbenzenesulfonate (**150ii**). This compound was obtained using the same procedures as described above for the preparation of compound **55i** on a 6.5 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (2.0 g, 6.2 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.82-7.72 (m, 2H), 7.34 (d, J = 8.2 Hz, 2H), 3.92-3.76 (m, 2H), 2.44 (s, 3H), 1.85-0.94 (m, 17H). ¹³C NMR (100 MHz, CDCl₃) δ 144.61, 133.01, 129.75, 127.77, 73.05, 40.76, 36.96, 36.56, 32.28, 26.37, 25.88, 25.26, 23.17, 21.55, 20.99, 19.73. HRMS calculated for C₁₈H₂₆O₃S 323.16754 [M+H]⁺; found 323.16807.

2-((1R)-decahydronaphthalen-1-yl)acetonitrile (**150**). This compound was obtained using the same procedures as described above for the preparation of compound **55** on a 6.2 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (1.0 g, 5.6 mmol, 90%). ¹H NMR (400 MHz, CDCl₃) δ 2.44-0.31 (m, 19H). ¹³C NMR (100 MHz, CDCl₃) δ 119.07, 39.27, 38.67, 36.89, 32.06, 26.50, 26.23, 25.97, 24.66, 21.47, 20.85, 19.34. HRMS calculated for C₁₂H₁₉N 178.15903 [M+H]⁺; found 178.15893.

2-((1R)-decahydronaphthalen-1-yl)-N-methoxy-N-methylacetamide (151). This compound was obtained using the same procedures as described above for the preparation of compound 56 on a 5.6 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.3 g, 5.4 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 3H), 3.18 (s, 3H), 2.35-2.24 (m, 2H), 2.07-1.98 (m, 1H), 1.79-1.06 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 174.17, 61.03, 40.28, 38.03, 37.27, 35.87, 32.42, 26.95, 26.67, 26.45, 25.10, 21.16, 20.16. HRMS calculated for C₁₄H₂₅NO₂ 240.19581 [M+H]⁺; found 240.19588.

(S)-N-((E)-2-((1R)-decahydronaphthalen-1-yl)ethylidene)-2-methylpropane-2-sulfinamide (**153**). This compound was obtained using the same procedures as described above for the preparation of compound **59** on a 5.4 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 25% EtOAc/pentane) yielded the title compound (1.4 g, 4.9 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.04 (dd, J = 6.0, 4.7 Hz, 1H), 2.54-2.23 (m, 2H), 1.97-1.88 (m, 1H), 1.81-1.03 (m, 25H). ¹³C NMR (100 MHz, CDCl₃) δ 169.82, 56.47, 40.60, 40.03, 39.37, 37.35, 32.50, 27.20, 26.62, 26.55, 25.20, 22.39, 21.16, 19.76. HRMS calculated for C₁₆H₂₉NOS 284.20426 [M+H]⁺; found 284.20438.

(S)-N-((S)-1-cyano-2-((1R)-decahydronaphthalen-1-yl)ethyl)-2-methylpropane-2-sulfinamide (154). This compound was obtained using the same procedures as described above for the preparation of compound 131 on a 4.9 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (914 mg, 3.0 mmol, 61%). ¹H NMR (400 MHz, CDCl₃) δ 4.63 (d, J = 9.0 Hz, 1H), 4.16-4.09 (m, 1H), 1.89-1.04 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 119.87, 56.87, 44.74, 39.30, 38.65, 37.42, 37.09, 32.35, 26.51, 26.44, 26.27, 25.10, 22.43, 21.03, 19.78. HRMS calculated for C₁₇H₃₀N₂OS 311.21516 [M+H]⁺; found 311.21511.

Tert-butyl ((S)-3-((1R)-decahydronaphthalen-1-yl)-1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate (155). This compound was obtained using the same procedures as described above for the preparation of compound 146 on a 3.0 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (728 mg, 2.0 mmol, 66%). ¹H NMR (400 MHz, CDCl₃) δ 5.06 (d, J = 9.6 Hz, 1H), 4.70-4.58 (m, 1H), 3.77 (s, 3H), 3.18 (s, 3H), 1.79-1.08 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 173.95, 155.70, 79.39, 61.58, 60.36, 48.37, 38.35, 37.70, 37.29, 36.08, 32.54, 28.33, 28.22, 27.87, 26.74, 25.39, 21.38, 19.39. HRMS calculated for C₂₀H₃₆N₂O₄ 369.27478 [M+H]⁺; found 369.27527.

Tert-butyl ((S)-1-((1R)-decahydronaphthalen-1-yl)-4-methyl-3-oxopent-4-en-2-yl)carbamate (**156**). This compound was prepared according to general procedure F on a 2.0 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (244 mg, 0.7 mmol, 35%). ¹H NMR (400 MHz, CDCl₃) δ 6.07 (s, 1H), 5.87 (d, J = 1.8 Hz, 1H), 5.19 (d, J = 8.8 Hz, 1H), 5.07-5.01 (m, 1H), 1.80-1.49 (m, 11H), 1.44 (s, 11H), 1.31-1.20 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 202.04, 155.54, 142.73, 125.77, 79.53, 38.86, 38.20, 37.42, 37.25, 32.54, 28.36, 27.89, 26.80, 26.73, 25.33, 21.37, 20.00, 17.96. HRMS calculated for C₂₁H₃₅NO₃ 350.26897 [M+H]⁺; found 350.26907. [α]_D20 +53 (C 1.0, CHCl₃).

Tert-butyl ((2S,3R)-1-((1R)-decahydronaphthalen-1-yl)-3-hydroxy-4-methylpent-4-en-2-yl)carbamate (157). This compound was prepared according to general procedure G on a 0.7 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) gave the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.03 (s, 1H), 4.94 (d, J = 1.6 Hz, 1H), 4.83 (d, J = 9.2 Hz, 1H), 4.18-4.08 (m, 1H), 3.84-3.73 (m, 1H), 2.89 (s, 1H), 1.76-1.71 (m, 7H), 1.64-1.36 (m, 20H), 1.28-1.21 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 156.17, 145.03, 111.36, 79.30, 77.93, 60.49, 50.24, 38.13, 32.64, 31.42, 28.44, 28.39, 26.95, 26.75, 25.57, 21.46, 19.65. HRMS calculated for C₂₁H₃₇NO₃ 352.28462 [M+H]⁺; found 352.28466.

Boc-1-(R)-DecAla-EK (**158**). This compound was prepared according to general procedure H on a 0.7 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (46 mg, 0.13 mmol, 19%). ¹H NMR (400 MHz, CDCl₃) δ 4.84 (d, J = 8.8 Hz, 1H), 4.32-4.26 (m, 1H), 3.31 (d, J = 5.0 Hz, 1H), 2.89 (d, J = 5.0 Hz, 1H), 1.81-1.63 (m, 5H), 1.62-1.48 (m, 9H), 1.42 (s, 11H), 1.31-1.18 (m, 6H). 13C NMR (100 MHz, CDCl₃) δ 210.13,

155.83, 79.88, 59.26, 52.41, 50.69, 38.11, 37.42, 34.88, 32.68, 28.43, 28.13, 26.89, 26.79, 25.48, 21.45, 19.32, 16.88. HRMS calculated for $C_{21}H_{35}NO_4$ 366.26389 [M+H]⁺; found 366.26391. [α]_D20 +67 (C 0.3, CHCl₃).

Scheme S5. Synthesis of compound 76s. Reagents and conditions: (a) PtO₂/AcOH, 4 bar H₂; (b) i) LiAlH₄/Et₂O; ii) TsCl/TEA/DCM; iii) NaCN/DMF; (c) i) KOH/ethylene glycol; ii) N,O-dimethylhydroxylamine hydrochloride, HCTU/DiPEA/DCM; (d) LiAlH₄/Et₂O; (e) 58/CuSO₄/DCM; (f) Et₂AlCN/i-PrOH/THF; (g) i) 6 M HCl, reflux; ii) Boc₂O/TEA/THF/H₂O.

(1R)-decahydronaphthalene-1-carboxylic acid (**158**). This compound was obtained using the same procedures as described above for the preparation of compound **72** on a 11.4 mmol scale. ¹H NMR (400 MHz, CDCl₃) δ 2.52-2.46 (m, 1H), 2.18-2.11 (m, 1H), 1.85-1.17 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 182.08, 47.57, 38.76, 36.90, 32.45, 26.62, 25.60, 25.00, 21.99, 21.66, 20.93. HRMS calculated for C₁₁H₁₈O₂ 183.13796 [M+H]⁺; found 183.13790.

((1R)-decahydronaphthalen-1-yl)methanol (**159i**). This compound was obtained using the same procedures as described above for the preparation of compound **55i** on a 11.4 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (1.2 g, 7.1 mmol, 62%). ¹H NMR (400 MHz, CDCl₃) δ 3.51-3.37 (m, 2H), 2.90 (s, 1H), 1.83-0.97 (m, 17H). ¹³C NMR (100 MHz, CDCl₃) δ 65.59, 44.23, 37.56, 37.12, 32.63, 26.73, 26.42, 25.83, 23.84, 21.29, 20.09. HRMS calculated for C₁₁H₂₀O 169.15869 [M+H]⁺; found 169.15878.

((1R)-decahydronaphthalen-1-yl)methyl 4-methylbenzenesulfonate (**159ii**). This compound was obtained using the same procedures as described above for the preparation of compound **55ii** on a 7.1 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (2.1 g, 6.5 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 3.90-3.75 (m, 2H), 2.43 (s, 3H), 1.84-0.93 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 144.52, 132.92, 129.67, 127.66, 72.92, 40.67, 36.87, 36.47, 32.19, 26.28, 25.79, 25.17, 23.06, 21.42, 20.90, 19.62. HRMS calculated for C₁₈H₂₆O₃S 323.16754 [M+H]⁺; found 323.16734.

2-((1S)-decahydronaphthalen-1-yl)acetonitrile (**159**). This compound was obtained using the same procedures as described above for the preparation of compound **55** on a 6.5 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (1.1 g, 6.2 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 2.22 (d, J = 7.7 Hz, 2H), 1.89-1.07 (m, 17H). ¹³C NMR (100 MHz, CDCl₃) δ 119.28, 39.39, 38.80, 37.01, 32.18, 26.65, 26.34, 26.09, 24.78, 21.64, 20.97, 19.48. HRMS calculated for C₁₂H₁₉N 178.15903 [M+H]⁺; found 178.15897.

2-((1S)-decahydronaphthalen-1-yl)-N-methoxy-N-methylacetamide (160). This compound was obtained using the same procedures as described above for the preparation of compound 56 on a 6.2 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.4 g, 5.8 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 3.68 (s, 3H), 3.18 (s, 3H), 2.33-2.24 (m, 2H), 2.07-1.98 (m, 1H), 1.79-1.07 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 174.12, 61.03, 40.28, 38.03, 37.27, 35.86, 32.42, 26.95, 26.67, 26.45, 25.10, 21.16, 20.16. HRMS calculated for C₁₄H₂₅NO₂ 240.19581 [M+H]⁺; found 240.19582.

(S)-N-((E)-2-((1S)-decahydronaphthalen-1-yl)ethylidene)-2-methylpropane-2-sulfinamide (162). This compound was obtained using the same procedures as described above for the preparation of compound 59 on a 5.8 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 25% EtOAc/pentane) yielded the title compound (1.5 g, 5.3 mmol, 91%). ¹H NMR (400 MHz, CDCl₃)

δ 8.05 (t, J = 5.2 Hz, 1H), 2.52-2.31 (m, 2H), 1.94-1.86 (m, 1H), 1.79-1.07 (m, 25H). ¹³C NMR (100 MHz, CDCl₃) δ 169.65, 56.43, 40.13, 39.34, 37.35, 32.49, 27.15, 26.65, 26.51, 25.16, 22.34, 21.17, 19.84. HRMS calculated for C₁₆H₂₉NOS 284.20426 [M+H]⁺; found 284.20437.

(S)-N-((S)-1-cyano-2-((1S)-decahydronaphthalen-1-yl)ethyl)-2-methylpropane-2-sulfinamide (163). This compound was obtained using the same procedures as described above for the preparation of compound 60 on a 5.3 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (1.0 g, 3.2 mmol, 60%). ¹H NMR (400 MHz, CDCl₃) δ 4.59 (d, J = 8.7 Hz, 1H), 4.17-4.07 (m, 1H), 1.90-1.04 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 119.86, 56.92, 44.32, 39.20, 38.58, 37.39, 37.12, 32.32, 26.55, 26.35, 26.26, 25.17, 22.47, 21.05, 19.70. HRMS calculated for C₁₇H₃₀N₂OS 311.21516 [M+H]⁺; found 311.21509.

Tert-butyl ((S)-3-((1S)-decahydronaphthalen-1-yl)-1-(methoxy(methyl)amino)-1-oxopropan-2-yl)carbamate (164). This compound was obtained using the same procedures as described above for the preparation of compound 146 on a 3.2 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (934 mg, 2.5 mmol, 61%). ¹H NMR (400 MHz, CDCl₃) δ 5.16 (d, J = 9.5 Hz, 1H), 4.71-4.66 (m, 1H), 3.77 (s, 3H), 3.19 (s, 3H), 1.80-1.08 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 174.11, 155.82, 79.37, 61.55, 48.76, 41.83, 37.82, 37.77, 37.61, 32.57, 28.34, 28.24, 26.85, 26.62, 25.81, 25.44, 21.29, 20.24. HRMS calculated for C₂₀H₃₆N₂O₄ 369.27478 [M+H]⁺; found 369.27509.

Tert-butyl ((S)-1-((1S)-decahydronaphthalen-1-yl)-4-methyl-3-oxopent-4-en-2-yl)carbamate (165). This compound was prepared according to general procedure F on a 2.5 mmol scale. Purification by silica gel flash column chromatography (1% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (639 mg, 1.8 mmol, 72%). ¹H NMR (400 MHz, CDCl₃) δ 6.08 (s, 1H), 5.87 (d, J = 1.8 Hz, 1H), 5.30 (d, J = 9.1 Hz, 1H), 5.15-5.04 (m, 1H), 1.90 (s, 3H), 1.83-1.00 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 201.45, 155.58, 142.09, 125.93, 79.25, 52.18, 41.71, 38.82, 38.00, 37.55, 32.47, 28.22, 26.74,

26.53, 25.88, 25.31, 21.19, 20.14, 17.74. HRMS calculated for C₂₁H₃₅NO₃ 350.26897 [M+H]⁺; found 350.26903. [α]_D20 +75 (C 1.0, CHCl₃).

Tert-butyl ((2S,3R)-1-((1S,4aS,8aS)-decahydronaphthalen-1-yl)-3-hydroxy-4-methylpent-4-en-2-yl)carbamate (**166**). This compound was prepared according to general procedure G on a 1.4 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) gave the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.03 (s, 1H), 4.91 (s, 1H), 4.86 (d, J = 8.0 Hz, 1H), 4.17-4.08 (m, 1H), 3.84-3.78 (m, 1H), 3.01 (s, 1H), 1.77-1.73 (m, 5H), 1.65-1.08 (m, 26H). ¹³C NMR (100 MHz, CDCl₃) δ 156.25, 144.96, 111.20, 79.24, 77.81, 50.72, 42.33, 37.90, 37.81, 32.80, 32.66, 28.42, 26.96, 26.74, 25.90, 25.55, 21.39, 20.37, 19.51. HRMS calculated for C₂₁H₃₇NO₃ 352.28462 [M+H]⁺; found 352.28465.

Boc-1-(S)-DecAla-EK (167). This compound was prepared according to general procedure H on a 1.4 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (17 mg, 47 µmol, 3%). ¹H NMR (400 MHz, CDCl₃) δ 4.82 (d, J = 8.9 Hz, 1H), 4.30-4.25 (m, 1H), 3.28 (d, J = 5.0 Hz, 1H), 2.88 (d, J = 5.1 Hz, 1H), 1.81-1.54 (m, 9H), 1.51 (s, 4H), 1.42 (s, 9H), 1.30-1.17 (m, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 209.85, 155.88, 79.91, 59.11, 52.52, 51.33, 42.19, 38.32, 37.76, 36.52, 32.67, 29.84, 28.45, 26.94, 26.63, 25.80, 25.50, 21.39, 20.38, 16.92. HRMS calculated for C₂₁H₃₅NO₄ 366.26389 [M+H]⁺; found 366.26393. [α]D20 +66 (C 0.3, CHCl₃).

cis-cis-Decahydro-1-naphthoic acid (**79ab**). The title compound was prepared according to the literature procedure⁷ on a 11.6 mmol scale in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 11.68 (s, 1H), 2.51-2.46 (m, 1H), 2.23-2.07 (m, 1H), 1.86-1.17 (m, 15H). ¹³C NMR (100 MHz, CDCl₃) δ 182.20, 47.55, 38.72, 36.87, 32.42, 26.59, 25.57, 24.97, 21.95, 21.61, 20.90. HRMS calculated for C₁₁H₁₈O₂ 183.13796 [M+H]⁺; found 183.13790.

(1-decahydronaphthalen-1-yl)methanol (**80i**). This compound was obtained using the same procedures as described above for the preparation of compound **55i** on a 11.6 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (1.8 g, 10.7 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 3.86 (s, 1H), 3.48-3.34 (m, 2H), 1.89-0.94 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 65.18, 44.02, 37.44, 37.04, 32.52, 26.62, 26.32, 25.73, 23.73, 21.18, 19.93.

(1-decahydronaphthalen-1-yl)methyl 4-methylbenzenesulfonate (**80ii**). This compound was obtained using the same procedures as described above for the preparation of compound **55ii** on a 10.7 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (3.3 g, 10.2 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.81-7.72 (m, 2H), 7.39-7.30 (m, 2H), 3.92-3.69 (m, 2H), 2.44 (s, 3H), 1.84-0.91 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 144.59, 132.98, 129.73, 127.74, 73.02, 40.74, 36.94, 36.54, 32.26, 26.35, 25.86, 25.24, 23.14, 21.52, 20.97, 19.71. HRMS calculated for C₁₈H₂₆O₃S 323.16754 [M+H]⁺; found 323.16743.

2-((1)-decahydronaphthalen-1-yl)acetonitrile (**80**). This compound was obtained using the same procedures as described above for the preparation of compound **55** on a 10.2 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (1.5 g, 8.5 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 2.46-0.39 (m, 19H). ¹³C NMR (100 MHz, CDCl₃) δ 119.12, 39.30, 38.70, 36.92, 32.09, 26.54, 26.26, 26.00, 24.70, 21.51, 20.89, 19.38. HRMS calculated for C₁₂H₁₉N 178.15903 [M+H]⁺; found 178.15895.

2-(1-decahydronaphthalen-1-yl)-N-methoxy-N-methylacetamide (**81**). This compound was obtained using the same procedures as described above for the preparation of compound **56** on a 8.5 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.8 g, 7.5 mmol, 88%). ¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 3H), 3.17 (s, 3H), 2.36-2.27 (m, 2H), 2.07-1.97 (m, 1H), 1.77-1.06 (m, 16H). ¹³C NMR (100 MHz, CDCl₃) δ 174.05, 60.87, 40.15, 37.89, 37.16, 32.30, 26.82, 26.55, 26.33, 24.98, 21.03, 20.03. HRMS calculated for C₁₄H₂₅NO₂ 240.19581 [M+H]⁺; found 240.19578.

(S)-N-((E)-2-(1-decahydronaphthalen-1-yl)ethylidene)-2-methylpropane-2-sulfinamide (83). This compound was obtained using the same procedures as described above for the preparation of compound 59 on a 7.5 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 25% EtOAc/pentane) yielded the title compound (1.8 g, 6.4 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.08-8.03 (m, 1H), 2.53-2.31 (m, 2H), 1.96-1.86 (m, 1H), 1.79-1.07 (m, 25H). ¹³C NMR (100 MHz, CDCl₃) δ 169.78, 169.68, 56.46, 40.57, 40.50, 40.16, 40.00, 39.36, 37.38, 37.32, 32.51, 32.48, 27.18, 26.67, 26.60, 26.53, 25.18, 22.37, 21.19, 21.14, 19.87, 19.74. HRMS calculated for C₁₆H₂₉NOS 284.20426 [M+H]⁺; found 284.20440.

(S)-N-((S)-1-cyano-2-(1-decahydronaphthalen-1-yl)ethyl)-2-methylpropane-2-sulfinamide (**84**). This compound was obtained using the same procedures as described above for the preparation of compound **60** on a 6.4 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (1.5 g, 4.8 mmol, 75%). ¹H NMR (400 MHz, CDCl₃) δ 4.63-4.59 (m, 1H), 4.16-4.09 (m, 1H), 1.88-1.04 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 119.87, 119.85, 56.88, 44.76, 44.28, 39.30, 39.20, 38.65, 38.57, 37.42, 37.39, 37.11, 37.09, 32.35, 32.30, 26.54, 26.51, 26.44, 26.33, 26.27, 26.24, 25.16, 25.10, 22.46, 22.44, 21.03, 19.78, 19.68. HRMS calculated for C₁₇H₃₀N₂OS 311.21516 [M+H]⁺; found 311.21511.

Tert-butyl ((S)-3-(1-decahydronaphthalen-1-yl)-1-(methoxy(methyl)amino)-1-oxopropan-2yl)carbamate (**168**). This compound was obtained using the same procedures as described above for the preparation of compound **146** on a 4.8 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (1.1 g, 3.0 mmol, 63%). ¹H NMR (400 MHz, CDCl₃) δ 5.29 (d, J = 9.3 Hz, 1H), 4.99 (s, 0.5H), 4.67 (s, 0.5H), 3.78 (s, 3H), 3.20 (s, 3H), 1.81-1.09 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 170.75, 155.54, 79.01, 77.36, 61.36, 60.10, 48.53, 48.14, 41.56, 37.58, 37.43, 37.36, 37.06, 35.70, 32.33, 28.10, 28.03, 27.64, 26.62, 26.52, 26.38, 25.56, 25.18, 21.15, 21.05, 20.75, 19.99, 19.15. HRMS calculated for $C_{20}H_{36}N_2O_4$ 369.27478 [M+H]⁺; found 369.27525.

Tert-butyl ((S)-1-(1-decahydronaphthalen-1-yl)-4-methyl-3-oxopent-4-en-2-yl)carbamate (**85a** and **85b**). These compounds were prepared according to general procedure F on a 3.0 mmol scale. Purification by HPLC (73% MeCN-H₂O) yielded the two diasteroisomers as two separate fraction. (**85a**: 81 mg, 0.23 mmol, 8%; **85b**: 170 mg, 0.49 mmol, 16%). **85a**: ¹H NMR (400 MHz, CDCl₃) δ 6.06 (s, 1H), 5.87 (s, 1H), 5.14 (d, J = 8.9 Hz, 1H), 5.06-5.01 (m, 1H), 1.90 (s, 3H), 1.79-1.07 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 202.17, 155.62, 142.80, 125.87, 79.68, 52.09, 38.97, 38.28, 37.50, 37.36, 32.61, 28.43, 27.96, 26.87, 25.40, 21.44, 20.07, 18.03. HRMS calculated for C₂₁H₃₅NO₃ 350.26897 [M+H]⁺; found 350.26913. [α]_D20 +53 (C 1, CHCl₃). **85b**: ¹H NMR (500 MHz, CDCl₃) δ 6.05 (s, 1H), 5.87 (s, 1H), 5.16-4.97 (m, 2H), 1.90 (s, 3H), 1.84-0.98 (m, 28H). ¹³C NMR (125 MHz, CDCl₃) δ 201.88, 155.83, 142.33, 126.28, 79.76, 52.47, 41.96, 39.17, 38.25, 37.77, 32.70, 28.48, 26.97, 26.75, 26.15, 25.52, 21.42, 20.37, 17.99. HRMS calculated for C₂₁H₃₅NO₃ 350.26897 [M+H]⁺; found 350.26904. [α]_D20 +69 (C 1, CHCl₃).

Tert-butyl ((2S,3R)-1-((1R,4aS,8aS)-decahydronaphthalen-1-yl)-3-hydroxy-4-methylpent-4-en-2-yl)carbamate (**169**). This compound was prepared according to general procedure G on a 0.23 mmol scale startimng from compound **85a**. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) gave the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.02 (s, 1H), 4.95 (s, 1H), 4.74 (d, J = 8.9 Hz, 1H), 4.18-4.08 (m, 1H), 3.86-3.76 (m, 1H), 2.56 (s, 1H), 1.76-1.69 (m, 7H), 1.63-1.57 (m, 2H), 1.55-1.36 (m, 18H), 1.29-1.23 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 156.25, 145.07, 111.45, 79.42, 78.04, 50.46, 38.18, 37.93, 37.53, 32.69, 31.55, 29.79, 28.49, 28.41, 28.41, 26.99, 26.80, 25.62, 21.50, 19.70. HRMS calculated for C₂₁H₃₇NO₃ 352.28462 [M+H]⁺; found 352.28472.

Tert-butyl ((2S,3R)-1-((1S,4aR,8aR)-decahydronaphthalen-1-yl)-3-hydroxy-4-methylpent-4-en-2-yl)carbamate (**170**). This compound was prepared according to general procedure G on a 0.49 mmol scale with compound **85b**. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) gave the title compound in quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 5.02 (s, 1H), 4.92 (s, 1H), 4.83 (d, J = 9.2 Hz, 1H), 4.18-4.12 (m, 1H), 3.84-3.79 (m, 1H), 2.76 (s, 1H), 1.76-1.69 (m, 5H), 1.64-1.61 (m, 2H), 1.54-1.35 (m, 18H), 1.30-1.21 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 156.27, 144.99, 111.23, 79.28, 77.85, 60.50, 50.76, 42.34, 37.82, 32.85, 32.68, 28.44, 26.98, 26.75, 25.93, 25.57, 21.41, 20.39, 19.53, 14.22. HRMS calculated for C₂₁H₃₇NO₃ 352.28462 [M+H]⁺; found 352.28465.

Boc-1-cis-cis-DecAla-EK (171). This compound was prepared according to general procedure H on a 0.23 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (19 mg, 52 µmol, 23%). ¹H NMR (400 MHz, CDCl₃) δ 4.83 (d, J = 8.7 Hz, 1H), 4.32-4.26 (m, 1H), 3.31 (d, J = 5.0 Hz, 1H), 2.89 (d, J = 5.0 Hz, 1H), 1.81-1.49 (m, 15H), 1.42 (s, 12H), 1.25-1.16 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 210.15, 155.84, 79.92, 59.28, 52.43, 50.73, 38.24, 38.16, 37.45, 34.93, 32.71, 29.84, 28.45, 28.15, 26.91, 26.82, 25.51, 21.47, 19.35, 16.90. HRMS calculated for C₂₁H₃₅NO₄ 366.26389 [M+H]⁺; found 366.26401. [α]D20 +68 (C 0.3, CHCl₃).

Boc-1-cis-cis-DecAla-EK (172). This compound was prepared according to general procedure H on a 0.49 mmol scale. Purification by silica gel flash column chromatography (2% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (49 mg, 0.13 mmol, 27%). ¹H NMR (400 MHz, CDCl₃) δ 4.84 (d, J = 8.9 Hz, 1H), 4.30-4.25 (m, 1H), 3.28 (d, J = 5.0 Hz, 1H), 2.88 (d, J = 5.1 Hz, 1H), 1.81-1.48 (m, 15H), 1.42 (s, 12H), 1.28-1.22 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 209.80, 155.86, 79.86, 59.08, 52.49, 51.31, 42.16, 38.31, 37.75, 36.50, 32.66, 29.81, 28.43, 26.92, 26.62, 25.79, 25.48, 21.37, 20.36, 16.89. HRMS calculated for C₂₁H₃₅NO₄ 366.26389 [M+H]⁺; found 366.26391. [α]D20 + 95 (C 0.3, CHCl₃).

Scheme S6. General scheme for the synthesis of peptide-epoxyketones/vinyl sulfone. Reagents and conditions: (a). Sequential peptide coupling and Boc removal. Peptide coupling: HCTU, DiPEA, Boc-AA-OH, DCM. Boc-removal: TFA; (b) NH₂NH₂.H₂O, MeOH; (c) i) tBuONO, HCl, DMF, DCM, - 30oC; ii) amine, DiPEA, -30 °C \rightarrow RT; (d) TFA.

Boc-Leu-Leu-OMe (173). This compound was prepared according to general procedure A on a 3.0 mmol scale using Boc-Leu-OH and H-Leu-OMe as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 10% EtOAc/pentane) yielded the title compound (1.0 g, 2.8 mmol, 93%). ¹H NMR (400 MHz, CDCl₃) δ 6.53 (d, J = 8.3 Hz, 1H), 4.94 (d, J = 8.2 Hz, 1H), 4.64-4.58 (m, 1H), 4.17-4.05 (m, 1H), 3.73 (s, 3H), 1.68-1.44 (m, 15H), 1.00-0.81 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.29, 172.37, 155.83, 80.15, 53.02, 52.38, 50.69, 41.59, 40.93, 28.38, 24.76, 22.96, 22.24, 21.91. HRMS calculated for C₁₈H₃₄N₂O₅ 359.25405 [M+H]⁺; found 359.25405.

Benz-Leu-Leu-OMe (174). Compound 173 (125 mg, 0.35 mmol) was deprotected using the general procedure B, followed by the peptide coupling with benzoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (110 mg, 0.30 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.83-7.74 (m, 2H), 7.55-7.46 (m, 1H), 7.44-7.40 (m, 2H), 6.82-6.78 (m, 2H), 4.81-4.76 (m, 1H), 4.60-4.55 (m, 1H), 3.74 (s, 3H), 1.84-1.46 (m, 6H), 0.98 (d, J = 6.0 Hz, 6H), 0.87-0.85 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.22, 172.13,

167.48, 133.93, 131.91, 128.71, 127.19, 52.42, 52.02, 50.97, 41.46, 41.31, 24.96, 24.90, 23.04, 22.84, 22.47, 21.91. HRMS calculated for C₂₀H₃₀N₂O₄ 363.22783 [M+H]⁺; found 363.22795.

Benz-Leu-NHNH₂ (175). The title compound was prepared according to the general C on a 0.35 mmol scale using staring material 174 in quantitative yield.

Pyra-Leu-Leu-OMe (176). Compound 173 (90 mg, 0.25 mmol) was deprotected using the general procedure B, followed by the peptide coupling with benzoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (87 mg, 0.24 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 9.41 (s, 1H), 8.79 (s, 1H), 8.57 (s, 1H), 8.22 (d, J = 7.8 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 4.79-4.73 (m, 1H), 4.63-4.58 (m, 1H), 3.75 (s, 3H), 1.82-1.52 (m, 6H), 1.03-0.75 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.28, 171.44, 147.68, 144.52, 144.11, 142.90, 52.45, 51.72, 50.95, 41.46, 24.90, 24.87, 23.03, 22.77, 22.21, 21.99. HRMS calculated for C₁₈H₂₈N₄O₄ 365.21833 [M+H]⁺; found 365.21834.

Pyra-Leu-NHNH₂ (177). The title compound was prepared according to the general C on a 0.24 mmol scale using staring material 176 in quantitative yield.

Phnico-Leu-Leu-OMe (**178**). Compound 173 (89 mg, 0.25 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 6-phenylnicotinic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (94 mg, 0.21 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 9.16 (s, 1H), 8.20 (d, J = 8.0 Hz, 1H), 8.09-7.94 (m, 2H), 7.94-7.63 (m, 2H), 7.48-7.28 (m, 4H), 4.90 (s, 1H), 4.58 (s, 1H), 3.73 (s, 3H), 1.78-1.52 (m, 6H), 0.97-0.80 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.21, 159.94, 148.78, 138.31, 136.07, 129.80, 128.90, 127.53, 127.30, 119.94, 52.33, 51.04, 41.19, 41.00, 24.97, 24.88, 22.97, 22.75, 22.28, 21.88. HRMS calculated for C₂₅H₃₃N₃O₄ 440.25438 [M+H]⁺; found 440.25398.

Phnico-Leu-NHNH₂ (**179**). The title compound was prepared according to the general C on a 0.21 mmol scale using staring material 178 in quantitative yield.

Dibenz-Leu-Leu-OMe (**180**). Compound **173** (107 mg, 0.30 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2,4-dichlorobenzoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (122 mg, 0.28 mmol, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.53 (t, J = 1.5 Hz, 1H), 7.32 (d, J = 1.4 Hz, 2H), 6.90 (d, J = 8.3 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 4.80-4.74 (m, 1H), 4.61-4.55 (m, 1H), 3.74 (s, 3H), 1.84-1.45 (m, 6H), 1.03-0.84 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.10, 171.36, 165.17, 135.89, 133.24, 131.53, 129.99, 129.16, 52.44, 52.36, 50.95, 41.29, 41.27, 24.88, 24.86, 22.98, 22.87, 22.39, 21.92. HRMS calculated for C₂₀H₂₈Cl₂N₂O₄ 431.14989 [M+H]⁺; found 431.14969.

Dibenz-Leu-NHNH₂ (**181**). The title compound was prepared according to the general C on a 0.28 mmol scaleusing staring material 180 in quantitative yield.

Morph-Leu-Leu-OMe (**182**). Compound **173** (101 mg, 0.28 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-morpholinoacetic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (100 mg, 0.26 mmol, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.48 (s, 1H), 6.70-6.52 (m, 1H), 4.58-4.50 (m, 2H), 3.73 (s, 7H), 3.17-2.91 (m, 2H), 2.53 (s, 4H), 1.65-1.52 (m, 6H), 0.97-0.90 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.24, 66.99, 53.91, 52.42, 51.14, 50.86, 41.33, 40.90, 24.94, 24.93, 23.02, 22.90, 22.24, 21.92. HRMS calculated for C₁₉H₃₅N₃O₅ 386.26495 [M+H]⁺; found 386.26544.

Morph-Leu-Leu-NHNH₂ (**183**). The title compound was prepared according to the general procedure C on a 0.26 mmol scale using staring material **182** in quantitative yield.

Methia-Leu-Leu-OMe (**184**). Compound **173** (100 mg, 0.28 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acidusing general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (97 mg, 0.25 mmol, 89%). ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.15 (d, J = 7.8 Hz, 1H), 6.87 (d, J = 7.7 Hz, 1H), 4.69 (d, J = 7.5 Hz, 1H), 4.60-4.55 (m, 1H), 3.74 (s, 3H), 2.73 (s, 3H), 1.81-1.48 (m, 6H), 0.97-0.68 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.21, 131.04, 128.93, 52.42, 52.17, 51.02, 41.36, 41.22, 24.91, 22.95, 22.82, 22.27, 21.93. HRMS calculated for C₁₈H₂₉N₃O₄S 384.19515 [M+H]⁺; found 384.19561.

Methia-Leu-NHNH₂ (**185**). The title compound was prepared according to the general procedure C on a 0.25 mmol scale using staring material **184** in quantitative yield.

Boc-Phe-Leu-Leu-OMe (**186**). Compound **173** (100 mg, 0.28 mmol) was deprotected using the general procedure B, followed by the peptide coupling with Boc-Phe-OH using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (131 mg, 0.26 mmol, 93%). ¹H NMR (400 MHz, CDCl₃) δ 7.28-7.13 (m, 5H), 6.91 (d, J = 8.0 Hz, 1H), 6.86-6.70 (m, 1H), 5.29 (d, J = 8.0 Hz, 1H), 4.61-4.39 (m, 3H), 3.72 (s, 3H), 3.10-2.98 (m, 2H), 1.72-1.41 (m, 6H), 1.38 (s, 9H), 0.96-0.82 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.20, 171.57, 155.60, 136.62, 129.40, 128.64, 126.95, 80.21, 55.64, 52.31, 51.74, 50.80, 41.17, 38.09, 28.31, 24.86, 24.56, 22.86, 22.30, 21.97. HRMS calculated for C₂₇H₄₃N₃O₆ 507.32246 [M+H]⁺; found 507.32211.

N₃Acetyl-Phe-Leu-Leu-OMe (**187**). Compound **186** (131 mg, 0.26 mmol) was deprotected using the general procedure B and the de-protected intermediate was dissolved in DMF, followed by the addition of DiPEA (136 μ l, 0.78 mmol, 3.0 eq.) and chloroacetic anhydride (55 mg, 0.32 mmol, 1.2 eq.). The reaction was stirred at r.t. and upon the complete conversion of the deprotected intermediate, sodium azide (25 mg, 0.39 mmol, 1.5 eq.) was added. After stirring at r.t. overnight, the reaction solution was diluted with EtOAc. The organic layer was washed with H₂O (2×), 1M HCl (1×), sat. aq. NaHCO₃ (2×)

and brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 35% EtOAc/pentane) yielded the title compound (97 mg, 0.20 mmol, 77%). ¹H NMR (400 MHz, CDCl₃) δ 7.66-7.49 (m, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.25-7.21 (s, 3H), 7.16-7.07 (m, 2H), 5.01 (d, J = 8.2 Hz, 1H), 4.70-4.50 (m, 2H), 3.85 (s, 2H), 3.73 (s, 3H), 3.10-2.91 (m, 2H), 1.78-1.40 (m, 6H), 0.95-0.86 (m, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 173.16, 136.18, 129.37, 128.65, 127.13, 54.12, 52.36, 52.08, 51.85, 51.07, 41.79, 40.93, 38.97, 25.04, 24.74, 22.95, 22.90, 22.42, 22.08. HRMS calculated for C₂₄H₃₆N₆O₅ 489.28199 [M+H]⁺; found 489.28172.

 N_3 Acetyl-Phe-Leu-Leu-NHNH₂ (188). The title compound was prepared according to the general C on a 0.20 mmol scale using starting material 187 in quantitative yield.

Fmoc-Leu-Ser(tBu)-OMe (**189**). This compound was prepared according to general procedure A on a 0.5 mmol scale using Fmoc-Leu-OH and H-Ser(tBu)-OMe as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (229 mg, 0.44 mmol, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 7.5 Hz, 2H), 7.59-7.56 (m, 2H), 7.39-7.34 (m, 2H), 7.33-7.21 (m, 2H), 6.89 (d, J = 8.0 Hz, 1H), 5.73 (d, J = 8.5 Hz, 1H), 4.74 (d, J = 8.1 Hz, 1H), 4.41-4.29 (m, 3H), 4.20-4.17 (m, 1H), 3.81-3.78 (m, 1H), 3.71 (s, 3H), 3.55-3.52 (m, 1H), 1.81-1.48 (m, 3H), 1.09 (s, 9H), 0.97-0.93 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.76, 156.08, 143.87, 141.21, 127.65, 127.03, 125.13, 125.10, 119.93, 119.91, 73.44, 66.97, 61.77, 53.30, 52.78, 52.35, 47.08, 41.91, 27.21, 24.58, 22.96, 22.04. HRMS calculated for C₂₉H₃₈N₂O₆ 511.28026 [M+H]⁺; found 511.27996.

H-Leu-Ser(tBu)-OMe (**190**). (complicated NMR due to rotamers) Compound **189** (229 mg, 0.44 mmol) was dissolved in Et₂NH and MeCN (1:1, v/v) and stirred at r.t. The reaction progress was monitored by TLC-MS analysis and upon the complete conversion of the starting material, the reaction solution was concentrated *in vacuo*. Purification by silica gel flash column chromatography (20% EtOAc/pentane \rightarrow 50% EtOAc/pentane, and then 10% MeOH/ EtOAc) yielded the title compound (106 mg, 0.37 mmol, 84%). ¹H NMR (400 MHz, CDCl₃/MeOD) δ 4.04-4.02 (m, 1H), 3.97-3.82 (m, 1H), 3.78-3.70 (m, 3H),

3.61-3.57 (m, 1H), 3.46 (s, 1H), 1.96-1.57 (m, 3H), 1.20-1.17 (d, J = 10.4 Hz, 9H), 1.01-0.91 (m, 6H). 13C NMR (100 MHz, CDCl₃/MeOD) δ 176.08, 170.91, 169.56, 167.02, 73.70, 73.49, 62.52, 61.62, 55.78, 53.08, 52.52, 52.09, 44.36, 43.64, 26.91, 26.81, 24.42, 23.62, 22.83, 22.71, 21.23, 20.71. HRMS calculated for C₁₄H₂₈N₂O₄ 289.21218 [M+H]⁺; found 289.21216.

N₃Phe-Leu-Ser(tBu)-OMe (**191**). This compound was prepared according to general procedure A on a 0.22 mmol scale through coupling 190 and (S)-2-azido-3-phenylpropanoic acid. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (42 mg, 0.09 mmol, 41%). ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.17 (m, 5H), 6.72 (d, J = 8.5 Hz, 1H), 6.58 (d, J = 8.3 Hz, 1H), 4.68-4.65 (m, 1H), 4.25-4.22 (m, 1H), 3.84-3.81 (m, 1H), 3.74 (s, 3H), 3.56-3.53 (m, 1H), 3.35-3.30 (m, 1H), 3.09-3.04 (m, 1H), 1.64-1.32 (m, 3H), 1.14 (s, 9H), 0.91-0.89 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.38, 170.72, 168.26, 136.01, 129.69, 128.76, 127.37, 73.71, 65.52, 61.78, 52.96, 52.57, 51.56, 41.63, 38.49, 29.83, 27.40, 24.56, 22.98, 22.22. HRMS calculated for C₂₃H₃₅N₅O₅ 462.27110 [M+H]⁺; found 462.27079.

 N_3 Phe-Leu-Ser(tBu)-NHNH₂ (192). Compound 191 (42 mg, 0.09 mmol) was dissolved in MeOH, followed by the addition of hydrazine monohydrate (132 µl, 2.7mmol, 30 eq.). The reaction mixture was refluxed until TLC-MS analysis showed complete conversion of the starting material. The reaction mixture was concentrated *in vacuo* and co-evaporated with toluene (3x) to give the product in a quantitative yield. The product was directly used in next step without any further purification.

Boc-Leu-Leu(4-F)-OMe (**193**). Boc-Leu(4-F)-OH⁸ (125 mg, 0.5 mmol) was dissolved in MeOH and cooled to 0 °C, followed by the addition of SOCl₂ (109 µl, 1.5mmol, 3.0 eq.). After stirring at r.t. overnight, the reaction mixture was concentrated *in vacuo* and co-evaporated with toluene (3x) to give the H-Leu(4-F)-OMe hydrochloride salt which was directly coupled with Boc-Leu-OH according to general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (139 mg, 0.37 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 6.96 (s, 1H), 5.09 (d, J = 8.6 Hz, 1H), 4.70-4.65 (m, 1H), 4.17 (d, J = 7.6 Hz, 1H), 3.73 (s,

3H), 2.27-1.95 (m, 2H), 1.66-1.63 (m, 1H), 1.44-1.42 (m, 12H), 1.37 (d, J = 6.3 Hz, 3H), 0.95-0.92 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.36, 155.63, 95.74, 94.09, 79.92, 52.95, 52.44, 49.50, 42.45, 42.23, 41.10, 28.32, 27.21, 26.79, 26.54, 24.69, 22.91, 22.14. HRMS calculated for C₁₈H₃₃FN₂O₅ 377.24463 [M+H]⁺; found 377.24456.

N₃Phe-Leu-Leu(4-F)-OMe (**194**). Compound **193** (139 mg, 0.37 mmol) was deprotected using the general procedure B, followed by the peptide coupling with (S)-2-azido-3- phenylpropanoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 25% EtOAc/pentane) yielded the title compound (118 mg, 0.26 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.20 (m, 6H), 6.82-6.80 (m, 1H), 6.70 (d, J = 8.5 Hz, 1H), 4.69-4.64 (m, 1H), 4.50-4.44 (m, 1H), 4.26-4.22 (m, 1H), 3.73 (s, 3H), 3.32-3.28 (m, 1H), 3.07-3.01 (m, 1H), 2.22-1.99 (m, 2H), 1.65-1.57 (m, 1H), 1.42 (d, J = 4.2 Hz, 3H), 1.36 (d, J = 4.1 Hz, 3H), 0.89-0.86 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.23, 171.22, 168.71, 135.98, 129.60, 128.69, 127.29, 96.03, 94.38, 65.46, 52.60, 51.33, 49.69, 42.16, 41.95, 40.64, 38.36, 27.59, 27.34, 26.37, 26.13, 24.49, 22.94, 22.13. HRMS calculated for C₂₂H₃₂FN₅O₄ 450.25111 [M+H]⁺; found 450.25091.

 N_3 Phe-Leu-Leu(4-F)-NHNH₂ (195). The title compound was prepared according to the general C on a 0.26 mmol scale using staring material 59 in quantitative yield.

Boc-Leu-Ser(Me)-OMe (**196**). Boc-Ser(Me)-OH (219 mg, 1.0 mmol) was dissolved in MeOH and cooled to 0 °C, followed by the addition of SOCl₂ (218 µl, 3.0 mmol, 3.0 eq.). After stirring at r.t. overnight, the reaction mixture was concentrated *in vacuo* and co-evaporated with toluene (3x) to give the H-Ser(Me)-OMe hydrochloride salt. The obtained building block was directly coupled with Boc-Leu-OH according to general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (175 mg, 0.51 mmol, 51%). ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, J = 8.3 Hz, 1H), 5.12 (d, J = 8.5 Hz, 1H), 4.74-4.70 (m, 1H), 4.25-4.19 (m, 1H), 3.85-3.82 (m, 1H), 3.76 (s, 3H), 3.60-3.57 (m, 1H), 3.34 (s, 3H), 1.78-1.60 (m, 2H), 1.55-1.48 (m, 1H), 1.45 (s, 9H), 0.96-0.92 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.71, 170.54, 155.61,

79.92, 72.11, 59.31, 53.00, 52.57, 41.58, 28.34, 24.71, 23.02, 22.01. HRMS calculated for C₁₆H₃₀N₂O₆ 347.21766 [M+H]⁺; found 347.21775.

N₃Phe-Leu-Ser(Me)-OMe (**197**). Compound **196** (175 mg, 0.51 mmol) was deprotected using the general procedure B, followed by peptide coupling with (S)-2-azido-3-phenylpropanoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (250 mg, 0.45 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.20 (m, 5H), 7.09 (d, J = 8.3 Hz, 1H), 6.89 (d, J = 8.6 Hz, 1H), 4.73-4.69 (m, 1H), 4.65-4.59 (m, 1H), 4.25-4.22 (m, 1H), 3.84-3.80 (m, 1H), 3.75 (s, 3H), 3.57-3.54 (m, 1H), 3.33-3.28 (m, 4H), 3.08-3.02 (m, 1H), 1.66-1.38 (m, 3H), 0.91-0.88 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.70, 170.42, 168.44, 136.06, 129.54, 128.60, 127.19, 72.06, 65.24, 59.27, 52.54, 51.44, 41.66, 38.27, 24.49, 22.90, 22.11. HRMS calculated for C₂₀H₂₉N₅O₅ 420.22415 [M+H]⁺; found 420.22390.

 N_3 Phe-Leu-Ser(Me)-NHNH₂ (198). The title compound was prepared according to the general C on a 0.45 mmolscale using staring material 197 in quantitative yield.

Fmoc-Leu-Thr(tBu)-OMe (**199**). This compound was prepared according to general procedure A on a 0.5 mmol scale using Fmoc-Leu-OH and H-Thr(tBu)-OMe as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (255 mg, 0.49 mmol, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 7.5 Hz, 2H), 7.62-7.55 (m, 2H), 7.40-7.36 (m, 2H), 7.31-7.27 (m, 2H), 6.62 (d, J = 8.4 Hz, 1H), 5.66-5.46 (m, 1H), 4.52 (d, J = 9.1 Hz, 1H), 4.42-4.33 (m, 3H), 4.22 (d, J = 6.8 Hz, 2H), 3.69 (s, 3H), 1.81-1.48 (m, 3H), 1.16-1.09 (m, 12H), 0.99-0.90 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.01, 156.05, 143.95, 143.75, 141.26, 127.68, 127.07, 125.15, 74.17, 67.29, 67.00, 57.79, 53.46, 52.22, 47.14, 42.05, 28.29, 24.61, 22.94, 22.16, 20.92. HRMS calculated for C₃₀H₄₀N₃O₆ 525.29591 [M+H]⁺; found 525.29567.

H-Leu-Thr(tBu)-OMe (**200**). This compound was obtained using the same procedures as described above for the preparation of compound **190** on a 0.49 mmol scale. Purification by silica gel flash column

chromatography (20% EtOAc/pentane \rightarrow 50% EtOAc/pentane, and then 10% MeOH/EtOAc) yielded the title compound (134 mg, 0.44mmol, 90%). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 9.6 Hz, 1H), 4.51-4.48 (m, 1H), 4.27-4.21 (m, 1H), 3.71 (s, 3H), 3.57-3.39 (m, 1H), 1.82-1.62 (m, 4H), 1.44-1.38 (m, 1H), 1.13 (s, 9H), 0.98-0.92 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 176.36, 171.51, 74.03, 67.51, 57.53, 53.73, 52.17, 44.27, 28.39, 24.90, 23.48, 21.43, 20.94. HRMS calculated for C₁₅H₃₀N₂O₄ 303.22783 [M+H]⁺; found 303.22803.

N₃Phe-Leu-Thr(tBu)-OMe (**201**). This compound was prepared according to general procedure A on a 0.17 mmol scale though coupling **200** and (S)-2-azido-3-phenylpropanoic acid. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (72 mg, 0.15 mmol, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.20 (m, 5H), 6.78 (d, J = 8.4 Hz, 1H), 6.49 (d, J = 9.1 Hz, 1H), 4.53-4.43 (m, 2H), 4.27-4.20 (m, 2H), 3.71 (s, 3H), 3.35-3.31 (m, 1H), 3.09-3.04 (m, 1H), 1.55-1.45 (m, 3H), 1.17 (d, J = 6.2 Hz, 3H), 1.12 (s, 9H), 0.91 (d, J = 6.1 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.01, 170.98, 168.22, 167.77, 136.02, 129.63, 128.70, 127.29, 74.30, 67.27, 66.27, 65.97, 65.42, 64.40, 57.90, 52.31, 51.67, 41.68, 38.44, 28.38, 24.52, 22.89, 22.24, 21.08. HRMS calculated for C₂₄H₃₇N₅O₅ 476.28675 [M+H]⁺; found 476.28641.

 N_3 Phe-Leu-Thr(tBu)-NHNH₂ (202). Compound 201 (72 mg, 0.15 mmol) was dissolved in MeOH, followed by the addition of hydrazine monohydrate (220 µl, 4.5 mmol, 30 eq.). The reaction solution was refluxed until TLC-MS analysis showed the complete conversion of the starting material. The reaction mixture was concentrated in vacuo and co-evaporated with toluene (3x) to give the product in a quantitative yield. The product was directly used in next step without any further purification.

Boc-Leu-Ala(CF₃)-OMe (**203**). Boc-Ala(CF₃)-OH⁹ (80 mg, 0.31 mmol) was dissolved in MeOH and cooled to 0 °C, followed by the addition of SOCl₂ (68 μ l, 0.93 mmol, 3.0 eq.). After stirring at r.t. overnight, the reaction mixture was concentrated *in vacuo* and co-evaporated with toluene (3x) to give the H-Ala(CF₃)-OMe hydrochloride salt which was directly coupled with Boc-Leu-OH according to general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow

20% EtOAc/pentane) yielded the title compound (105 mg, 0.27 mmol, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (s, 1H), 5.04-4.97 (m, 1H), 4.82-4.75 (m, 1H), 4.18 (s, 1H), 3.78-3.77 (m, 3H), 2.91-2.57 (m, 2H), 1.75-1.60 (m, 2H), 1.52-1.41 (m, 10H), 1.00-0.89 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.16, 155.84, 127.07, 124.31, 53.07, 47.38, 40.80, 40.63, 35.63, 35.34, 35.06, 34.78, 28.32, 24.78, 22.96, 21.98. HRMS calculated for C₁₆H₂₇F₃N₂O₅ 385.19448 [M+H]⁺; found 385.19466.

N₃Phe-Leu-Ala(CF₃)-OMe (**204**). Compound **203** (105 mg, 0.27 mmol) was deprotected using the general procedure B, followed by the peptide coupling with (S)-2-azido-3-phenylpropanoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (119 mg, 0.26 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.20 (m, 6H), 6.79-6.72 (m, 1H), 4.80-4.73 (m, 1H), 4.59-4.48 (m, 1H), 4.28-4.25 (m, 1H), 3.78-3.76 (m, 3H), 3.33-3.28 (m, 1H), 3.08-3.02 (m, 1H), 2.88-2.56 (m, 2H), 1.64-1.34 (m, 3H), 0.91-0.85 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.67, 171.44, 170.05, 169.98, 168.97, 135.96, 129.63, 128.74, 127.36, 65.31, 53.17, 51.36, 47.41, 40.64, 40.42, 38.30, 35.59, 35.32, 35.02, 34.74, 24.55, 22.92, 22.13. HRMS calculated for C₂₀H₂₆F₃N₅O₄ 458.20097 [M+H]⁺; found 458.20065.

 N_3 Phe-Leu-Ala(CF₃)-NHNH₂ (**205**). The title compound was prepared according to the general C on a 0.26 mmol scale using staring material **204s** in quantitative yield.

Boc-Leu-Gly-OMe (**206**). Boc-Gly-OH (350 mg, 2.0 mmol) was dissolved in MeOH and cooled to 0 °C, followed by the addition of SOCl₂ (0.42 mL, 6.0 mmol, 3.0 eq.). After stirring at r.t. overnight, the reaction mixture was concentrated *in vacuo* and co-evaporated with toluene (3x) to give the H-Gly-OMe hydrochloride salt which was directly coupled with Boc-Leu-OH according to general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (302 mg, 1.96 mmol, 98%). ¹H NMR (400 MHz, CDCl₃) δ 7.13 (s, 1H), 5.26 (d, J = 8.5 Hz, 1H), 4.24 (s, J = 7.2, 5.4 Hz, 1H), 4.18-3.89 (m, 2H), 3.74 (s, 3H), 1.80-1.62 (m, 2H), 1.53 (dd, J = 9.4, 5.9 Hz, 1H), 1.44 (s, 9H), 1.26 (s, 1H), 1.07- 0.75 (m, 6H). ¹³C NMR (100 MHz,

CDCl₃) δ 173.29, 170.23, 155.83, 79.95, 77.45, 77.13, 76.82, 52.25, 41.35, 41.09, 29.69, 28.31, 24.69, 22.97, 21.93. HRMS calculated for C₁₄H₂₆N₂O₅ 303.19145 [M+H]⁺; found 303.19147.

N₃Phe-Leu-Gly-OMe (**207**). Compound **206** (297 mg, 0.98 mmol) was deprotected using the general procedure B, followed by the peptide coupling with (S)-2-azido-3- phenylpropanoic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (255 mg, 0.67 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.10 (m, 7H), 4.50 (dd, J = 8.7, 5.8 Hz, 1H), 4.25 (dd, J = 7.8, 4.2 Hz, 1H), 4.01 (t, J = 5.5 Hz, 2H), 3.74 (s, 3H), 3.31 (dd, J = 14.1, 4.2 Hz, 1H), 3.06 (dd, J = 14.1, 7.8 Hz, 1H), 1.62 (ddd, J = 13.6, 8.2, 5.7 Hz, 1H), 1.53-1.33 (m, 3H), 1.26 (s, 2H), 0.88 (dd, J = 8.4, 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 171.89, 170.12, 168.87, 135.96, 129.62, 128.75, 127.35, 77.48, 77.16, 76.84, 65.26, 52.50, 51.48, 41.25, 40.86, 38.34, 29.80, 24.58, 22.96, 22.16. HRMS calculated for C₁₈H₂₅N₅O₄ 376.19793 [M+H]⁺; found 376.19788.

 N_3 Phe-Leu-Gly-NHNH₂ (208). The title compound was prepared according to the general procedure C on a 0.67 mmol scale using staring material 207 in quantitative yield.

Boc-Leu-Ala-OMe (**209**). This compound was prepared according to general procedure A on a 0.5 mmol scale. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (123.6 mg, 0.39 mmol, 78%). The analytical data was the same as reported in the literature.¹¹

Pyra-Leu-Ala-OMe (**210**). Compound **209** (79 mg, 0.25 mmol) was deprotected using the general procedure B, followed by the peptide coupling with pyrazine-2-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 30% EtOAc/pentane) yielded the title compound (74 mg, 0.23 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 9.40 (d, J = 1.5 Hz, 1H), 8.77 (d, J = 2.5 Hz, 1H), 8.56-8.55 (m, 1H), 8.26 (d, J = 8.7 Hz, 1H), 7.04 (d, J = 7.4 Hz, 1H), 4.81-4.75 (m, 1H), 4.61-4.54 (m, 1H), 3.76 (s, 3H), 1.89-1.65 (m, 3H), 1.39 (d, J = 4.0 Hz 3H), 0.99-

0.96 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.22, 171.36, 163.13, 147.53, 144.45, 144.14, 142.86, 52.57, 51.79, 48.21, 41.54, 24.88, 22.98, 22.14, 18.17. HRMS calculated for C₁₅H₂₂N₄O₄ 323.17138 [M+H]⁺; found 323.17134.

Pyra-Leu-Ala-NHNH₂ (**211**). The title compound was prepared according to the general procedure C on a 0.23 mmol scale using staring material **210** in quantitative yield.

Methia-Leu-Ser(Me)-OMe (**212**). Compound **196** (295mg, 0.85mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (20% EtOAc/pentane \rightarrow 65% EtOAc/pentane) yielded the title compound (136 mg, 0.37mmol, 44%). ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.06 (d, J = 8.2 Hz, 1H), 4.77-4.71 (m, 2H), 3.85 (dd, J = 9.5, 3.1 Hz, 1H), 3.77 (s, 3H), 3.58 (dd, J = 9.5, 3.3 Hz, 1H), 3.32 (s, 3H), 2.71 (s, 3H), 1.81-1.66 (m, 3H), 0.95-0.93 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.57, 170.63, 170.50, 160.55, 143.36, 133.87, 71.95, 59.37, 52.75, 52.70, 52.16, 41.51, 24.87, 23.00, 22.03. HRMS calculated for C₁₆H₂₅N₃O₅S 372.15877 [M+H]⁺; found 372.15873.

Methia-Leu-Ser(Me)-NHNH₂ (**213**). The title compound was prepared according to the general C on a 0.37 mmol scale using staring material **212** in quantitative yield.

Boc-Chg-Leu-OMe (**214**). Boc-Chg-OH was coupled with H-Leu-OMe according to general procedure A on a 0.78 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (256 mg, 0.67 mmol, 86%). ¹H NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 7.9 Hz, 1H), 5.43 (d, J = 9.2 Hz, 1H), 4.61-4.55 (m, 1H), 4.04-4.00 (m, 1H), 3.72 (s, 3H), 1.83-1.56 (m, 9H), 1.44 (s, 10H), 1.33-1.01 (m, 5H), 0.93-0.91 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 173.01, 171.77, 155.79, 79.37, 59.18, 51.98, 50.68, 40.98, 40.25, 29.36, 28.47, 28.24, 26.12, 25.86, 24.67, 22.65, 21.82. HRMS calculated for C₂₀H₃₆N₂O5 385.26970 [M+H]⁺; found 385.26996. Methia-Chg-Leu-OMe (**215**). Compound **214** (256 mg, 0.67 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (233 mg, 0.57 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.07-7.96 (m, 2H), 4.69-4.65 (m, 1H), 4.57-4.35 (m, 1H), 3.74 (s, 3H), 2.72 (s, 3H), 2.03-1.48 (m, 9H), 1.32-0.90 (m, 5H), 0.82-0.79 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.92, 171.98, 170.22, 160.66, 143.80, 133.91, 58.51, 51.96, 51.21, 40.41, 39.88, 29.49, 29.12, 26.16, 25.81, 24.77, 22.66, 21.66, 19.52. HRMS calculated for C₂₀H₃₁N₃O₄S 410.21080 [M+H]⁺; found 410.21024.

Methia-Chg-Leu-NHNH₂ (**216**). The title compound was prepared according to the general procedure C on a 0.57 mmol scale using staring material **215** in quantitative yield.

Boc-Cha-Leu-OMe (**217**). Boc-Cha-OH was coupled with H-Leu-OMe according to general procedure A on a 1.0 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (380 mg, 0.95 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 6.80 (d, J = 8.1 Hz, 1H), 5.14 (d, J = 8.6 Hz, 1H), 4.63-4.57 (m, 1H), 4.23-4.17 (m, 1H), 3.72 (s, 3H), 1.79-1.53 (m, 9H), 1.44 (s, 9H), 1.30-1.09 (m, 4H), 0.99-0.81 (m, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 173.15, 172.55, 155.74, 79.83, 52.29, 52.17, 50.63, 41.37, 39.70, 33.98, 33.56, 32.82, 28.29, 26.43, 26.23, 26.10, 24.71, 22.83, 21.85. HRMS calculated for C₂₁H₃₈N₂O₅ 399.28535 [M+H]⁺; found 399.28477.

Methia-Cha-Leu-OMe (**218**). Compound **217** (279 mg, 0.70 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (245 mg, 0.58 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (d, J = 7.9 Hz, 1H), 8.20 (s, 1H), 7.83 (d, J = 7.6 Hz, 1H), 4.87-4.81 (m, 1H), 4.57-4.52 (m, 1H), 3.73 (s, 3H), 2.71 (s, 3H), 1.72-1.54 (m, 10H), 1.49-1.34 (m, 1H), 1.21-1.07 (m, 3H), 0.95-0.74 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 173.13, 172.96, 170.08, 160.71, 144.02, 133.81, 51.94, 51.75, 50.90,

40.64, 39.29, 33.96, 33.29, 32.58, 26.32, 26.02, 25.95, 24.68, 22.61, 21.72, 19.43. HRMS calculated for C₂₁H₃₃N₃O₄S 424.22645 [M+H]⁺; found 424.22580.

Methia-Cha-Leu-NHNH₂ (**219**). The title compound was prepared according to the general procedure C on a 0.58 mmol scale using staring material **218** in quantitative yield.

Boc-HomoCha-Leu-OMe (220). Boc-HomoCha-OH was prepared according to the literature procedure,⁶ followed by peptide coupling with H-Leu-OMe according to general procedure A on a 1.2 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (446 mg, 1.1 mmol, 92%). ¹H NMR (400 MHz, CDCl₃) δ 7.21 (d, J = 7.9 Hz, 1H), 5.59 (d, J = 8.4 Hz, 1H), 4.60-4.55 (m, 1H), 4.23-4.11 (m, 1H), 3.71 (s, 3H), 1.90-1.51 (m, 10H), 1.44 (s, 9H), 1.35-1.03 (m, 7H), 1.03-0.74 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 172.95, 172.39, 155.60, 79.30, 54.37, 51.85, 50.53, 40.82, 37.36, 33.11, 33.00, 32.81, 29.97, 28.14, 26.42, 26.10, 24.54, 22.61, 21.66. HRMS calculated for C₂₂H₄₀N₂O₅ 413.30100 [M+H]⁺; found 413.30059.

Methia-HomoCha-Leu-OMe (221). Compound 220 (239 mg, 0.58 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (198 mg, 0.45 mmol, 78%). ¹H NMR (500 MHz, CDCl₃) δ 8.17 (s, 1H), 7.91-7.90 (m, 1H), 7.76-7.56 (m, 1H), 4.80-4.76 (m, 1H), 4.57-4.53 (m, 1H), 3.73 (s, 3H), 2.71 (s, 3H), 1.92-1.45 (m, 10H), 1.39-0.98 (m, 6H), 0.87-0.80 (m, 8H). ¹³C NMR (125 MHz, CDCl₃) δ 172.93, 172.38, 170.26, 160.63, 143.77, 133.78, 53.88, 52.09, 50.98, 40.76, 37.46, 33.23, 33.07, 30.08, 26.52, 26.20, 24.77, 22.66, 21.76, 19.48. HRMS calculated for C₂₂H₃₅N₃O₄S 438.24210 [M+H]⁺; found 438.24170.

Methia-HomoCha-Leu-NHNH2 (**222**). The title compound was prepared according to the general C on a 0.45 mmol scale using staring material **221** in quantitative yield.

Boc-Cha(4-Me)-Leu-OMe (223). Boc-Cha(4-Me)-OH was prepared according to the literature procedure⁶ followed by peptide coupling with H-Leu-OMe according to general procedure A on a 1.2 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane $\rightarrow 20\%$ EtOAc/pentane) yielded the title compound (445 mg, 1.1 mmol, 92%). ¹H NMR (500 MHz, CDCl₃) δ 7.18-7.15 (m, 1H), 5.49-5.45 (m, 1H), 4.62-4.57 (m, 1H), 4.31-4.17 (m, 1H), 3.72 (s, 3H), 1.73-1.54 (m, 5H), 1.44 (s, 10H), 0.95-0.82 (m, 9H). ¹³C NMR (125 MHz, CDCl₃) δ 172.91, 172.61, 155.63, 79.39, 67.61, 51.87, 50.50, 40.95, 39.62, 36.44, 34.96, 34.85, 33.59, 32.46, 30.55, 30.39, 28.88, 28.12, 24.53, 22.62, 22.46, 21.67. HRMS calculated for C₂₂H₄₀N₂O₅ 413.30100 [M+H]⁺; found 413.30064.

Methia-Cha(4-Me)-Leu-OMe (224). Compound 223 (288 mg, 0.7 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (273 mg, 0.62 mmol, 94%). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, J = 2.9 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.56-7.48 (m, 1H), 4.85-4.65 (m, 1H), 4.58-4.53 (m, 1H), 3.73 (d, J = 1.1 Hz, 3H), 2.71 (s, 3H), 1.88-1.03 (m, 14H), 0.89-0.76 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 173.07, 173.04, 172.87, 172.85, 170.32, 170.30, 160.79, 160.75, 143.90, 133.83, 77.48, 77.16, 76.84, 52.15, 51.85, 50.99, 40.92, 40.88, 39.51, 36.46, 35.04, 34.96, 33.89, 33.42, 32.69, 32.60, 31.55, 30.66, 30.51, 30.03, 29.04, 28.17, 24.81, 22.71, 22.63, 21.84, 20.22, 19.56. HRMS calculated for C₂₂H₃₅N₃O₄S 438.24210 [M+H]⁺; found 438.24175.

Methia-Cha(4-Me)-Leu-NHNH₂ (**225**). The title compound was prepared according to the general C on a 0.62 mmol scale using staring material **224** in quantitative yield.

Boc-Cha(4-OMe)-Leu-OMe (226). Boc-Cha(4-OMe)-OH was prepared according to the literature procedure⁶ followed by peptide coupling with H-Leu-OMe according to general procedure A on a 0.9 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (365 mg, 0.85 mmol, 94%). ¹H NMR (500 MHz, CDCl₃) δ

6.83 (d, J = 8.0 Hz, 1H), 5.23 (d, J = 8.7 Hz, 1H), 4.61-4.57 (m, 1H), 4.20-4.17 (m, 1H), 3.72 (s, 3H), 3.41-3.38 (m, 1H), 3.34-3.28 (m, 3H), 1.90-1.61 (m, 5H), 1.59-1.48 (m, 3H), 1.44 (s, 11H), 1.36-1.23 (m, 4H), 0.95-0.90 (m, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 173.04, 172.43, 155.73, 79.76, 79.39, 75.16, 55.54, 55.41, 52.11, 50.61, 41.25, 38.81, 33.38, 32.95, 28.93, 28.78, 28.25, 27.33, 26.74, 24.67, 22.78, 21.79. HRMS calculated for C₂₂H₄₀N₂O₆ 429.29591 [M+H]⁺; found 429.29573.

Methia-Cha(4-OMe)-Leu-OMe (227). Compound 226 (184 mg, 0.43 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (137 mg, 0.30 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.92-7.88 (m, 1H), 7.48-7.43 (m, 1H), 4.81-4.76 (m, 1H), 4.57-4.52 (m, 1H), 3.73 (s, 3H), 3.46-3.14 (m, 4H), 2.71 (s, 3H), 2.12-0.97 (m, 14H), 0.89-0.76 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.98, 172.94, 172.75, 172.63, 170.46, 160.76, 143.79, 133.78, 133.69, 79.38, 75.21, 55.59, 55.49, 52.23, 52.20, 51.90, 51.72, 51.00, 40.91, 38.75, 33.48, 33.00, 30.68, 28.84, 28.79, 27.36, 26.61, 24.79, 22.70, 21.83, 19.53. HRMS calculated for C₂₂H₃₅N₃O₅S 454.23702 [M+H]⁺; found 454.23677.

Methia-Cha(4-OMe)-Leu-NHNH₂ (**228**). The title compound was prepared according to general C on a 0.30 mmol scale using staring material **227** in quantitative yield.

Boc-1-DecAla-Leu-OMe (**229**). Boc-1-DecAla-OH was prepared according to the literature procedure⁶ followed by peptide coupling with H-Leu-OMe according to general procedure A on a 0.5 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (202 mg, 0.45 mmol, 90%). ¹H NMR (400 MHz, CDCl₃) δ 6.68 (s, 1H), 5.10-5.00 (m, 1H), 4.71-4.47 (m, 1H), 4.21-3.99 (m, 1H), 3.72 (s, 3H), 1.96-0.61 (m, 38H). ¹³C NMR (100 MHz, CDCl₃) δ 173.28, 173.15, 172.93, 155.80, 79.89, 77.36, 52.22, 50.65, 47.68, 43.14, 43.01, 41.50, 37.77, 37.56, 37.41, 34.50, 34.30, 32.63, 30.23, 28.30, 26.85, 26.78, 26.70, 26.60, 26.44, 26.02, 25.95, 25.45, 24.73, 22.83, 21.93, 21.30, 20.06. HRMS calculated for C₂₅H₄₄N₂O₅ 453.33230 [M+H]⁺; found 453.33210.

Methia-1-DecAla-Leu-OMe (**230**). Compound **229** (103 mg, 0.23 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole- 5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane) \rightarrow 20% EtOAc/pentane) yielded the title compound (55 mg, 0.12 mmol, 52%). ¹H NMR (400 MHz, CDCl₃) δ 8.22-8.04 (m, 1H), 7.47-7.31 (m, 1H), 7.25-6.93 (m, 1H), 4.78-4.48 (m, 2H), 3.74 (s, 3H), 2.72 (s, 3H), 1.96-0.54 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 173.19, 173.02, 172.96, 172.89, 172.49, 171.97, 170.59, 160.88, 160.78, 160.71, 160.41, 143.68, 133.79, 133.75, 125.97, 120.65, 109.43, 52.56, 52.34, 52.00, 51.67, 51.03, 47.90, 47.75, 43.11, 41.32, 41.23, 40.81, 39.70, 39.41, 38.87, 37.93, 37.86, 37.52, 37.44, 36.70, 36.16, 35.86, 34.93, 34.53, 34.29, 33.26, 32.60, 32.33, 30.28, 27.33, 26.91, 26.72, 26.62, 26.45, 25.95, 25.44, 24.87, 22.77, 21.96, 21.33, 20.08, 19.94, 19.63. HRMS calculated for C₂₅H₃₉N₃O₄S 478.27340 [M+H]⁺; found 478.27332.

Methia-1-DecAla-Leu-NHNH₂ (231). The title compound was prepared according to the general procedure C on a 0.12 mmol scale using staring material 230 in quantitative yield.

Boc-2-DecAla-Leu-OMe (**232**). Boc-2-DecAla-OH was prepared according to the literature procedure⁶ followed by peptide coupling with H-Leu-OMe according to general procedure A on a 0.5 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (158 mg, 0.35 mmol, 70%). ¹H NMR (400 MHz, CDCl₃) δ 6.82-6.76 (m, 1H), 5.17 (d, J = 8.3 Hz, 1H), 4.63-4.57 (m, 1H), 4.22-4.15 (m, 1H), 3.72 (s, 3H), 1.74-1.16 (m, 31H), 0.92 (d, J = 5.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.15, 172.55, 155.74, 79.82, 60.37, 52.37, 52.15, 50.63, 41.37, 39.81, 35.93, 35.79, 35.73, 34.72, 33.79, 32.92, 32.34, 32.22, 32.12, 28.28, 27.00, 26.64, 26.58, 25.70, 24.71, 22.82, 21.86, 20.89. HRMS calculated for C₂₅H₄₄N₂O₅ 453.33230 [M+H]⁺; found 453.33200. Methia-2-DecAla-Leu-OMe (233). Compound 232 (158 mg, 0.35 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole- 5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (155 mg, 0.32 mmol, 91%). ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.15 (m, 1H), 7.99-7.94 (m, 1H), 7.56-7.50 (m, 1H), 4.82-4.75 (m, 1H), 4.58-4.53 (m, 1H), 3.73-3.72 (m, 3H), 2.71-2.70 (m, 3H), 1.80-1.09 (m, 21H), 0.91-0.82 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 173.06, 172.88, 170.28, 160.74, 143.90, 133.84, 52.16, 51.86, 50.98, 40.93, 39.84, 35.86, 35.70, 35.65, 34.84, 32.91, 32.28, 32.15, 32.10, 27.77, 27.16, 26.99, 26.57, 25.70, 24.79, 22.69, 21.85, 20.91, 19.53. HRMS calculated for C₂₅H₃₉N₃O₄S 478.27340 [M+H]⁺; found 478.27318.

Methia-2-DecAla-Leu-NHNH₂ (**234**). The title compound was prepared according to the general procedure C on a 0.32 mmol scale using staring material **233** in quantitative yield.

Boc-BiCha-Leu-OMe (**235**). Boc-BiCha-OH was prepared according to the literature procedure⁶ followed by peptide coupling with H-Leu-OMe according to general procedure A on a 0.5 mmol scale. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (198 mg, 0.41 mmol, 82%). ¹H NMR (400 MHz, CDCl₃) δ 6.72 (t, J = 7.5 Hz, 1H), 5.08 (d, J = 8.5 Hz, 1H), 4.63-4.57 (m, 1H), 4.16-4.08 (m, 1H), 3.72 (s, 3H), 1.93-0.78 (m, 41H). ¹³C NMR (100 MHz, CDCl₃) δ 173.18, 173.16, 172.51, 155.80, 79.95, 52.87, 52.23, 50.67, 43.32, 41.60, 41.45, 40.18, 34.32, 31.03, 30.58, 30.27, 29.90, 29.81, 29.69, 28.98, 28.32, 26.88, 26.79, 26.77, 25.66, 25.47, 24.75, 22.87, 21.89. HRMS calculated for C₂₇H₄₈N₂O₅ 481.36360 [M+H]⁺; found 481.36345.

Methia-BiCha-Leu-OMe (236). Compound 235 (101 mg, 0.21 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (65 mg, 0.13 mmol, 62%). ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.11 (m, 1H), 7.51-7.48 (m, 1H), 7.23-7.17 (m, 1H), 4.77-4.68 (m, 1H), 4.59-4.53 (m, 1H), 3.74-

3.73 (m, 3H), 2.71 (s, 3H), 1.96-0.68 (m, 32H). ¹³C NMR (100 MHz, CDCl₃) δ 173.09, 173.06, 172.53, 172.49, 170.47, 170.45, 160.76, 160.72, 133.76, 52.30, 52.21, 51.80, 51.05, 43.31, 41.65, 41.09, 40.32, 39.74, 35.91, 34.47, 33.80, 33.13, 31.12, 30.59, 30.31, 30.29, 29.88, 29.77, 29.70, 29.08, 26.91, 26.81, 25.59, 25.45, 24.88, 22.78, 21.93, 19.65. HRMS calculated for C₂₇H₄₃N₃O₄S 506.30470 [M+H]⁺; found 506.30469.

Methia-BiCha-Leu-NHNH₂ (**237**). The title compound was prepared according to the general procedure C on a 0.13 mmol scale using staring material **236** in quantitative yield.

Boc-Leu-Cha-OMe (**238**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 1.5 mmol scale using Boc-Cha-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (435 mg, 1.1 mmol, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.07 (d, J = 8.0 Hz, 1H), 5.40 (d, J = 8.6 Hz, 1H), 4.64-4.58 (m, 1H), 4.25-4.19 (m, 1H), 3.71 (s, 3H), 1.83-1.59 (m, 8H), 1.44 (s, 11H), 1.29-1.07 (m, 4H), 0.99-0.79 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 173.15, 172.52, 155.60, 79.48, 77.36, 52.75, 51.94, 49.89, 41.10, 39.57, 33.82, 33.27, 32.29, 28.19, 26.22, 25.97, 25.81, 24.48, 22.67, 22.08. HRMS calculated for C₂₁H₃₈N₂O₅ 399.28535 [M+H]⁺; found 399.28479.

Methia-Leu-Cha-OMe (239). Compound 238 (200 mg, 0.50 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (207 mg, 0.49 mmol, 98%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.75 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 7.7 Hz, 1H), 4.78-4.72 (m, 1H), 4.60-4.55 (m, 1H), 3.73 (s, 3H), 2.71 (s, 3H), 1.79-1.47 (m, 10H), 1.33-1.26 (m, 1H), 1.18-1.09 (m, 3H), 0.91-0.87 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 173.21, 172.44, 170.33, 160.68, 143.69, 133.82, 52.17, 50.37, 40.92, 39.39, 33.98, 33.21, 32.46, 26.29, 25.98, 25.86, 24.77, 22.80, 22.07, 19.47. HRMS calculated for C₂₁H₃₃N₃O₄S 424.22645 [M+H]⁺; found 424.22604.

Methia-Leu-Cha-NHNH₂ (**240**). The title compound was prepared according to the general procedure C on a 0.49 mmol scale using staring material **239** in quantitative yield.

Boc-Leu-HomoCha-OMe (**241**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 1.2 mmol scale using Boc-HomoCha-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (413 mg, 1.0 mmol, 83%). ¹H NMR (400 MHz, CDCl₃) δ 6.92 (d, J = 7.8 Hz, 1H), 5.23 (d, J = 8.5 Hz, 1H), 4.56-4.51 (m, 1H), 4.22-4.16 (m, 1H), 3.73 (s, 3H), 1.89-1.81 (m, 1H), 1.73-1.61 (m, 8H), 1.44 (s, 11H), 1.29-1.09 (m, 7H), 0.95-0.92 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.78, 172.47, 155.68, 79.75, 52.93, 52.31, 52.14, 41.16, 37.27, 33.16, 33.03, 32.62, 29.64, 28.29, 26.52, 26.22, 24.63, 22.83, 22.10. HRMS calculated for C₂₂H₄₀N₂O₅ 413.30100 [M+H]⁺; found 413.30056.

Methia-Leu-HomoCha-OMe (**242**). Compound **241** (207 mg, 0.5 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (210 mg, 0.48 mmol, 96%). ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.35 (d, J = 8.3 Hz, 1H), 4.77-4.72 (m, 1H), 4.53-4.48 (m, 1H), 3.74 (s, 3H), 2.71 (s, 3H), 1.94-1.50 (m, 10H), 1.30-1.04 (m, 6H), 1.04-0.65 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 172.79, 172.41, 170.43, 160.69, 143.64, 133.85, 52.71, 52.24, 52.18, 41.05, 37.27, 33.10, 33.01, 32.81, 29.48, 26.52, 26.23, 24.81, 22.85, 22.10, 19.52. HRMS calculated for C₂₂H₃₅N₃O₄S 438.24210 [M+H]⁺; found 438.24181.

Methia-Leu-HomoCha-NHNH₂ (**243**). The title compound was prepared according to the general procedure C on a 0.48 mmol scale using staring material **106** in quantitative yield.

Boc-Leu-Cha(4-Me)-OMe (**244**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 2.0 mmol scale using Boc-Cha(4-Me)-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (410 mg, 1.0 mmol, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (t, J = 8.6 Hz, 1H), 5.47 (d, J = 8.7 Hz, 1H), 4.64-4.55 (m, 1H), 4.26-4.16 (m, 1H), 3.72-3.71 (m, 3H), 1.88-1.52 (m, 7H), 1.44 (s, 13H), 1.27-1.20 (m, 2H), 1.00-0.79 (m, 11H). ¹³C NMR (100 MHz, CDCl₃) δ 173.12, 172.65, 155.62, 79.44, 77.36, 52.73, 51.91, 50.26, 41.03, 34.87, 34.70, 33.64, 33.19, 32.41, 32.26, 31.05, 30.43, 30.21, 29.99, 29.06, 28.16, 27.56, 24.46, 22.64, 22.43, 22.06, 20.12. HRMS calculated for C₂₂H₄₀N₂O₅ 413.30100 [M+H]⁺; found 413.30065.

Methia-Leu-Cha(4-Me)-OMe (**245**). Compound **244** (206 mg, 0.5 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (160 mg, 0.37 mmol, 74%). ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.13 (m, 1H), 7.61-7.54 (m, 1H), 7.28-7.22 (m, 1H), 4.81-4.63 (m, 1H), 4.63-4.38 (m, 1H), 3.74-3.73 (m, 3H), 2.73-2.71 (m, 3H), 1.98-1.09 (m, 14H), 0.94-0.79 (m, 10H). ¹³C NMR (100 MHz, CDCl₃) δ 173.28, 173.25, 172.44, 172.30, 170.47, 170.45, 160.70, 143.67, 133.81, 133.80, 52.26, 52.17, 50.76, 50.50, 41.06, 40.95, 39.52, 36.39, 34.92, 34.80, 33.87, 33.23, 32.52, 32.48, 31.38, 30.57, 30.36, 30.07, 29.12, 27.71, 24.82, 22.87, 22.56, 22.15, 20.24, 19.56. HRMS calculated for C₂₂H₃₅N₃O₄S 438.24210 [M+H]⁺; found 438.24182.

Methia-Leu-Cha(4-Me)-NHNH₂ (**246**). The title compound was prepared according to the general procedure C on a 0.37 mmol scale using staring material **245** in quantitative yield.

Boc-Leu-Cha(4-OMe)-OMe (247). This compound was obtained using the same procedures as described above for the preparation of compound 203 on a 0.85 mmol scale using Boc-Cha(4-OMe)-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (284 mg, 0.66 mmol, 78%). ¹H

NMR (400 MHz, CDCl₃) δ 6.97 (d, J = 8.3 Hz, 1H), 5.34 (d, J = 8.3 Hz, 1H), 4.64-4.59 (m, 1H), 4.21-4.17 (m, 1H), 3.72-3.71 (m, 3H), 3.40-3.37 (m, 1H), 3.33-3.28 (m, 3H), 1.89-1.24 (m, 23H), 0.95-0.92 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.10, 172.94, 172.51, 155.60, 79.55, 79.20, 75.05, 55.40, 55.32, 52.81, 52.02, 49.91, 41.04, 38.71, 33.31, 32.66, 31.41, 31.22, 31.11, 30.22, 28.76, 28.45, 28.19, 27.30, 26.10, 24.50, 22.71, 22.04. HRMS calculated for C₂₂H₄₀N₂O₆ 429.29591 [M+H]⁺; found 429.29568.

Methia-Leu-Cha(4-OMe)-OMe (**248**). Compound **247** (142 mg, 0.33 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (108 mg, 0.24 mmol, 73%). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.61-7.57 (m, 1H), 7.27 (d, J = 8.0 Hz, 1H), 4.74-4.69 (m, 1H), 4.64-4.46 (m, 1H), 3.73 (s, 3H), 3.37-3.15 (m, 4H), 2.72 (s, 3H), 1.83-1.03 (m, 14H), 0.94-0.88 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.20, 173.01, 172.41, 172.35, 170.59, 170.51, 160.74, 160.69, 143.56, 133.83, 133.77, 79.27, 75.17, 55.53, 55.48, 52.27, 52.16, 50.61, 50.39, 40.99, 40.91, 38.86, 38.52, 33.51, 32.84, 31.44, 31.29, 31.04, 30.51, 29.68, 28.79, 28.54, 27.36, 26.22, 24.80, 22.85, 22.10, 19.53. HRMS calculated for C₂₂H₃₅N₃O₅S 454.23702 [M+H]⁺; found 454.23684.

Methia-Leu-Cha(4-OMe)-NHNH₂ (**249**). The title compound was prepared according to the general procedure C on a 0.24 mmol scale using staring material **248** in quantitative yield.

Boc-Leu-1-DecAla-OMe (**250**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 0.8 mmol scale using Boc-1-DecAla-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (236 mg, 0.52 mmol, 65%). ¹H NMR (400 MHz, CDCl₃) δ 6.92-6.51 (m, 1H), 5.14-5.11 (m, 1H), 4.69-4.47 (m, 1H), 4.16 (s, 1H), 3.78-3.63 (m, 3H), 1.82-0.78 (m, 36H). ¹³C NMR (100 MHz, CDCl₃) δ 173.58, 173.34, 172.51, 155.66, 79.81, 52.92, 52.17, 52.16, 52.10, 50.26, 49.88, 47.60, 42.97, 41.32, 41.22, 40.71, 34.44, 34.23, 34.15, 33.15, 32.54, 32.51,

30.18, 30.07, 28.29, 27.44, 26.78, 26.74, 26.68, 26.61, 26.48, 26.37, 26.24, 25.96, 25.81, 25.36, 24.63, 21.25, 19.95, 19.61. HRMS calculated for C₂₅H₄₄N₂O₅ 453.33230 [M+H]⁺; found 453.33179.

Methia-Leu-1-DecAla-OMe (**251**). Compound **250** (122 mg, 0.27 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (5% EtOAc/pentane → 20% EtOAc/pentane) yielded the title compound (109 mg, 0.23 mmol, 85%). ¹H NMR (400 MHz, CDCl₃) δ 8.14-8.13 (m, 1H), 7.46-7.32 (m, 1H), 7.19-6.95 (m, 1H), 4.78-4.42 (m, 2H), 3.81-3.59 (m, 3H), 2.72 (s, 3H), 2.03- 0.47 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 173.54, 173.33, 173.28, 173.01, 172.23, 172.19, 172.08, 171.94, 170.61, 160.68, 160.64, 133.78, 52.30, 52.10, 50.63, 50.18, 47.55, 42.92, 41.16, 41.03, 40.73, 40.70, 39.41, 38.86, 38.68, 37.86, 37.69, 37.46, 37.24, 36.83, 35.62, 34.43, 34.21, 32.55, 31.89, 29.98, 26.77, 26.51, 26.33, 26.25, 25.95, 25.79, 25.34, 24.83, 22.87, 22.20, 21.26, 19.98, 19.67, 19.57. HRMS calculated for C₂₅H₃₉N₃O₄S 478.27340 [M+H]⁺; found 478.27332.

Methia-Leu-1-DecAla-NHNH₂ (**252**). The title compound was prepared according to the general procedure C on a 0.2 mmol scale using staring material **251** in quantitative yield.

Boc-Leu-2-DecAla-OMe (**253**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 0.70 mmol scale using Boc-2-DecAla-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (211 mg, 0.47 mmol, 67%). ¹H NMR (400 MHz, CDCl₃) δ 6.86-6.78 (m, 1H), 5.28-5.06 (m, 1H), 4.66-4.60 (m, 1H), 4.20-4.15 (m, 1H), 3.71 (s, 3H), 1.87-1.08 (m, 30H), 0.95-0.88 (m, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 173.29, 172.48, 155.68, 79.75, 52.88, 52.11, 50.01, 41.17, 40.08, 35.80, 35.62, 34.70, 32.72, 32.26, 32.11, 31.98, 31.78, 28.27, 27.80, 26.95, 26.83, 26.59, 26.51, 25.67, 25.64, 24.60, 22.80, 22.15, 20.85. HRMS calculated for C₂₅H₄₄N₂O₅ 453.33230 [M+H]⁺; found 453.33201. Methia-Leu-2-DecAla-OMe (254). Compound 253 (211 mg, 0.47 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (219 mg, 0.46 mmol, 98%). ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, J = 1.9 Hz, 1H), 7.79-7.68 (m, 1H), 7.42-7.34 (m, 1H), 4.78-4.70 (m, 1H), 4.63-4.56 (m, 1H), 3.74-3.70 (m, 3H), 2.71 (s, 3H), 1.87-0.53 (m, 28H). ¹³C NMR (100 MHz, CDCl₃) δ 173.21, 172.45, 170.48, 160.66, 143.59, 133.85, 52.17, 50.43, 50.39, 40.89, 40.86, 40.75, 39.72, 39.69, 35.93, 35.57, 34.14, 32.57, 32.23, 32.04, 31.94, 31.88, 27.64, 26.93, 26.58, 25.62, 22.82, 22.09, 20.84, 19.47. HRMS calculated for C₂₅H₃₉N₃O₄S 478.27340 [M+H]⁺; found 478.27323.

Methia-Leu-2-DecAla-Phe(4-CH₂NH₂)-VS (**255**). The title compound was prepared according to the general PROCEDUREC on a 0.46 mmol scale using staring material **118** IN quantitative yield.

Boc-Leu-BiCha-OMe (**256**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 0.8 mmol scale using Boc-BiCha-OH and Boc-Leu-OH as starting materials. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (300 mg, 0.62 mmol, 75%). ¹H NMR (400 MHz, CDCl₃) δ 6.73-6.68 (m, 1H), 5.09 (d, J = 8.1 Hz, 1H), 4.64-4.55 (m, 1H), 4.22-4.04 (m, 1H), 3.72-3.71 (m, 3H), 1.94-0.66 (m, 41H). ¹³C NMR (100 MHz, CDCl₃) δ 173.31, 172.46, 155.74, 79.91, 52.96, 52.23, 50.51, 50.16, 43.29, 41.70, 41.07, 40.40, 36.04, 34.35, 33.71, 32.76, 30.54, 30.25, 30.07, 29.73, 29.59, 28.51, 28.33, 26.86, 26.76, 25.51, 25.28, 24.69, 22.87, 22.20. HRMS calculated for C₂₇H₄₈N₂O₅ 481.36360 [M+H]⁺; found 481.36346.

Methia-Leu-BiCha-OMe (257). Compound 256 (154 mg, 0.32 mmol) was deprotected using the general procedure B, followed by peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (140 mg, 0.28 mmol, 88%). ¹H NMR (400 MHz, CDCl₃) δ 8.12-8.11 (m, 1H), 7.48-7.41 (m, 1H), 7.18-7.10 (m, 1H), 4.75-4.70 (m, 1H), 4.61-4.52 (m, 1H), 3.74-

3.73 (m, 3H), 2.71 (s, 3H), 1.97-0.65 (m, 32H). ¹³C NMR (100 MHz, CDCl₃) δ 173.29, 173.26, 172.38, 172.19, 170.46, 160.70, 160.68, 143.66, 133.78, 133.74, 52.32, 52.16, 50.86, 50.50, 43.24, 41.62, 41.13, 40.90, 40.32, 39.58, 35.72, 34.38, 33.59, 32.76, 30.95, 30.54, 30.24, 29.97, 29.66, 29.54, 28.42, 26.88, 26.76, 25.50, 25.27, 24.84, 22.90, 22.19, 19.61. HRMS calculated for C₂₇H₄₃N₃O₄S 506.30470 [M+H]⁺; found 506.30462.

Methia-Leu-BiCha-NHNH₂ (**258**) The title compound was prepared according to the general procedure C on a 0.28 mmol scale using staring material **257** in quantitative yield.

Boc-Cha-Cha-OMe (**259**). This compound was obtained using the same procedures as described above for the preparation of compound **203** on a 1.5 mmol scale using Boc-Cha-OH as starting material. Purification by silica gel flash column chromatography (5% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (438 mg, 1.0 mmol, 67%). ¹H NMR (400 MHz, CDCl₃) δ 6.96 (d, J = 7.9 Hz, 1H), 5.30 (d, J = 8.4 Hz, 1H), 4.64-4.58 (m, 1H), 4.25-4.19 (m, 1H), 3.72 (s, 3H), 1.86-0.75 (m, 35H). ¹³C NMR (100 MHz, CDCl₃) δ 173.15, 172.52, 155.60, 79.56, 77.36, 60.26, 52.17, 51.99, 49.91, 39.79, 33.84, 33.40, 33.31, 32.73, 32.33, 28.21, 26.33, 26.26, 26.11, 26.00, 25.84. HRMS calculated for C₂₄H₄₂N₂O₅ 439.31665 [M+H]⁺; found 439.31656.

Methia-Cha-OMe (**260**). Compound **259** (438 mg, 1.0 mmol) was deprotected using the general procedure B, followed by the peptide coupling with 2-methylthiazole-5-carboxylic acid using general procedure A. Purification by silica gel flash column chromatography (10% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the title compound (439 mg, 0.95 mmol, 95%). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 8.04 (d, J = 8.1 Hz, 1H), 7.64 (d, J = 7.5 Hz, 1H), 4.83-4.77 (m, 1H), 4.59-4.54 (m, 1H), 3.73 (s, 3H), 2.71 (s, 3H), 1.73-1.08 (m, 22H), 0.92-0.76 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.01, 172.65, 170.12, 160.58, 143.74, 133.81, 77.36, 51.95, 51.55, 50.27, 39.24, 33.90, 33.84, 33.27, 33.00, 32.58, 32.40, 26.26, 26.21, 26.00, 25.90, 25.87, 25.76, 19.37. HRMS calculated for C₂₄H₃₇N₃O₄S 464.25775 [M+H]⁺; found 464.25755.

Methia-Cha-NHNH₂ (261). The title compound was prepared according to the general procedure C on a 0.95 mmol scale using staring material 260 in quantitative yield.

Benz-Leu-Leu-Phe(4-aminomethyl)-VS TFA salt (6). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (7.3 mg, 10.4 µmol, 21%). ¹H NMR (600 MHz, MeOD) δ 7.93-7.82 (m, 2H), 7.62-7.54 (m, 1H), 7.52-7.49 (m, 2H), 7.38 (d, J = 8.1 Hz, 2H), 7.35-7.27 (m, 2H), 6.86-6.82 (m, 1H), 6.64-6.61 (m, 1H), 4.59-4.57 (m, 1H), 4.38-4.34 (m, 1H), 4.09 (s, 2H), 3.09-2.91 (m, 5H), 1.83-1.47 (m, 6H), 1.09-0.85 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 175.17, 174.28, 170.80, 146.61, 139.63, 135.10, 133.05, 132.92, 131.88, 131.23, 130.18, 129.62, 128.63, 54.60, 54.56, 53.59, 53.55, 53.50, 53.46, 52.47, 52.38, 44.07, 42.77, 41.64, 41.60, 41.36, 40.31, 40.28, 26.19, 25.96, 23.46, 23.38, 22.06, 21.76. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.12 (ESI-MS (m/z): 585.13, (M+H⁺)). HRMS calculated for C₃₁H₄₄N₄O₅S 585.31052 [M+H]⁺; found 585.31048.

Pyra-Leu-Phe(4-aminomethyl)-VS TFA salt (7). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-35% MeCN-H₂O) yielded the title compound (3.5 mg, 5.0 µmol, 10%). ¹H NMR (600 MHz, MeOD) δ 9.26 (d, J = 1.5 Hz, 1H), 8.84 (d, J = 2.5 Hz, 1H), 8.75-8.74 (m, 1H), 7.43-7.37 (m, 2H), 7.37-7.30 (m, 2H), 6.86-6.82 (m, 1H), 6.67-6.56 (m, 1H), 4.66-4.59 (m, 1H), 4.39-4.35 (m, 1H), 4.12 (s, 2H), 3.08-2.98 (m, 2H), 2.97 (s, 3H), 1.86-1.46 (m, 6H), 1.05-0.85 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 174.59, 174.26, 165.66, 148.85, 146.57, 145.85, 144.86, 139.60, 132.96, 131.89, 131.26, 130.22, 54.04, 53.49, 52.39, 44.09, 42.76, 41.93, 41.54, 40.30, 26.16, 25.95, 23.40, 22.01, 21.74. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 5.48 (ESI-MS (m/z): 587.20, (M+H+)). HRMS calculated for C₂₉H₄₂N₆O₅ S 587.30102 [M+H]+; found 587.30099.

Phnico-Leu-Leu-Phe(4-aminomethyl)-VS TFA salt (8). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-45% MeCN-H₂O) yielded the title compound (3.3 mg, 4.3 µmol, 9%). ¹H NMR (600 MHz, MeOD) δ 9.13-9.09 (m, 1H), 8.37-8.34 (m, 1H), 8.09-8.04 (m, 2H), 8.03-8.01 (m, 1H), 7.60-7.46 (m, 3H), 7.43-7.27 (m, 4H), 6.85-6.82 (m, 1H), 6.64-6.61 (m, 1H), 4.62-4.58 (m, 1H), 4.40-4.36 (m, 1H), 4.10 (s, 2H), 3.08-2.90 (m, 5H), 1.90-1.49 (m, 6H), 1.08-0.87 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 175.02, 174.32, 168.52, 161.32, 149.75, 146.56, 139.62, 139.32, 138.00, 132.95, 131.92, 131.26, 131.10, 130.21, 130.03, 129.44, 128.39, 121.71, 54.66, 53.56, 52.51, 52.42, 44.08, 42.77, 41.53, 41.38, 40.32, 26.18, 26.00, 23.47, 23.38, 22.07, 21.75. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.31 (ESI-MS (m/z)): 662.20, (M+H+)). HRMS calculated for C₃₆H₄₇N₅O₅S 662.33707 [M+H]⁺; found 662.33712.

Dibenz-Leu-Phe(4-aminomethyl)-VS TFA salt (9). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (4.3 mg, 5.6 µmol, 11%). ¹H NMR (600 MHz, MeOD) δ 7.55-7.43 (m, 3H), 7.42-7.26 (m, 4H), 6.86-6.81 (m, 1H), 6.63-6.60 (m, 1H), 4.57-4.53 (m, 1H), 4.41-4.39 (m, 1H), 4.13-4.06 (m, 2H), 3.11-2.88 (m, 5H), 1.84-1.46 (m, 6H), 1.05-0.90 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 174.30, 174.11, 168.71, 146.68, 146.56, 139.62, 138.58, 134.07, 132.91, 132.88, 132.51, 132.30, 131.86, 131.24, 130.45, 130.17, 129.94, 128.79, 127.04, 54.67, 54.30, 53.30, 52.38, 44.07, 42.77, 42.17, 41.34, 40.27, 26.02, 25.92, 23.48, 23.43, 21.93, 21.82. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.58 (ESI-MS (m/z)): 653.13, (M+H+)). HRMS calculated for C₃₁H₄₂Cl₂N₄O₅S 653.23257 [M+H]⁺; found 653.23287.

Morph-Leu-Leu-Phe(4-aminomethyl)-VS TFA salt (10). This compound was prepared according to the general procedure D on a 50 μ mol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (25%-35% MeCN-H₂O) yielded the title compound (5.0 mg, 6.9 μ mol, 14%). ¹H NMR (600 MHz, MeOD) δ 7.45-7.38 (m, 2H), 7.37-7.31 (m, 2H), 6.83-6.77

(m, 1H), 6.58-6.51 (m, 1H), 4.82-4.79 (m, 1H), 4.45-4.41 (m, 1H), 4.39-4.32 (m, 1H), 4.11 (s, 2H), 4.03-3.86 (m, 6H), 3.11-2.91 (m, 5H), 1.76-1.41 (m, 6H), 1.10-0.83 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 174.47, 174.31, 146.47, 139.59, 133.04, 131.93, 131.29, 130.25, 65.01, 58.61, 54.03, 53.63, 53.46, 52.60, 44.05, 42.75, 41.96, 41.85, 40.23, 25.96, 25.87, 23.45, 23.38, 21.89, 21.82. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 4.28 (ESI-MS (m/z): 608.27, (M+H+)). HRMS calculated for C₃₀H₄₉N₅O₆S 608.34763 [M+H]⁺; found 608.34759.

Methia-Leu-Leu-Phe(4-aminomethyl)-VS TFA salt (**11**). This compound was prepared according to the general procedure D on a 70 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (25%-40% MeCN-H₂O) yielded the title compound (8.8 mg, 12.2 µmol, 17%). ¹H NMR (600 MHz, MeOD) δ 8.27 (s, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 6.83-6.80 (m, 1H), 6.62-6.59 (m, 1H), 4.52-4.50 (m, 1H), 4.35-4.32 (m, 1H), 4.11 (s, 2H), 3.02-3.01 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.83-1.47 (m, 6H), 1.07-0.86 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 174.90, 174.28, 173.09, 163.19, 146.52, 144.56, 139.63, 135.33, 132.96, 131.90, 131.27, 130.21, 54.50, 53.59, 52.43, 44.07, 42.77, 41.42, 41.26, 40.33, 26.10, 25.97, 23.44, 23.34, 22.02, 21.71, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 5.51 (ESI-MS (m/z)): 606.13, (M+H+)). HRMS calculated for C₂₉H₄₃N₅O₅S₂ 606.27784 [M+H]⁺; found 606.27799.

N3Acetyl-Phe-Leu-Leu-Phe(4-aminomethyl)-VS TFA salt (12). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (7.3 mg, 10.4 µmol, 21%). ¹H NMR (600 MHz, MeOD) δ 7.43-7.35 (m, 4H), 7.33-7.22 (m, 5H), 6.85-6.82 (m, 1H), 6.66-6.63 (m, 1H), 4.60-4.57 (m, 1H), 4.31-4.29 (m, 2H), 4.09 (s, 2H), 3.91 (d, J = 2.6 Hz, 2H), 3.19-3.15 (m, 1H), 3.08-2.96 (m, 3H), 2.95 (s, 3H), 1.71-1.46 (m, 6H), 1.00-0.86 (m, 12H). ¹³C NMR (150 MHz, MeOD) δ 174.85, 174.32, 174.01, 170.95, 146.44, 139.72, 137.86, 132.92, 131.81, 131.35, 130.30, 130.19, 129.63, 128.04, 57.07, 54.14, 53.81, 52.72, 52.43, 44.07, 42.77, 41.45, 41.10, 40.40, 38.30, 26.00, 25.82, 23.50, 23.39, 21.78, 21.76. LC-MS (linear gradient 10 \rightarrow 90%

MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.44 (ESI-MS (m/z): 711.27, (M+H+)). HRMS calculated for C₃₅H₅₀N₈O₆S 711.36468 [M+H]⁺; found 711.36500.

N3Phe-Leu-Ser-Phe(4-CH2NH2)-VS TFA salt (13). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (2.8 mg, 3.8 µmol, 8%). ¹H NMR (600 MHz, MeOD) δ 7.46-7.23 (m, 9H), 6.85-6.81 (m, 1H), 6.76-6.73 (m, 1H), 4.39-4.27 (m, 2H), 4.20-4.17 (m, 1H), 4.11 (s, 2H), 3.84-3.81 (m, 1H), 3.76-3.73 (m, 1H), 3.25-3.22 (m, 1H), 3.07-2.98 (m, 3H), 2.95 (s, 3H), 1.69-1.52 (m, 3H), 1.02-0.88 (m, 6H). ¹³C NMR (150 MHz, MeOD) δ 174.33, 172.23, 171.81, 146.65, 139.69, 137.84, 133.00, 131.84, 131.26, 130.42, 130.24, 129.65, 128.10, 65.38, 62.75, 56.70, 53.80, 52.56, 44.09, 42.77, 41.38, 40.25, 38.72, 25.82, 23.46, 21.84. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.27 (ESI-MS (m/z): 628.20, (M+H⁺)). HRMS calculated for C₃₀H₄₁N₇O₆S 628.29118 [M+H]⁺; found 628.29123.

N3Phe-Leu-Leu(4-F)-Phe(4-CH₂NH₂)-VS TFA salt (**14**). This compound was prepared according to the general procedure D on a 100 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-45% MeCN-H₂O) yielded the title compound (22.1 mg, 28.1 µmol, 28%). ¹H NMR (400 MHz, MeOD) δ 7.45-7.23 (m, 10H), 6.84-6.79 (m, 1H), 6.65-6.61 (m, 1H), 4.90-4.77 (m, 1H), 4.55-4.50 (m, 1H), 4.36-4.32 (m, 1H), 4.22-4.19 (m, 1H), 4.12 (s, 2H), 3.26-3.21 (m, 1H), 3.06-2.96 (m, 3H), 2.95 (s, 3H), 2.24-1.88 (m, 2H), 1.64-1.55 (m, 3H), 1.44-1.33 (m, 6H), 0.99-0.92 (m, 6H). ¹³C NMR (100 MHz, MeOD) δ 174.03, 173.42, 172.16, 146.45, 146.43, 139.58, 137.81, 133.01, 131.87, 131.25, 130.42, 130.26, 129.66, 129.27, 128.62, 128.11, 96.77, 95.12, 65.48, 53.85, 53.82, 52.58, 52.49, 51.87, 44.05, 43.02, 42.81, 42.76, 41.13, 40.24, 38.65, 27.48, 27.24, 27.14, 26.90, 25.76, 23.42, 21.87. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.95 (ESI-MS (m/z): 672.20, (M+H⁺)). HRMS calculated for C₃₃H₄₆FN₇O₅S 672.33379 [M+H]⁺; found 672.33384.

N₃Phe-Leu-Ser(Me)-Phe(4-CH₂NH₂)-VS TFA salt (**15**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-45% MeCN-H₂O) yielded the title compound (10.6 mg, 14.0 µmol, 28%). ¹H NMR (400 MHz, MeOD) δ 8.31 (t, J = 8.4 Hz, 2H), 7.99 (d, J = 8.0 Hz, 1H), 7.46-7.21 (m, 9H), 6.86-6.81 (m, 1H), 6.71-6.67 (m, 1H), 4.47-4.31 (m, 2H), 4.20-4.16 (m, 1H), 4.11 (s, 2H), 3.69-3.65 (m, 1H), 3.59-3.55 (m, 1H), 3.38 (s, 3H), 3.25-3.20 (m, 1H), 3.10-2.98 (m, 3H), 2.96 (s, 3H), 1.68-1.45 (m, 3H), 0.98-0.89 (m, 6H). ¹³C NMR (100 MHz, MeOD) δ 174.40, 172.24, 172.16, 171.64, 146.83, 139.70, 137.82, 132.99, 131.80, 131.20, 130.41, 130.23, 129.65, 128.10, 72.76, 65.40, 65.36, 59.42, 54.90, 54.80, 53.78, 53.68, 52.67, 52.58, 44.06, 42.86, 41.35, 40.08, 38.73, 25.80, 23.46, 21.85. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.82 (ESI-MS (m/z): 642.27, (M+H⁺)). HRMS calculated for C₃₁H₄₃N₇O₆S 642.30683[M+H]⁺; found 642.30685.

N₃Phe-Leu-Thr-Phe(4-CH₂NH₂)-VS TFA salt (**16**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H2O) yielded the title compound (6.9 mg, 9.1 µmol, 18%). ¹H NMR (600 MHz, MeOD) δ 7.43-7.24 (m, 11H), 6.87-6.83 (m, 1H), 6.73-6.70 (m, 1H), 4.94-4.91 (m, 1H), 4.43-4.36 (m, 1H), 4.25 (d, J = 3.6 Hz, 1H), 4.24-4.16 (m, 2H), 4.11 (s, 3H), 3.26-3.23 (m, 1H), 3.10-2.96 (m, 4H), 2.96 (s, 3H), 1.69-1.56 (m, 3H), 1.17 (d, J = 6.4 Hz, 3H), 0.98-0.88 (m, 6H). ¹³C NMR (150 MHz, MeOD) δ 174.57, 172.36, 171.64, 146.70, 139.65, 137.87, 132.99, 131.85, 131.25, 130.40, 130.22, 129.65, 128.10, 68.34, 65.40, 59.84, 54.05, 52.48, 44.09, 42.78, 41.31, 40.28, 38.76, 25.86, 23.44, 21.82, 20.24. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 6.43 (ESI-MS (m/z): 642.27, (M+H⁺)). HRMS calculated for C₃₁H₄₃N₇O₆S 642.30683 [M+H]⁺; found 642.30687.

N₃Phe-Leu-Ala(CF₃)-Phe(4-CH₂NH₂)-VS TFA salt (17). This compound was prepared according to the general procedure D on a 91 μ mol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-45% MeCN-H2O) yielded the title compound (24.3 mg, 30.6 μ mol, 34%). ¹H NMR (400 MHz, MeOD) δ 7.46-7.22 (m, 10H), 6.98-6.94 (m, 1H), 6.86-6.76

(m, 1H), 6.66-6.58 (m, 1H), 4.69-4.54 (m, 1H), 4.32-4.03 (m, 4H), 3.27-3.17 (m, 1H), 3.14-2.61 (m, 8H), 1.72-1.48 (m, 3H), 1.01-0.89 (td, J = 14.5, 5.9 Hz, 6H). ¹³C NMR (100 MHz, MeOD) δ 174.78, 174.41, 172.71, 172.30, 170.85, 146.62, 146.12, 139.73, 139.48, 137.82, 133.05, 132.99, 131.99, 131.88, 131.37, 131.28, 130.40, 130.33, 130.28, 130.17, 129.64, 128.09, 65.34, 64.73, 54.91, 54.02, 53.16, 53.07, 52.88, 44.04, 42.84, 42.74, 41.13, 40.98, 40.37, 38.72, 38.66, 35.32, 35.03, 35.00, 25.73, 25.54, 23.37, 22.91, 22.54, 21.88. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 7.07 (ESI-MS (m/z): 680.13, (M+H⁺)). HRMS calculated for C₃₁H₄₀F₃N₇O₅S 680.28365 [M+H]⁺; found 680.28362.

N₃Phe-Leu-Gly-Phe(4-CH₂NH₂)-VS TFA salt (**18**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (9.6 mg, 16.0 µmol, 32%). ¹H NMR (400 MHz, MeOD) δ 7.56-7.13 (m, 9H), 6.88 (dd, J = 15.2, 4.9 Hz, 1H), 6.73 (dd, J = 15.2, 1.5 Hz, 1H), 4.25 (dd, J = 9.0, 5.7 Hz, 1H), 4.12 (dd, J = 8.9, 4.8 Hz, 1H), 4.07 (s, 2H), 3.97 (d, J = 16.9 Hz, 1H), 3.63 (d, J = 16.9 Hz, 1H), 3.22 (dd, J = 14.1, 4.8 Hz, 1H), 3.09-2.93 (m, 6H), 1.66-1.56 (m, 3H), 1.00-0.81 (m, 6H). ¹³C NMR (101 MHz, MeOD) δ 175.01, 172.43, 171.13, 162.70, 162.34, 146.69, 139.76, 137.82, 132.98, 131.78, 131.31, 130.39, 130.23, 129.65, 128.10, 65.01, 54.30, 52.61, 44.04, 43.52, 42.78, 41.11, 40.37, 38.66, 25.78, 23.25, 22.14. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 15.0 min): Rt (min): 5.84 (ESI-MS (m/z): 598.00, (M+H⁺)). HRMS calculated for C₂₉H₃₉N₇O₅S 598.28061 [M+H]⁺; found 598.28052.

Pyra-Leu-Ala-Phe(4-CH₂NH₂)-VS TFA salt (**19**). This compound was prepared according to the general procedure D on a 70 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-45% MeCN-H₂O) yielded the title compound (12.1 mg, 18.4 µmol, 26%). ¹H NMR (400 MHz, MeOD) δ 9.24 (d, J = 1.5 Hz, 1H), 8.82 (d, J = 2.5 Hz, 1H), 8.72 (dd, J = 2.5, 1.5 Hz, 1H), 7.38 (d, J = 8.2 Hz, 2H), 7.36-7.31 (m, 2H), 6.83 (dd, J = 15.2, 4.9 Hz, 1H), 6.63 (dd, J = 15.2, 1.6 Hz, 1H), 4.85-4.80 (m, 1H), 4.63-4.59 (m, 1H), 4.30-4.24 (m, 1H), 4.09 (s, 2H), 3.07-2.99 (m, 2H), 2.95 (s, 3H), 1.84-1.70 (m, 3H), 1.32 (d, J = 7.2 Hz, 3H), 1.02-0.96 (m, 6H). ¹³C NMR

(100 MHz, MeOD) δ 173.10, 164.24, 147.45, 145.24, 144.41, 143.43, 138.21, 131.59, 130.38, 129.85, 128.81, 52.47, 50.96, 49.52, 42.65, 41.35, 40.47, 38.85, 24.72, 22.06, 20.55, 16.41. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 4.39 (ESI-MS (m/z): 545.13, (M+H⁺)). HRMS calculated for C₂₆H₃₆N₆O₅S 546.25407 [M+H]⁺; found 546.25373.

Methia-Leu-Ser(Me)-Phe(4-CH₂NH₂)-VS TFA salt (**20**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-45% MeCN-H₂O) yielded the title compound (10.6 mg, 14.0 µmol, 28%). ¹H NMR (600 MHz, MeOD) δ 8.27 (s, 1H), 7.40 (d, J = 8.2 Hz, 2H), 7.37-7.34 (m, 2H), 6.83 (dd, J = 15.1, 4.4 Hz, 1H), 6.69 (dd, J = 15.2, 1.8 Hz, 1H), 4.53 (dd, J = 9.9, 5.0 Hz, 1H), 4.46 (t, J = 5.5 Hz, 1H), 4.11 (s, 2H), 3.69 (dd, J = 9.6, 5.4 Hz, 1H), 3.59 (dd, J = 9.6, 5.6 Hz, 1H), 3.35 (s, 3H), 3.09-2.98 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.84-1.66 (m, 3H), 1.02 (d, J = 6.3 Hz, 3H), 0.98 (d, J = 6.3 Hz, 3H). ¹³C NMR (150 MHz, MeOD) δ 174.79, 173.15, 171.57, 163.17, 146.74, 144.56, 139.67, 135.22, 132.97, 131.83, 131.21, 130.21, 72.60, 59.35, 54.89, 54.37, 52.60, 44.06, 42.85, 41.17, 40.09, 26.08, 23.39, 21.91, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 4.59 (ESI-MS (m/z) 594.13 (M+H⁺)). HRMS calculated for C₂₇H₃₉N₅O₆S₂ 594.24145 [M+H]+; found 594.24120.

Methia-Chg-Leu-Phe(4-CH₂NH₂)-VS (**21**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (35%-40% MeCN-H₂O) yielded the title compound (11.2 mg, 15.0 µmol, 30%). ¹H NMR (600 MHz, MeOD) δ 8.40-8.16 (m, 2H), 7.40 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 8.1 Hz, 2H), 6.82-6.78 (m, 1H), 6.61-6.59 (m, 1H), 4.86-4.81 (m, 1H), 4.38-4.36 (m, 1H), 4.30-4.21 (m, 1H), 4.10 (s, 2H), 3.06-2.97 (m, 2H), 2.95 (s, 3H), 2.74 (s, 3H), 1.92-1.59 (m, 8H), 1.37-1.10 (m, 6H), 0.95-0.90 (m, 6H). ¹³C NMR (150 MHz, MeOD) δ 174.30, 174.22, 173.73, 173.65, 173.04, 163.12, 146.41, 144.46, 139.52, 135.40, 133.01, 131.93, 131.26, 130.24, 61.26, 53.62, 53.53, 52.57, 52.48, 44.02, 42.76, 41.40, 41.36, 40.66, 40.42, 40.39, 30.89, 30.77, 30.69, 27.24, 27.06, 25.90, 23.46, 21.66,

19.12. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.34 (ESI-MS (m/z): 632.20, (M+H⁺)). HRMS calculated for $C_{31}H_{45}N_5O_5S_2$ 632.29349 [M+H]⁺; found 632.29352.

Methia-Cha-Leu-Phe(4-CH₂NH₂)-VS TFA salt (**22**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-45% MeCN-H₂O) yielded the title compound (12.3 mg, 16.2 µmol, 32%). ¹H NMR (400 MHz, MeOD) δ 8.28 (s, 1H), 7.48-7.19 (m, 4H), 6.85-6.79 (m, 1H), 6.63-6.59 (m, 1H), 4.87-4.81 (m, 1H), 4.54-4.50 (m, 1H), 4.35-4.31 (m, 1H), 4.10 (s, 2H), 3.07-2.98 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.85-0.84 (m, 22H). ¹³C NMR (100 MHz, MeOD) δ 175.03, 174.26, 173.11, 163.18, 146.53, 144.56, 139.59, 135.34, 132.97, 131.87, 131.25, 130.22, 53.90, 53.60, 52.43, 44.05, 42.77, 41.28, 40.35, 39.90, 35.52, 34.71, 33.56, 27.54, 27.35, 27.25, 25.95, 23.47, 21.68, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.71 (ESI-MS (m/z)): 646.27, (M+H⁺)). HRMS calculated for C₃₂H₄₇N₅O₅S₂ 646.30914 [M+H]⁺; found 646.30902.

Methia-HomoCha-Leu-Phe(4-CH₂NH₂)-VS TFA salt (**23**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (15.9 mg, 20.6 µmol, 41%). ¹H NMR (600 MHz, MeOD) δ 8.29 (s, 1H), 7.40 (d, J = 8.0 Hz, 2H), 7.35-7.31 (m, 2H), 6.83-6.80 (m, 1H), 6.63-6.60 (m, 1H), 4.36-4.33 (m, 2H), 4.10 (s, 2H), 3.02 (d, J = 7.6 Hz, 2H), 2.96 (s, 3H), 2.74 (s, 3H), 1.95-1.60 (m, 10H), 1.56-1.51 (m, 1H), 1.38-1.23 (m, 6H), 0.97-0.89 (m, 8H). ¹³C NMR (150 MHz, MeOD) δ 174.71, 174.26, 173.05, 163.31, 146.47, 144.62, 139.58, 135.33, 132.98, 131.91, 131.24, 130.22, 56.81, 53.62, 52.44, 44.04, 42.79, 41.16, 40.39, 38.77, 34.73, 34.47, 34.36, 29.99, 27.70, 27.40, 25.95, 23.48, 21.66, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.01 (ESI-MS (m/z): 660.27, (M+H⁺)). HRMS calculated for C₃₃H₄₉N₅O₅S₂ 660.32479 [M+H]⁺; found 660.32481.

Methia-Cha(4-Me)-Leu-Phe(4-CH₂NH₂)-VS TFA salt (24). This compound was prepared according to the general procedure D on a 80 μ mol scale, followed by the removal of the Boc protecting group using

the general procedure B. Purification by HPLC (42%-47% MeCN-H₂O) yielded the title compound (18.5 mg, 10.4 µmol, 24%). ¹H NMR (600 MHz, MeOD) δ 8.27 (d, J = 1.2 Hz, 1H), 7.40 (d, J = 7.9 Hz, 2H), 7.36-7.30 (m, 2H), 6.84-6.80 (m, 1H), 6.63-6.59 (m, 1H), 4.54-4.48 (m, 1H), 4.35-4.32 (m, 1H), 4.10 (s, 2H), 3.02-3.00 (m, 2H), 2.96 (s, 3H), 2.74 (s, 3H), 1.92-1.30 (m, 14H), 0.99-0.84 (m, 10H). ¹³C NMR (150 MHz, MeOD) δ 175.00, 174.27, 173.08, 163.20, 146.52, 144.59, 139.58, 135.32, 132.97, 131.89, 131.24, 130.21, 54.32, 54.06, 53.62, 52.42, 44.05, 42.79, 41.31, 40.34, 39.84, 36.28, 36.18, 35.32, 34.63, 33.95, 33.54, 31.83, 31.64, 30.18, 28.77, 25.94, 23.45, 23.01, 21.70, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.99 (ESI-MS (m/z): 660.27, (M+H⁺)). HRMS calculated for C₃₃H₄₉N₅O₅S₂ 660.32479 [M+H]⁺; found 660.32493.

Methia-Cha(4-OMe)-Leu-Phe(4-CH₂NH₂)-VS TFA salt (**25**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (13.4 mg, 17.0 µmol, 34%). ¹H NMR (400 MHz, MeOD) δ 8.27 (s, 1H), 7.45-7.24 (m, 4H), 6.84-6.79 (m, 1H), 6.62-6.58 (m, 1H), 4.86-4.81 (m, 1H), 4.53-4.49 (m, 1H), 4.34-4.30 (m, 1H), 4.10 (s, 2H), 3.45 (t, J = 3.6 Hz, 1H), 3.02-2.97 (m, 2H), 2.95 (s, 3H), 2.74 (s, 3H), 1.98-1.25 (m, 14H), 0.95-0.87 (m, 6H). ¹³C NMR (100 MHz, MeOD) δ 174.95, 174.27, 173.11, 163.16, 146.55, 144.55, 139.60, 135.34, 132.97, 131.86, 131.25, 130.22, 76.75, 55.83, 53.92, 53.61, 52.42, 44.05, 42.77, 41.30, 40.32, 39.14, 34.47, 29.90, 29.77, 28.53, 27.41, 25.95, 23.46, 21.69, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.20 (ESI-MS (m/z): 676.33, (M+H⁺)). HRMS calculated for C₃₃H₄₉N₅O₆S₂ 676.31970 [M+H]⁺; found 676.31980.

Methia-1-DecAla-Leu-Phe(4-CH₂NH₂)-VS TFA salt (**26**). This compound was prepared according to the general procedure D on a 50 μ mol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (11.1 mg, 13.6 μ mol, 27%). ¹H NMR (600 MHz, MeOD) δ 8.29-8.25 (m, 1H), 7.40 (d, J = 7.8 Hz, 2H), 7.34-7.30 (m, 2H), 6.86-6.77 (m, 1H), 6.66-6.58 (m, 1H), 4.86-4.81 (m, 1H), 4.49-4.39 (m, 1H), 4.39-4.26 (m, 1H), 4.10 (d, J = 2.5 Hz, 2H), 3.95-3.85 (m, 1H), 3.68 (s, 1H), 3.27-3.21 (m, 1H), 3.02-2.96

(m, 5H), 2.75-2.74 (m, 3H), 1.84-1.20 (m, 22H), 0.96-0.88 (m, 6H). ¹³C NMR (150 MHz, MeOD) δ 175.04, 174.69, 174.26, 174.12, 173.14, 163.27, 163.22, 146.50, 146.34, 144.67, 144.63, 144.57, 139.58, 132.99, 131.94, 131.87, 131.25, 130.23, 68.13, 64.91, 54.21, 53.60, 52.45, 44.64, 44.55, 44.04, 42.76, 41.73, 41.21, 41.14, 40.70, 40.38, 39.41, 39.10, 39.01, 38.97, 36.77, 36.27, 33.72, 30.89, 28.42, 27.97, 27.81, 26.57, 25.97, 23.49, 22.34, 21.68, 21.15, 20.77, 19.14. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H2O, 0.1% TFA, 12.5 min): Rt (min): 6.49 (ESI-MS (m/z): 700.27, (M+H⁺)). HRMS calculated for C₃₆H₅₃N₅O₅S₂ 700.35609 [M+H]⁺; found 700.35626.

Methia-2-DecAla-Leu-Phe(4-CH₂NH₂)-VS TFA salt (**27**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (14.8 mg, 18.2 µmol, 36%). ¹H NMR (600 MHz, MeOD) δ 8.31-8.22 (m, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.33 (d, J = 7.9 Hz, 2H), 6.83-6.80 (m, 1H), 6.62-6.59 (m, 1H), 4.57-4.50 (m, 1H), 4.35-4.32 (m, 1H), 4.10 (s, 2H), 3.05-2.96 (m, 5H), 2.74 (s, 3H), 1.82-1.20 (m, 22H), 0.95 (d, J = 6.2 Hz, 3H), 0.91 (d, J = 6.3 Hz, 3H). ¹³C NMR (150 MHz, MeOD) δ 175.09, 175.03, 174.29, 173.08, 163.17, 146.52, 144.58, 139.58, 135.34, 132.97, 131.90, 131.25, 130.22, 53.97, 53.90, 53.62, 52.43, 44.06, 42.79, 41.31, 40.36, 40.07, 37.53, 37.37, 37.33, 37.24, 37.22, 36.31, 36.28, 34.00, 33.55, 33.49, 33.35, 33.29, 32.97, 30.89, 29.00, 28.13, 27.95, 26.85, 25.96, 23.46, 21.98, 21.72, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.55 (ESI-MS (m/z): 700.33, (M+H⁺)). HRMS calculated for C₃₆H₃₃N₅O₅S₂ 700.35609 [M+H]⁺; found 700.35633.

Methia-BiCha-Leu-Phe(4-CH₂NH₂)-VS TFA salt (**28**). This compound was prepared according to the general procedure D on a 50 μmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (45%-55% MeCN-H₂O) yielded the title compound (7.7 mg, 9.2 μmol, 18%). ¹H NMR (600 MHz, MeOD) δ 8.26 (s, 1H), 7.44-7.37 (m, 2H), 7.34-7.32 (m, 2H), 6.83-6.79 (m, 1H), 6.62-6.59 (m, 1H), 4.91-4.76 (m, 1H), 4.53-4.46 (m, 1H), 4.35-4.31 (m, 1H), 4.10 (s, 2H), 3.02-3.00 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.94-1.44 (m, 18H), 1.3-1.14 (m, 6H), 0.96-0.90 (m, 8H). ¹³C NMR (150 MHz, MeOD) δ 175.12, 175.04, 174.35, 174.27, 173.10, 163.20, 163.16,

146.46, 144.56, 139.59, 135.36, 132.98, 131.88, 131.27, 130.23, 126.12, 54.43, 54.39, 54.07, 54.04, 53.72, 53.68, 53.63, 53.59, 52.55, 52.53, 52.46, 52.43, 44.69, 44.04, 42.76, 41.27, 40.37, 39.86, 36.16, 35.81, 34.92, 33.87, 32.56, 31.72, 31.41, 30.96, 30.89, 29.49, 27.94, 27.86, 26.74, 26.53, 25.97, 23.48, 21.68, 19.13. LC-MS (linear gradient $10 \rightarrow 90\%$ MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.08 (ESI-MS (m/z): 728.27, (M+H⁺)). HRMS calculated for C₃₈H₅₇N₅O₅S₂ 728.38739 [M+H]⁺; found 728.38763.

Methia-Leu-Cha-Phe(4-CH₂NH₂)-VS TFA salt (**29**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (38%-43% MeCN-H₂O) yielded the title compound (11.0 mg, 14.5 µmol, 29%). ¹H NMR (400 MHz, MeOD) δ 8.28 (s, 1H), 7.48-7.25 (m, 4H), 6.85-6.79 (m, 1H), 6.62-6.58 (m, 1H), 4.89-4.78 (m, 1H), 4.52-4.50 (m, 1H), 4.38-4.35 (m, 1H), 4.10 (s, 2H), 3.07-2.98 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.83-0.79 (m, 22H). ¹³C NMR (100 MHz, MeOD) δ 174.77, 174.37, 173.11, 163.13, 146.56, 144.54, 139.61, 135.36, 132.96, 131.85, 131.25, 130.22, 54.44, 52.80, 52.40, 44.06, 42.79, 41.12, 40.30, 40.02, 35.40, 34.85, 33.14, 27.51, 27.40, 27.19, 26.07, 23.27, 22.17, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.59 (ESI-MS (m/z): 646.27, (M+H⁺)). HRMS calculated for C₃₂H₄₇N₅O₅S₂ 646.30914 [M+H]⁺; found 646.30930.

Methia-Leu-HomoCha-Phe(4-CH₂NH₂)-VS TFA salt (**30**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (13.0 mg, 16.8 µmol, 34%). ¹H NMR (400 MHz, MeOD) δ 8.27 (s, 1H), 7.50-7.17 (m, 4H), 6.85-6.80 (m, 1H), 6.62-6.58 (m, 1H), 4.87-4.83 (m, 1H), 4.56-4.52 (m, 1H), 4.23-4.19 (m, 1H), 4.10 (s, 2H), 3.09-2.88 (m, 5H), 2.75 (s, 3H), 1.89-1.53 (m, 10H), 1.40-0.76 (m, 14H). ¹³C NMR (100 MHz, MeOD) δ 174.77, 173.84, 173.11, 163.08, 146.61, 144.52, 139.59, 135.35, 132.97, 131.88, 131.25, 130.23, 55.31, 54.29, 52.41, 44.06, 42.80, 41.13, 40.26, 38.53, 34.52, 34.48, 34.20, 30.17, 27.68, 27.38, 27.35, 26.07, 23.35, 22.03, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min):
5.99 (ESI-MS (m/z): 600.27, (M+H⁺)). HRMS calculated for C₃₃H₄₉N₅O₅S₂ 660.32479 [M+H]⁺; found 660.32494.

Methia-Leu-Cha(4-Me)-Phe(4-CH₂NH₂)-VS TFA salt (31). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (42%-47% MeCN-H₂O) yielded the title compound (15.4 mg, 19.9 µmol, 40%). ¹H NMR (600 MHz, MeOD) δ 8.28-8.27 (m, 1H), 7.43-7.26 (m, 4H), 6.85-6.81 (m, 1H), 6.63-6.59 (m, 1H), 4.54-4.50 (m, 1H), 4.39-4.31 (m, 1H), 4.11 (s, 2H), 3.08-2.84 (m, 5H), 2.75 (s, 3H), 1.82-1.23 (m, 15H), 1.04-0.97 (m, 6H), 0.94 (d, J = 6.9 Hz, 2H), 0.86 (d, J = 6.5 Hz, 1H). ¹³C NMR (150 MHz, MeOD) δ 174.85, 174.73, 174.38, 174.35, 173.10, 163.18, 163.11, 146.58, 144.58, 139.62, 135.33, 132.96, 131.89, 131.25, 130.22, 54.51, 54.38, 53.29, 52.92, 52.39, 44.06, 42.82, 41.14, 41.00, 40.29, 39.92, 36.29, 36.08, 35.16, 34.76, 33.88, 33.11, 33.01, 31.91, 31.62, 31.12, 30.90, 30.25, 28.29, 26.08, 26.06, 23.29, 23.27, 22.99, 22.19, 22.12, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.95 (ESI-MS (m/z): 660.27, (M+H⁺)). HRMS calculated for C₃₃H₄₉N₅O₅S₂ 660.32479 [M+H]⁺; found 660.32476.

Methia-Leu-Cha(4-OMe)-Phe(4-CH₂NH₂)-VS TFA salt (**32**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (10.4 mg, 13.2 µmol, 26%). ¹H NMR (600 MHz, MeOD) δ 8.27 (s, 1H), 7.42-7.30 (m, 4H), 6.84-6.80 (m, 1H), 6.61-6.59 (m, 1H), 4.53-4.51 (m, 1H), 4.38-4.33 (m, 1H), 4.11 (s, 2H), 3.43-3.37 (m, 1H), 3.30 (s, 3H), 3.05-2.98 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.89-1.65 (m, 6H), 1.60-1.58 (m, 2H), 1.50-1.42 (m, 3H), 1.37-1.28 (m, 3H), 1.04-0.97 (m, 6H). ¹³C NMR (150 MHz, MeOD) δ 174.85, 174.77, 174.29, 173.10, 163.09, 146.55, 144.53, 139.64, 135.37, 132.96, 131.89, 131.27, 130.21, 76.73, 55.82, 54.41, 54.37, 52.97, 52.88, 52.52, 52.43, 44.08, 42.79, 41.14, 40.27, 39.38, 34.35, 30.90, 29.95, 29.71, 28.69, 26.98, 26.09, 23.30, 22.12, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.17 (ESI-MS (m/z): 676.20, (M+H⁺)). HRMS calculated for C₃₃H₄₉N₅O₆S₂ 676.31970 [M+H]⁺; found 676.31964.

Methia-Leu-1-DecAla-Phe(4-CH₂NH₂)-VS TFA salt (**33**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (9.9 mg, 12.2 µmol, 24%). ¹H NMR (600 MHz, MeOD) δ 8.31-8.24 (m, 1H), 7.41-7.39 (m, 2H), 7.36-7.32 (m, 2H), 6.87-6.78 (m, 1H), 6.63-6.54 (m, 1H), 4.87-4.83 (m, 1H), 4.58-4.47 (m, 1H), 4.42-4.23 (m, 1H), 4.10 (s, 2H), 3.94-3.84 (m, 1H), 3.68 (s, 1H), 3.28-3.19 (m, 1H), 3.06-2.90 (m, 5H), 2.80-2.69 (m, 3H), 1.84-1.48 (m, 11H), 1.44-1.15 (m, 9H), 1.07-0.91 (m, 8H). ¹³C NMR (150 MHz, MeOD) δ 174.82, 174.71, 174.67, 174.41, 174.36, 173.15, 163.21, 163.11, 146.61, 146.55, 146.51, 144.53, 139.64, 139.61, 139.56, 135.42, 132.96, 131.95, 131.82, 131.27, 131.23, 130.22, 126.12, 68.13, 64.90, 54.83, 54.61, 54.34, 54.30, 53.12, 52.56, 52.42, 44.63, 44.41, 44.06, 42.79, 42.43, 41.03, 40.75, 40.29, 39.80, 39.58, 39.10, 39.06, 38.78, 37.22, 35.62, 35.44, 33.72, 32.52, 27.90, 27.71, 27.50, 26.98, 26.93, 26.52, 26.06, 26.03, 23.29, 23.23, 22.26, 22.18, 19.14. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.26 (ESI-MS (m/z): 700.33, (M+H⁺)). HRMS calculated for C₃₆H₅₃N₅O₅S₂ 700.35609 [M+H]⁺; found 700.35632.

Methia-Leu-2-DecAla-Phe(4-CH₂NH₂)-VS TFA salt (**34**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (16.5 mg, 20.3 µmol, 41%). ¹H NMR (600 MHz, MeOD) δ 8.29-8.23 (m, 1H), 7.40 (d, J = 8.1 Hz, 2H), 7.36-7.30 (m, 2H), 6.84-6.81 (m, 1H), 6.62-6.58 (n, 1H), 4.57-4.48 (m, 1H), 4.40-4.36 (m, 1H), 4.10 (s, 2H), 3.07-2.94 (m, 5H), 2.74 (s, 3H), 1.82-1.07 (m, 22H), 1.05-0.97 (m, 6H). ¹³C NMR (150 MHz, MeOD) δ 174.73, 174.44, 174.36, 173.11, 163.10, 146.60, 144.56, 139.61, 135.38, 132.96, 131.84, 131.25, 130.22, 54.43, 54.41, 54.27, 52.91, 52.78, 52.39, 44.07, 42.81, 41.08, 40.32, 40.19, 40.07, 37.52, 37.46, 37.24, 37.20, 36.28, 36.13, 34.09, 33.55, 33.47, 33.37, 33.23, 32.42, 30.90, 29.17, 28.10, 27.57, 26.83, 26.07, 23.28, 22.18, 21.99, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.38 (ESI-MS (m/z): 700.33, (M+H⁺)). HRMS calculated for C₃₆H₅₃N₅O₃S₂ 700.35609 [M+H]⁺; found 700.35629.

Methia-Leu-BiCha-Phe(4-CH₂NH₂)-VS TFA salt (**35**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (45%-50% MeCN-H₂O) yielded the title compound (12.0 mg, 14.3 µmol, 29%). ¹H NMR (600 MHz, MeOD) δ 8.35-8.24 (m, 1H), 7.48-7.25 (m, 4H), 6.83-6.79 (m, 1H), 6.62-6.59 (m, 1H), 4.91-4.76 (m, 1H), 4.53-4.46 (m, 1H), 4.35-4.31 (m, 1H), 4.10 (s, 2H), 3.02-3.00 (m, 2H), 2.96 (s, 3H), 2.75 (s, 3H), 1.96-1.44 (m, 18H), 1.28-1.06 (m, 6H), 0.96-0.90 (m, 8H). ¹³C NMR (150 MHz, MeOD) δ 175.12, 175.04, 175.02, 174.35, 174.27, 173.10, 163.20, 146.48, 144.56, 139.59, 135.36, 132.98, 131.88, 131.27, 130.23, 126.12, 54.43, 54.39, 54.07, 54.04, 53.72, 53.68, 53.63, 53.59, 52.55, 52.53, 52.46, 52.43, 44.72, 44.69, 44.04, 42.76, 41.27, 41.24, 40.37, 39.86, 36.16, 35.81, 34.92, 33.87, 32.56, 31.72, 31.41, 30.96, 30.89, 29.49, 27.94, 27.86, 27.84, 26.74, 26.53, 25.97, 23.48, 21.68, 19.13. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.90 (ESI-MS (m/z): 728.40, (M+H⁺)). HRMS calculated for C₃₈H₅₇N₅O₅S₂ 728.38739 [M+H]⁺; found 728.38769.

Methia-Cha-Phe(4-CH₂NH₂)-VS TFA salt (**36**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (42%-47% MeCN-H₂O) yielded the title compound (6.5 mg, 9.2 µmol, 18%). ¹H NMR (600 MHz, MeOD) δ 8.26 (s, 1H), 7.38 (d, J = 8.1 Hz, 2H), 7.33-7.27 (m, 2H), 6.79 (dd, J = 15.2, 5.2 Hz, 1H), 6.58 (dd, J = 15.2, 1.5 Hz, 1H), 4.85-4.80 (m, 1H), 4.52-4.49 (m, 1H), 4.37-4.33 (m, 1H), 4.08 (s, 2H), 3.02-2.96 (m, 2H), 2.94 (s, 3H), 2.73 (s, 3H), 2.66 (s, 1H), 1.93-0.77 (m, 27H). ¹³C NMR (150 MHz, MeOD) δ 174.97, 174.89, 174.43, 174.35, 173.14, 163.13, 146.55, 144.55, 139.60, 135.38, 132.98, 131.85, 131.26, 130.23, 53.82, 52.89, 52.86, 52.80, 52.77, 52.51, 52.42, 44.05, 42.78, 40.35, 40.01, 39.97, 39.81, 35.48, 35.39, 34.88, 34.65, 33.68, 33.12, 27.55, 27.52, 27.42, 27.35, 27.25, 27.21, 19.14. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.12 (ESI-MS (m/z)): 686.33, (M+H⁺)). HRMS calculated for C₃₅H₅₁N₅O₅S₂ 686.34044 [M+H]⁺; found 686.34011.

Morph-Ala-Try(Me)-Chg-EK TFA salt (**37**). The corresponding warhead (Boc-Chg-EK) was deprotected according to general procedure B, follow by azide coupling using the general procedure D on a 50 µmol scale. Purification by HPLC (30%-45% MeCN-H₂O) yielded the title compound (11.5 mg, 16.8 µmol, 34%). ¹H NMR (600 MHz, MeOD) δ 7.10 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 8.6 Hz, 2H), 4.59-4.57 (m, 1H), 4.45-4.37 (m, 2H), 3.77 (s, 3H), 3.74-3.69 (m, 4H), 3.15 (d, J = 5.0 Hz, 1H), 3.09-2.79 (m, 5H), 2.50 (t, J = 4.5 Hz, 4H), 1.80-1.63 (m, 5H), 1.51-1.46 (m, 1H), 1.44 (s, 3H), 1.33 (d, J = 7.1 Hz, 3H), 1.28-1.15 (m, 4H), 1.03-0.96 (m, 1H). ¹³C NMR (150 MHz, MeOD) δ 210.17, 174.25, 172.96, 172.02, 159.96, 131.39, 129.81, 114.77, 67.85, 62.39, 60.09, 55.83, 55.61, 54.71, 52.22, 49.66, 41.62, 38.06, 30.89, 29.65, 27.18, 27.14, 27.03, 18.62, 16.21. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.53 (ESI-MS (m/z): 573.33, (M+H⁺)). HRMS calculated for C₃₀H₄₄N₄O₇ 573.32828 [M+H]⁺; found 573.32812.

Morp-Ala-Tyr(Me)-Cha(4,4-2F)-EK TFA salt (**38**). The corresponding warhead (Boc-Cha(4,4-2F)-EK) was deprotected according to general procedure B, follow by azide coupling using the general procedure D on a 50 µmol scale. Purification by HPLC (30%-45% MeCN-H₂O) yielded the title compound (11.4 mg, 15.5 µmol, 31%). ¹H NMR (400 MHz, MeOD) δ 7.19-7.11 (m, 2H), 6.87-6.76 (m, 2H), 4.62-4.50 (m, 2H), 4.37 (q, J = 7.1 Hz, 1H), 4.03-3.85 (m, 6H), 3.78 (s, 3H), 3.19 (d, J = 5.0 Hz, 1H), 3.06-3.01 (m, 1H), 2.96 (d, J = 5.0 Hz, 1H), 2.88-2.82 (m, 1H), 2.07-1.50 (m, 8H), 1.48 (s, 3H), 1.43-1.18 (m, 6H). ¹³C NMR (100 MHz, MeOD) δ 208.90, 174.22, 173.38, 165.06, 159.99, 131.38, 129.91, 126.99, 124.60, 122.22, 114.80, 64.87, 59.93, 58.38, 55.84, 55.64, 53.92, 52.94, 50.66, 50.50, 38.05, 37.38, 34.60, 34.35, 34.12, 33.87, 33.65, 30.75, 30.65, 28.80, 28.71, 18.07, 16.78. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.72 (ESI-MS (m/z): 623.00, (M+H⁺)). HRMS calculated for C₃₁H₄₄F₂N₄O₇ 623.32508 [M+H]+; found 623.32499.

Morp-Ala-Tyr(Me)-HomoCha-EK TFA salt (**39**). The corresponding warhead (Boc-HomoCha-EK) was deprotected according to general procedure B, follow by azide coupling using the general procedure D on a 50 μ mol scale. Purification by HPLC (30%-45% MeCN-H₂O) yielded the title compound (12.3 mg, 17.2 μ mol, 34%). ¹H NMR (600 MHz, MeOD) δ 7.25-7.01 (m, 2H), 6.91-6.67 (m, 2H), 4.60-4.57 (m,

1H), 4.48-4.28 (m, 2H), 3.77 (s, 3H), 3.71-3.70 (m, 4H), 3.21 (d, J = 4.9 Hz, 1H), 3.09-2.88 (m, 4H), 2.84-2.79 (m, 1H), 2.56-2.37 (m, 4H), 1.83-1.63 (m, 6H), 1.52-1.39 (m, 4H), 1.38-1.16 (m, 9H), 0.97-0.83 (m, 2H). ¹³C NMR (150 MHz, MeOD) δ 209.19, 174.20, 173.30, 171.99, 159.94, 131.41, 130.02, 114.75, 67.85, 62.40, 60.01, 55.75, 55.60, 54.71, 53.06, 52.92, 49.65, 38.48, 38.15, 34.61, 34.02, 29.11, 27.72, 27.44, 27.38, 18.65, 16.84. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.23 (ESI-MS (m/z): 601.33, (M+H⁺)). HRMS calculated for C₃₂H₄₈N₄O₇ 601.35958 [M+H]⁺; found 601.35945.

Morp-Ala-Tyr(Me)-Cha(4-CF₃)-EK TFA salt (**40**). The corresponding warhead (Boc-Cha(4-CF₃)- EK) was deprotected according to general procedure B, follow by azide coupling using the general procedure D on a 50 µmol scale. Purification by HPLC (30%-45% MeCN-H₂O) yielded the title compound (15.0 mg, 19.5 µmol, 39%). ¹H NMR (400 MHz, MeOD) δ 7.18-7.08 (m, 2H), 6.85-6.77 (m, 2H), 4.62-4.54 (m, 1H), 4.50-4.47 (m, 1H), 4.38-4.32 (m, 1H), 3.96-3.86 (m, 6H), 3.76 (s, 3H), 3.19-3.16 (m, 1H), 3.09-2.77 (m, 3H), 2.13 (s, 1H), 2.01-1.17 (m, 18H). ¹³C NMR (100 MHz, MeOD) δ 209.05, 174.16, 173.34, 165.13, 159.99, 131.42, 129.96, 114.80, 64.90, 60.06, 58.44, 55.66, 53.94, 53.04, 51.07, 50.52, 41.80, 38.13, 34.96, 33.72, 33.07, 31.19, 30.80, 30.53, 27.43, 21.63, 21.11, 18.05, 16.84. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.18 (ESI-MS (m/z): 655.20, (M+H⁺)). HRMS calculated for C₃₂H₄₅F₃N₄O₇ 655.33131 [M+H]⁺; found 655.33133.

Morp-Ala-Tyr(Me)-Cha(4-Me)-EK TFA salt (**41a** and **41b**). The corresponding warhead (Boc-Cha(4-Me)-EK) was deprotected according to general procedure B, followed by azide coupling using the general procedure D on a 100 µmol scale. Purification by HPLC (35%-40% MeCN-H₂O) yielded the title compounds (**41a**: 12.7 mg, 17.8 µmol, 18% and **41b**: 7.5 mg, 10.5 µmol, 11%). **41a**: ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 7.1 Hz, 1H), 7.15-7.06 (m, 2H), 6.84-6.71 (m, 3H), 6.29 (d, J = 7.8 Hz, 1H), 4.60-4.35 (m, 3H), 3.77 (s, 3H), 3.71 (t, J = 4.6 Hz, 4H), 3.26 (d, J = 5.0 Hz, 1H), 3.05-2.84 (m, 5H), 2.49 (s, 4H), 1.80-1.74 (m, 1H), 1.62-1.09 (m, 17H), 0.90 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 208.23, 171.96, 170.77, 158.66, 130.51, 128.35, 114.06, 66.93, 61.63, 59.19, 55.32, 54.42, 53.82, 52.54, 50.10, 48.55, 36.83, 35.48, 31.71, 30.79, 30.34, 30.26, 29.97, 27.26, 20.42, 17.78, 16.83.

LC-MS (linear gradient $10 \rightarrow 90\%$ MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.18 (ESI-MS (m/z): 601.27, (M+H⁺)). HRMS calculated for C₃₂H₄₈N₄O₇ 601.35958 [M+H]⁺; found 601.35938. **41b**: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.17-7.07 (m, 2H), 6.86-6.77 (m, 2H), 6.73 (d, J = 7.5 Hz, 1H), 6.24 (d, J = 7.8 Hz, 1H), 4.58-4.34 (m, 3H), 3.78 (s, 3H), 3.73 (t, J = 4.7 Hz, 4H), 3.26 (d, J = 4.0 Hz, 1H), 3.10-2.85 (m, 5H), 2.52 (s, 4H), 1.84-1.44 (m, 9H), 1.37 (d, J = 7.1 Hz, 3H), 1.31-1.06 (m, 4H), 0.89-0.83 (m, 5H). ¹³C NMR (100 MHz, CDCl₃) δ 208.26, 171.94, 170.72, 158.68, 130.53, 114.10, 66.86, 61.56, 59.17, 55.33, 54.41, 53.79, 52.52, 49.88, 48.63, 38.67, 36.83, 35.24, 34.99, 34.29, 33.97, 32.65, 32.00, 22.75, 17.71, 16.85. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.26 (ESI-MS (m/z): 601.27, (M+H⁺)). HRMS calculated for C₃₂H₄₈N₄O₇ 601.35958 [M+H]⁺; found 601.35944.

Morp-Ala-Tyr(Me)-Cha(4-OMe)-EK TFA salt (**42**). The corresponding warhead (Boc-Cha(4- OMe)-EK) was deprotected according to general procedure B, follow by azide coupling using the general procedure D on a 80 µmol scale. Purification by HPLC (30%-40% MeCN-H₂O) yielded the title compound (15.3 mg, $20.9 \mu\text{mol}$, 26%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.0 Hz, 1H), 7.11 (d, J = 8.5 Hz, 2H), 6.82-6.78 (m, 3H), 6.29 (d, J = 7.9 Hz, 1H), 4.58-4.53 (m, 2H), 4.47-4.40 (m, 1H), 3.77 (s, 3H), 3.71 (t, J = 4.6 Hz, 4H), 3.40-3.37 (m, 1H), 3.29 (s, 3H), 3.23 (d, J = 5.0 Hz, 1H), 3.05-2.85 (m, 5H), 2.49 (s, 4H), 1.89-1.79 (m, 2H), 1.65-1.59 (m, 2H), 1.54-1.50 (m, 4H), 1.45-1.24 (m, 9H), 1.20-1.13 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 208.22, 171.96, 170.71, 158.66, 130.49, 128.33, 114.06, 75.24, 66.93, 61.63, 59.10, 55.67, 55.31, 54.49, 53.81, 52.45, 49.83, 48.52, 37.84, 36.91, 33.35, 29.20, 28.51, 28.00, 25.96, 17.78, 16.81. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.23 (ESI-MS (m/z): 617.33, (M+H⁺)). HRMS calculated for C₃₂H₄₈N₄O₈ 617.35449 [M+H]⁺; found 617.35438.

Morp-Ala-Tyr(Me)-2-DecAla-EK TFA salt (**43**). The corresponding warhead (Boc-2-DecAla-EK) was deprotected according to general procedure B, followed by azide coupling using the general procedure D on a 70 µmol scale. Purification by HPLC (45%-50% MeCN-H₂O) yielded the title compound (21.2 mg, 28.1 µmol, 40%). ¹H NMR (400 MHz, CDCl₃) δ 7.50 (s, 1H), 7.12 (d, J = 8.4 Hz, 2H), 6.84-6.71

(m, 3H), 6.26 (d, J = 8.0 Hz, 1H), 4.56-4.53 (m, 2H), 4.45-4.39 (m, 1H), 3.77 (s, 3H), 3.71 (t, J = 4.6 Hz, 4H), 3.25-3.25 (m, 1H), 3.06-2.83 (m, 5H), 2.50 (s, 4H), 1.72-0.99 (m, 25H). ¹³C NMR (100 MHz, CDCl₃) δ 208.28, 171.96, 170.70, 158.67, 130.52, 128.37, 114.08, 66.91, 61.62, 59.23, 59.17, 55.31, 54.45, 54.41, 53.81, 49.79, 48.56, 38.94, 38.86, 36.89, 36.85, 36.13, 35.87, 35.76, 35.73, 35.29, 35.17, 33.41, 32.42, 32.38, 32.14, 31.39, 28.46, 27.09, 27.05, 26.46, 25.81, 25.75, 21.00, 17.79, 16.85. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.81 (ESI-MS (m/z): 641.33, (M+H⁺)). HRMS calculated for C₃₅H₅₂N₄O₇ 641.39088 [M+H]⁺; found 641.39069.

Morp-Ala-Tyr(Me)-BiCha-EK TFA salt (44a and 44b). The corresponding warhead (Boc-BiCha-EK) was deprotected according to general procedure B, followed by azide coupling using the general procedure D on a 87 µmol scale. Purification by HPLC (55%-65% MeCN-H₂O) yielded the title compounds (44a: 17.7 mg, 22.6 µmol, 26% and 44b: 5.9 mg, 7.5 µmol, 8.6%). 44a: ¹H NMR (400 MHz, $CDCl_3$) δ 7.50 (s, 1H), 7.15-7.07 (m, 2H), 6.84-6.70 (m, 3H), 6.30 (d, J = 7.8 Hz, 1H), 4.61-4.34 (m, 3H), 3.77 (s, 3H), 3.71 (t, J = 4.6 Hz, 4H), 3.27 (d, J = 5.0 Hz, 1H), 3.05-2.85 (m, 5H), 2.49 (s, 4H), 1.84-1.60 (m, 6H), 1.54-1.25 (m, 15H), 1.22-1.05 (m, 6H), 0.91-0.82 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 208.13, 171.84, 170.68, 158.55, 130.40, 128.24, 113.95, 66.82, 61.52, 59.11, 55.21, 54.30, 53.71, 52.46, 50.07, 48.45, 41.65, 40.24, 36.72, 34.69, 31.19, 30.68, 30.51, 27.77, 26.74, 25.60, 25.13, 17.69, 16.72. LC-MS (linear gradient $10 \rightarrow 90\%$ MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.37 (ESI-MS (m/z): 669.33, (M+H⁺)). HRMS calculated for $C_{37}H_{56}N_4O_7$ 669.42218 [M+H]⁺; found 669.42216. **44b**: ¹H NMR (400 MHz, CDCl₃) δ 7.52 (s, 1H), 7.17-7.09 (m, 2H), 6.87-6.74 (m, 3H), 6.24 (d, J = 7.5 Hz, 1H), 4.58-4.50 (m, 2H), 4.44-4.37 (m, 1H), 3.77-3.74 (m, 7H), 3.25 (d, J = 5.0 Hz, 1H), 3.14-2.80 (m, 5H), 2.55 (s, 4H), 1.72-1.62 (m, 8H), 1.50 (s, 4H), 1.37 (d, J = 7.1 Hz, 3H), 1.24-0.79 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) δ 208.28, 171.92, 170.73, 158.69, 130.54, 128.36, 114.10, 59.17, 55.33, 54.41, 53.74, 52.52, 49.92, 43.35, 43.29, 38.69, 36.85, 34.80, 34.25, 32.32, 30.36, 30.32, 29.88, 29.68, 26.96, 17.69, 16.86. LC-MS (linear gradient $10 \rightarrow 90\%$ MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.47 (ESI-MS (m/z): 669.40, (M+H₊)). HRMS calculated for $C_{37}H_{56}N_4O_7$ 669.42218 [M+H]⁺; found 669.42209.

Morp-Ala-Tyr(Me)-NorAla-EK TFA salt (**45**). The corresponding warhead (Boc-NorAla-EK) was deprotected according to general procedure B, followed by azide coupling using the general procedure D on a 50 µmol scale. Purification by HPLC (30%-45% MeCN-H₂O) yielded the title compound (6.6 mg, 9.3 µmol, 19%). ¹H NMR (600 MHz, MeOD) δ 7.17-7.08 (m, 2H), 6.87-6.78 (m, 2H), 4.65 (s, 1H), 4.62-4.50 (m, 1H), 4.50-4.34 (m, 2H), 3.77 (s, 3H), 3.74-3.70 (m, 4H), 3.23-3.21 (m, 1H), 3.10-3.01 (m, 2H), 3.01-2.91 (m, 2H), 2.84-2.80 (m, 1H), 2.52-2.47 (m, 4H), 2.26-2.01 (m, 2H), 1.99-1.63 (m, 2H), 1.58-1.28 (m, 12H), 1.28-1.06 (m, 3H). ¹³C NMR (150 MHz, MeOD) δ 209.15, 174.19, 173.27, 172.04, 159.94, 131.41, 130.00, 114.75, 67.86, 62.40, 60.01, 54.70, 53.01, 52.90, 52.32, 52.25, 51.15, 49.69, 49.64, 43.25, 42.03, 41.21, 40.99, 40.75, 40.19, 39.97, 39.64, 38.63, 38.43, 38.36, 38.05, 38.03, 37.84, 37.72, 37.12, 36.22, 35.96, 35.20, 34.40, 31.02, 30.78, 29.70, 29.57, 23.61, 22.95, 18.65, 16.89. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 5.96 (ESI-MS (m/z): 599.40, (M+H⁺)). HRMS calculated for C₃₂H₄₆N₄O₇ 599.34393 [M+H]⁺; found 599.34371.

N₃Phe-Phe(4-CH₂NH₂)-Leu-Chg-EK (**46**). This compound was prepared according to the general procedure A on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure D. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (7.8 mg, 10.0 µmol, 20%). 1H NMR (850 MHz, MeOD) δ 8.28 (d, J = 7.7 Hz, 1H), 7.37 (d, J = 8.1 Hz, 2H), 7.33-7.28 (m, 4H), 7.27-7.23 (m, 3H), 4.75-4.62 (m, 1H), 4.47-4.43 (m, 2H), 4.09 (s, 2H), 4.05-4.01 (m, 1H), 3.28 (d, J = 5.2 Hz, 1H), 3.18-3.11 (m, 2H), 2.93 (d, J = 5.2 Hz, 1H), 2.92-2.84 (m, 2H), 1.82-1.77 (m, 3H), 1.74-1.64 (m, 3H), 1.57-1.51 (m, 3H), 1.47 (s, 3H), 1.34-1.21 (m, 4H), 1.11-1.06 (m, 1H), 0.98-0.97 (m, 3H), 0.94-0.93 (m, 3H). 13C NMR (213 MHz, MeOD) δ 210.58, 174.46, 172.65, 171.36, 139.48, 137.85, 132.86, 131.27, 130.35, 130.02, 129.63, 128.09, 65.45, 60.51, 56.77, 55.26, 52.93, 52.37, 44.06, 41.88, 41.47, 38.85, 38.75, 30.97, 29.82, 27.28, 27.16, 27.13, 25.82, 23.39, 22.11, 16.45. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H2O, 0.1% TFA, 12.5 min): Rt (min): 6.73 (ESI-MS (m/z)): 660.33, (M+H+)). HRMS calculated for C36H49N7O5 660.38679 [M+H]+; found 660.38700.

 N_3 Phe-Phe(4-CH₂NH₂)-Leu-HomoCha-EK (47). This compound was prepared according to the general procedure A on a 50 µmol scale, followed by the removal of the Boc protecting group using the general

procedure D. Purification by HPLC (45%-55% MeCN-H₂O) yielded the title compound (8.1 mg, 10.1 μ mol, 20%). ¹H NMR (850 MHz, MeOD) δ 7.38-7.36 (m, 2H), 7.33-7.28 (m, 4H), 7.27-7.18 (m, 3H), 4.73-4.67 (m, 1H), 4.47-4.38 (m, 2H), 4.09 (s, 2H), 4.04-4.00 (m, 1H), 3.27-3.25 (m, 1H), 3.19-3.09 (m, 2H), 2.96 (d, J = 5.2 Hz, 1H), 2.92-2.83 (m, 2H), 1.86-1.80 (m, 2H), 1.76-1.65 (m, 5H), 1.60-1.54 (m, 2H), 1.50-1.45 (m, 4H), 1.39-1.33 (m, 1H), 1.29-1.15 (m, 5H), 1.02-0.88 (m, 8H). ¹³C NMR (213 MHz, MeOD) δ 209.37, 174.62, 172.65, 171.39, 139.54, 137.86, 132.84, 131.26, 130.35, 130.02, 129.63, 128.09, 65.43, 60.24, 55.33, 53.71, 53.03, 52.83, 44.06, 41.99, 38.85, 38.57, 34.81, 34.63, 34.04, 28.83, 27.71, 27.45, 27.38, 25.79, 23.42, 22.11, 16.99. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.25 (ESI-MS (m/z): 688.33, (M+H⁺)). HRMS calculated for C₃₈H₅₃N₇O₅ 688.41809[M+H]⁺; found 688.41829.

N₃Phe-Phe(4-CH₂NH₂)-Leu-Cha(4-Me)-EK (**48**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (45%-55% MeCN-H₂O) yielded the title compound (8.7 mg, 10.8 µmol, 22%). ¹H NMR (850 MHz, MeOD) δ 7.39-7.19 (m, 9H), 4.72-4.66 (m, 1H), 4.58-4.51 (m, 1H), 4.46-4.43 (m, 1H), 4.08 (s, 2H), 4.05-3.98 (m, 1H), 3.27-3.26 (m, 1H), 3.20-3.08 (m, 2H), 2.97-2.95 (m, 1H), 2.91-2.80 (m, 2H), 1.90-1.84 (m, 1H), 1.75-1.64 (m, 3H), 1.64-1.23 (m, 14H), 1.01-0.93 (m, 8H), 0.88-0.87 (m, 1H). ¹³C NMR (213 MHz, MeOD) δ 209.61, 174.69, 174.58, 172.66, 172.65, 171.60, 171.39, 139.56, 137.86, 132.84, 131.25, 131.20, 130.34, 130.32, 130.03, 130.01, 129.63, 129.61, 128.08, 65.45, 60.25, 60.18, 55.41, 55.33, 53.12, 53.08, 52.86, 51.73, 51.43, 44.06, 42.03, 41.98, 38.85, 38.77, 38.54, 36.37, 36.15, 35.46, 35.08, 33.94, 32.93, 31.35, 31.13, 28.00, 25.79, 23.43, 23.04, 22.11, 17.08. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.17 (ESI-MS (m/z): 688.40, (M+H⁺)). HRMS calculated for C₃₈H₅₃N₇O₅ 688.41809 [M+H]⁺; found 688.41844.

N₃Phe-Phe(4-CH₂NH₂)-Leu-Cha(4-OMe)-EK (**49**). This compound was prepared according to the general procedure D on a 50 μ mol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (8.6 mg, 10.5 μ mol, 21%). ¹H NMR (850 MHz, MeOD) δ 7.39-7.18 (m, 9H), 4.71-4.67 (m, 1H), 4.57-4.55

(m, 1H), 4.45-4.42 (m, 1H), 4.09 (s, 2H), 4.04-4.00 (m, 1H), 3.44-3.42 (m, 1H), 3.32 (s, 3H), 3.27 (d, J = 5.2 Hz, 1H), 3.19-3.15 (m, 1H), 3.13-3.10 (m, 1H), 2.96 (d, J = 5.2 Hz, 1H), 2.91-2.83 (m, 2H), 1.87 (t, J = 14.0 Hz, 2H), 1.74-1.42 (m, 12H), 1.40-1.28 (m, 3H), 1.02-0.94 (m, 6H). ¹³C NMR (213 MHz, MeOD) δ 209.57, 174.64, 174.63, 172.66, 172.64, 171.60, 171.38, 139.65, 139.56, 137.86, 137.74, 136.11, 135.86, 132.85, 131.25, 131.20, 130.35, 130.32, 130.04, 130.02, 129.63, 129.61, 128.09, 76.96, 65.46, 65.39, 60.21, 55.80, 55.42, 55.33, 53.09, 52.91, 51.39, 44.05, 44.02, 42.02, 41.99, 39.05, 38.86, 38.75, 38.48, 29.87, 29.60, 29.05, 26.77, 26.39, 25.79, 23.43, 22.11, 17.07. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.43 (ESI-MS (m/z): 704.33, (M+H⁺)). HRMS calculated for C₃₈H₅₃N₇O₆ 704.41301 [M+H]⁺; found 704.41334.

N₃Phe-Phe(4-CH₂NH₂)-Leu-1-DecAla-EK (**50**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (55%-70% MeCN-H₂O) yielded the title compound (4.1 mg, 4.9 µmol, 10%). ¹H NMR (850 MHz, MeOD) δ 7.39-7.23 (m, 9H), 4.71-4.69 (m, 1H), 4.67-4.61 (m, 1H), 4.56-4.51 (m, 1H), 4.47-4.43 (m, 1H), 4.09 (s, 2H), 4.03-4.00 (m, 2H), 3.27-3.24 (m, 1H), 3.20-3.16 (m, 1H), 3.12-3.10 (m, 1H), 2.97-2.94 (m, 1H), 2.91-2.88 (m, 1H), 2.86-2.82 (m, 1H), 1.81-1.17 (m, 25H), 1.01-0.99 (m, 3H), 0.96-0.94 (m, 3H). ¹³C NMR (213 MHz, MeOD) δ 210.03, 209.68, 174.75, 174.63, 172.64, 171.39, 162.70, 162.53, 139.62, 137.88, 132.85, 131.25, 130.34, 130.03, 129.63, 128.09, 65.45, 60.16, 55.35, 53.09, 52.89, 51.69, 51.03, 49.37, 44.45, 44.07, 43.20, 42.02, 41.98, 39.86, 39.49, 39.13, 36.11, 35.69, 35.50, 34.63, 33.74, 32.47, 31.11, 28.01, 27.90, 27.73, 27.55, 27.04, 25.81, 23.42, 22.33, 22.15, 21.25, 17.06. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.65 (ESI-MS (m/z): 728.33, (M+H⁺)). HRMS calculated for C₄₁H₅₇N₇O₅ 728.44939 [M+H]⁺; found 728.44986.

N₃Phe-Phe(4-CH₂NH₂)-Leu-2-DecAla-EK (**51**). This compound was prepared according to the general procedure D on a 50 μ mol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (55%-70% MeCN-H₂O) yielded the title compound (7.6 mg, 9.0 μ mol, 18%). ¹H NMR (850 MHz, MeOD) δ 7.41-7.18 (m, 9H), 4.73-4.67 (m, 1H), 4.62-4.54 (m, 1H),

4.47-4.40 (m, 1H), 4.09 (s, 2H), 4.04-4.01 (m, 1H), 3.29-3.08 (m, 3H), 2.98-2.81 (m, 3H), 1.83-1.03 (m, 25H), 1.03-0.89 (m, 6H). ¹³C NMR (213 MHz, MeOD) δ 209.69, 209.64, 174.57, 172.70, 172.65, 171.40, 162.65, 162.48, 139.62, 139.58, 137.87, 132.85, 131.25, 131.19, 130.34, 130.33, 130.03, 130.02, 129.63, 129.61, 128.08, 65.44, 65.39, 60.24, 60.20, 55.43, 55.36, 55.34, 53.11, 53.10, 52.88, 51.39, 51.30, 44.06, 44.03, 41.98, 40.40, 39.06, 38.86, 38.82, 38.79, 38.69, 37.51, 37.30, 37.26, 37.21, 36.48, 36.45, 34.45, 33.63, 33.48, 33.44, 33.26, 32.32, 29.47, 28.15, 27.39, 26.86, 25.80, 23.41, 23.40, 22.17, 22.14, 22.01, 21.98, 17.10. LC-MS (linear gradient 10 \rightarrow 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 7.68 (ESI-MS (m/z): 728.33, (M+H⁺)). HRMS calculated for C₄₁H₅₇N₇O₅ 728.44939 [M+H]⁺; found 728.44991.

N₃Phe-Phe(4-CH₂NH₂)-Leu-BiCha-EK (**52**). This compound was prepared according to the general procedure D on a 50 µmol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (60%-70% MeCN-H₂O) yielded the title compound (3.1 mg, 3.6 µmol, 7%). ¹H NMR (600 MHz, MeOD) δ 7.41-7.15 (m, 9H), 4.71-4.67 (m, 1H), 4.52-4.49 (m, 1H), 4.46-4.43 (m, 1H), 4.07 (s, 2H), 4.04-4.00 (m, 1H), 3.28-3.25 (m, 1H), 3.19-3.10 (m, 2H), 2.98-2.95 (m, 1H), 2.93-2.79 (m, 2H), 1.95-1.89 (m, 1H), 1.82-1.33 (m, 20H), 1.31-1.09 (m, 6H), 1.02-0.91 (m, 8H). ¹³C NMR (150 MHz, MeOD) δ 209.62, 174.71, 172.66, 171.41, 139.47, 137.86, 133.18, 131.27, 131.25, 130.35, 130.33, 129.97, 129.64, 128.10, 65.46, 60.30, 60.19, 55.34, 53.17, 52.86, 51.44, 49.57, 48.57, 44.73, 44.17, 42.02, 41.93, 38.86, 38.77, 31.91, 31.66, 31.64, 31.41, 28.63, 27.95, 27.88, 26.56, 26.08, 25.80, 23.44, 22.12, 17.11. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 8.24 (ESI-MS (m/z): 756.33, (M+H⁺)). HRMS calculated for C₄₃H₆₁N₇O₅ 756.48069 [M+H]⁺; found 756.48145.

N₃Phe-Phe(4-CH₂NH₂)-Leu-NorAla-EK (**53**). This compound was prepared according to the general procedure D on a 50 μ mol scale, followed by the removal of the Boc protecting group using the general procedure B. Purification by HPLC (40%-50% MeCN-H₂O) yielded the title compound (3.9 mg, 4.9 μ mol, 10%). ¹H NMR (850 MHz, MeOD) δ 7.41-7.17 (m, 9H), 4.74-4.64 (m, 2H), 4.47-4.38 (m, 2H), 4.09 (s, 2H), 4.03-3.99 (m, 1H), 3.28-3.25 (m, 1H), 3.19-3.15 (m, 1H), 3.12-3.10 (m, 1H), 2.98-2.94 (m, 1H), 2.98-2.94 (m, 1H), 3.28-3.25 (m, 2H), 4.03-3.99 (m, 2H), 4.03-3.99 (m, 2H), 4.03-3.99 (m, 2H), 4.03-3.99 (m, 2H), 3.28-3.25 (m, 2H), 3.19-3.15 (m, 2H), 3.12-3.10 (m, 2H), 2.98-2.94 (m, 2H), 4.09 (s, 2H), 4.03-3.99 (m, 2H), 3.28-3.25 (m, 2H), 3.19-3.15 (m, 2H), 3.12-3.10 (m, 2H), 3.19-3.19 (m, 2H), 3.19 (m, 2H), 3.19 (m, 2H), 3.19 (m, 2H), 3.19 (m, 2H), 3.19

1H), 2.91-2.82 (m, 2H), 2.26-2.12 (m, 3H), 1.85-1.46 (m, 12H), 1.42-1.23 (m, 4H), 1.03-0.90 (m, 6H). ¹³C NMR (213 MHz, MeOD) δ 209.66, 209.34, 174.60, 174.52, 172.66, 171.39, 139.69, 139.59, 137.86, 137.74, 132.84, 131.26, 131.21, 130.34, 130.32, 130.02, 129.63, 128.09, 65.44, 60.33, 60.26, 55.34, 55.30, 53.12, 53.01, 52.95, 52.87, 51.73, 44.07, 43.31, 42.11, 42.02, 41.98, 41.15, 41.02, 40.79, 40.14, 40.08, 39.67, 38.85, 38.80, 38.50, 38.46, 38.23, 38.08, 38.06, 37.97, 37.83, 37.80, 37.06, 36.22, 35.98, 34.05, 31.04, 30.99, 30.95, 30.82, 29.73, 29.60, 25.80, 23.64, 23.41, 22.98, 22.12, 17.06. LC-MS (linear gradient 10 → 90% MeCN/H₂O, 0.1% TFA, 12.5 min): Rt (min): 6.98 (ESI-MS (m/z): 686.27, (M+H⁺)). HRMS calculated for C₃₈H₅₁N₇O₅ 686.40244 [M+H]⁺; found 686.40278.

Boc-Tyr(O-C₂H₄N₃)-OMe (**90**). Boc-Tyr-OMe **88** (442 mg, 1.5 mmol) was dissolved in anhydrous DMF, followed by the addition of compound **89** (433 mg, 1.8 mmol, 1.2 eq.) and K₂CO₃ (830 mg, 6 mmol, 4.0 eq.). The reaction mixture was stirred for 48h at 80 °C when TLC analysis showed formation of the product. The reaction mixture was concentrated *in vacuo* and redissovled in EtOAc and washed with H₂O (3x) and brine, dried over MgSO₄ and concentrated *in vacuo*. Purification by silica gel column chromatography (4% EtOAc/pentane \rightarrow 20% EtOAc/pentane) yielded the title compound (437 mg, 1.2 mmol, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.05 (d, J = 8.1 Hz, 2H), 6.84 (d, J = 7.8 Hz, 2H), 5.19 (d, J = 7.3 Hz, 1H), 4.52 (d, J = 6.7 Hz, 1H), 4.16-4.00 (m, 2H), 3.69 (s, 3H), 3.53 (d, J = 4.3 Hz, 2H), 3.16-2.86 (m, 2H), 1.41 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 172.18, 171.52, 157.10, 154.96, 130.18, 130.09, 128.64, 128.48, 114.42, 79.56, 77.48, 77.16, 76.84, 66.77, 63.93, 63.50, 61.10, 60.15, 54.43, 53.22, 51.95, 49.91, 49.35, 37.69, 37.16, 29.45, 28.08. HRMS calculated for C₁₇H₂₄N₄O₅ 365.18195 [M+H]⁺; found 365.18204.

Boc-Ala-Tyr(O-C2H4N3)-OMe (**91**). Boc protecting group of Compound **90** (302 mg, 0.83 mmol) was removed according to general procedure B, followed by the peptide coupling with Boc-Ala-OH according to general procdure A. Purification by flush column chromatography (5% EtOAc/pentane \rightarrow 50% EtOAc/pentane) yielded the titled compound (336 mg, 0.77 mmol, 93%). 1H NMR (400 MHz, CDCl3) δ 7.04 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 6.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H), 5.45 (d, J = 6.3 Hz, 1H), 4.79 (d, J = 6.5 Hz, 1H), 4.22 (s, 1H), 4.09 (t, J = 4.8 Hz, 2H), 3.68 (s, 3H), 3.55 (d, J = 4.8 Hz, 2H)

2H), 3.06 (td, J = 15.9, 14.9, 5.9 Hz, 2H), 1.43 (s, 9H), 1.37-1.22 (m, 4H). 13C NMR (100 MHz, CDCl3) δ 172.47, 171.68, 157.12, 155.24, 130.23, 128.45, 114.41, 79.65, 77.48, 77.16, 76.84, 66.74, 53.27, 52.11, 49.97, 36.83, 29.49, 28.15, 18.25. HRMS calculated for C20H29N5O6 436.21906 [M+H]+; found 436.21908.

Morp-Ala-Tyr(O-C₂H₄N₃)-OMe (**92**). The Boc protecting group in compound **91** (336 mg, 0.77 mmol) was removed according to general procedure B, followed by peptide coupling with 2-morpholinoacetic acid according to general procedure A. Purification by silica gel column chromatography (0% MeOH/DCM \rightarrow 3% MeOH/DCM) yielded the title compound (116 mg, 0.25 mmol, 32%). ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.2 Hz, 1H), 7.12-6.99 (m, 2H), 6.92 (d, J = 7.8 Hz, 1H), 6.88-6.74 (m, 2H), 4.86-4.71 (m, 1H), 4.56 (p, J = 7.1 Hz, 1H), 4.10 (q, J = 5.0 Hz, 2H), 3.72 (s, 3H), 3.72-3.65 (m, 4H), 3.58 (q, J = 4.6 Hz, 2H), 3.10 (dd, J = 13.9, 5.6 Hz, 1H), 3.04-2.97 (m, 2H), 2.97-2.86 (m, 1H), 2.49 (t, J = 4.6 Hz, 4H), 1.37 (d, J = 7.0 Hz, 3H), 1.21 (s, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 171.88, 171.80, 171.77, 169.84, 169.81, 157.30, 157.25, 130.37, 130.32, 128.58, 128.52, 114.55, 77.48, 77.16, 76.84, 66.93, 66.90, 66.87, 61.74, 61.70, 53.71, 53.49, 52.37, 50.12, 48.05, 36.96, 36.80, 29.65, 18.36. HRMS calculated for C₂₁H₃₀N₆O₆ 463.22966 [M+H]⁺; found 463.22974.

Morph-Ala-Tyr(O-C₂H₄N₃)-N₂H₄ (**93**). Compound **92** (116 mg, 0.25 mmol) was dissolved in MeOH, followed by addition of hydrazine monohydrate (0.36 ml, 7.5 mmol, 30 eq.). The reaction mixture was stirred overnight at room temperature and then refluxed at 70 °C until TLC analysis showed complete conversion of the starting material. The reaction mixture was concentrated in vacuo and then co-evaporated with toluene (3x) which yielded the title compound in quantitative yield and used without further purification.

Morp-Ala-Tyr(O-C₂H₄N₃)-1-DecAla-EK (**95**). H-1-DecAla-EK (**94**) was prepared according to literature procedure,¹⁰ and subjected to azide coupling to **93** using the general procedure D on a 66 µmol scale. Purification by flash column chromatography (0% MeOH/DCM \rightarrow 3% MeOH/DCM) yielded the title compound (30 mg, 37 µmol, 56%). ¹H NMR (600 MHz, MeOD) δ 7.23 (d, J = 8.6 Hz, 2H), 6.92

(d, J = 8.6 Hz, 2H), 4.74-4.63 (m, 1H), 4.63-4.53 (m, 1H), 4.44 (q, J = 7.1 Hz, 1H), 4.21 (t, J = 4.8 Hz, 3H), 4.11-3.84 (m, 7H), 3.66 (dd, J = 5.6, 3.8 Hz, 2H), 3.25 (dd, J = 24.5, 5.1 Hz, 2H), 3.12 (dd, J = 14.0, 5.9 Hz, 1H), 3.05-2.96 (m, 1H), 2.91 (ddd, J = 13.5, 8.4, 5.0 Hz, 1H), 2.74 (s, 1H), 2.14-1.81 (m, 3H), 1.77 (dq, J = 19.5, 7.5, 5.4 Hz, 3H), 1.70-1.56 (m, 7H), 1.56-1.51 (m, 5H), 1.51-1.43 (m, 3H), 1.41 (dd, J = 7.2, 3.1 Hz, 4H), 1.38-1.20 (m, 5H), 1.11-0.96 (m, 1H). ¹³C NMR (150 MHz, MeOD) & 209.48, 174.14, 173.36, 173.30, 158.74, 131.57, 130.65, 115.54, 68.43, 64.94, 60.10, 59.93, 58.49, 55.59, 53.96, 52.93, 52.81, 51.38, 50.99, 50.49, 49.43, 49.28, 49.14, 49.00, 48.86, 48.72, 48.58, 44.46, 43.09, 40.39, 39.50, 39.12, 38.26, 36.48, 34.85, 33.85, 33.73, 31.14, 27.99, 27.93, 27.69, 26.75, 26.54, 22.32, 21.22, 18.13, 16.88.

List of abbreviations

BODIPY, boron-dipyrromethene, (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene); DiPEA, N,N-diisopropylethylamine; ek, epoxyketone; EtOAc, ethyl acetate; pent, pentane; DCM, dichloromethane; HCTU, 2-(6-chloro-1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; Phg, phenylglycine; 1-Nal, 1-naphthylalanine; 2-Nal, 2-naphthylalanine; BiPhe, biphenylalanine; Chg, cyclohexylglycine; Cha, cyclohexylalanine; HomoCha, homocyclohexylalanier; 1-DecAla, 1-decahydronaphthalenylalanine; 2-DecAla, 2-decahydronaphthalenylalanine; BiCha, bicyclohexylalanine; NorAla, norbornanealanine; Ala(ada), adamantanealanine; Ala(tBu), t-butylalanine; Pyra, pyrazine-2-carboxyl; Phnico, 6-phenylnicotinyl; Dibenz, 2,5-dichlorobenzyl; Morph, 2-morpholinoacetyl; Methia, 2-methylthiazol-5-carboxyl.

References

1. Huber, E. M.; Heinemeyer, W.; Li, X.; Arendt, C. S.; Hochstrasser, M.; Groll, M., A unified mechanism for proteolysis and autocatalytic activation in the 20S proteasome. Nature communications 2016, 7, 10900.

2. Huber, E. M.; Heinemeyer, W.; Groll, M., Bortezomib-Resistant Mutant Proteasomes: Structural and Biochemical Evaluation with Carfilzomib and ONX 0914. Structure 2015, 23 (2), 407-17. Schrader, J.; Henneberg, F.; Mata, R. A.; Tittmann, K.; Schneider, T. R.; Stark, H.; Bourenkov,
 G.; Chari, A., The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor
 design. Science 2016, 353 (6299), 594-8.

Geurink, P. P.; van der Linden, W. A.; Mirabella, A. C.; Gallastegui, N.; de Bruin, G.; Blom, A.
 E. M.; Voges, M. J.; Mock, E. D.; Florea, B. I.; van der Marel, G. A.; Driessen, C.; van der Stelt, M.;
 Groll, M.; Overkleeft, H. S.; Kisselev, A. F., Incorporation of Non-natural Amino Acids Improves Cell
 Permeability and Potency of Specific Inhibitors of Proteasome Trypsin-like Sites. Journal of Medicinal
 Chemistry 2013, 56 (3), 1262-1275.

5. de Bruin, G.; Huber, E. M.; Xin, B.-T.; van Rooden, E. J.; Al-Ayed, K.; Kim, K.-B.; Kisselev, A. F.; Driessen, C.; van der Stelt, M.; van der Marel, G. A.; Groll, M.; Overkleeft, H. S., Structure-Based Design of β1i or β5i Specific Inhibitors of Human Immunoproteasomes. Journal of Medicinal Chemistry 2014, 57 (14), 6197-6209.6. Xin, B.-T.; de Bruin, G.; Huber, E. M.; Besse, A.; Florea, B. I.; Filippov, D. V.; van der Marel, G. A.; Kisselev, A. F.; van der Stelt, M.; Driessen, C.; Groll, M.; Overkleeft, H. S., Structure-Based Design of β5c Selective Inhibitors of Human Constitutive Proteasomes. Journal of Medicinal Chemistry 2016, 59 (15), 7177-7187.

7. Dauben, W. G.; Tweit, R. C.; Mannerskantz, C., Decahydronaphthoic Acids and their Relationship to the Decalols and Decalylamines.1 A Stereochemical Study of the Reaction of Nitrous Acid with Decalylamines. Journal of the American Chemical Society 1954, 76 (17), 4420-4426.

 Truong, V. L.; Gauthier, J. Y.; Boyd, M.; Roy, B.; Scheigetz, J., Practical and Efficient Route to (S)-γ-Fluoroleucine. Synlett 2005, 2005 (08), 1279-1280.

9. Gauthier, J. Y.; Chauret, N.; Cromlish, W.; Desmarais, S.; Duong, L. T.; Falgueyret, J.-P.; Kimmel, D. B.; Lamontagne, S.; Léger, S.; LeRiche, T.; Li, C. S.; Massé, F.; McKay, D. J.; Nicoll-Griffith, D. A.; Oballa, R. M.; Palmer, J. T.; Percival, M. D.; Riendeau, D.; Robichaud, J.; Rodan, G. A.; Rodan, S. B.; Seto, C.; Thérien, M.; Truong, V.-L.; Venuti, M. C.; Wesolowski, G.; Young, R. N.; Zamboni, R.; Black, W. C., The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorganic & Medicinal Chemistry Letters 2008, 18 (3), 923-928.

10. Gerjan, d. B.; Tao, X. B.; Marianne, K.; Mario, v. d. S.; A., v. d. M. G.; F., K. A.; Christoph,
D.; I., F. B.; S., O. H., A Set of Activity-Based Probes to Visualize Human (Immuno)proteasome
Activities. Angewandte Chemie International Edition 2016, 55 (13), 4199-4203.

NMR-spectra of compounds 13, 39, 68, 71, 74, 77, 86, and 87s.

LC-MS-spectra of compounds 13, 39, 68, 71, 74, 77, 86, 87.

m/z

6/3/2015 1:31:12 PM

\\VUW\Personal\$\...\Bo-Tao-LCMS\71

265.80

250

223.73

04

291.73

300

469.27

504.67 521.73 537.53

500

443.00

450

411.00

400

375.93

322.80 347.93

350

663.20

650

613.07

600

566.80 588.47

550

697.27 699.00

700

679.20

11/6/2015 12:43:22 PM

^{77 #362-365} RT: 6.96-7.02 AV: 4 NL: 7.29E6 F: + p ESI Full ms [160.00-2000.00]

11/5/2015 12:46:25 PM

86 #357-367 RT: 6.91-7.09 AV: 11 NL: 2.04E7 F: + p ESI Full ms [160.00-2000.00]

11/5/2015 4:49:26 PM

87 #352-374 RT: 6.83-7.24 AV: 23 NL: 1.98E7 F: + p ESI Full ms [160.00-2000.00]

