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S1 Basic workflow of PredMP
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Supplementary Figure S1. lllustration of the workflow of PredMP with three modules. Given an input
membrane protein sequence, PredMP first uses HHblits [1] to generate the multiple sequence alignhment
(MSA). The MSA is used to (a) predict transmembrane regions by DeepCNF model, (b) predict secondary
structure by RaptorX-Property server [2] through evolutionary analysis (i.e., the 1D annotation module),
and (c) predict the contact map through Deep Transfer Learning (DTL) with co-evolutionary features [3].
The predicted secondary structure and contacts are fed into Crystallography & NMR System (CNS) suite [4]
to de novo fold the 3D models by RaptorX-Contact server [5] (i.e., the 3D modeling module), which are

then embedded into the bilayer membrane with the guide of predicted transmembrane regions and a

depth- and residue-dependent membrane burial potential [6] in the visualization module.



S2 Dataset of non-redundant membrane proteins

Supplemental Table S1. A list of 510 non-redundant membrane proteins with solved structures
in Protein Data Bank (PDB) from PDBTM database [7]. The entries highlighted with the bold
(bold + underline) font indicate the model with TM-score larger than 0.5 (0.6). The entries
shown in blue (italic) indicate the barrel membrane proteins (single-pass helical transmembrane
proteins), whereas the others are multi-pass helical transmembrane proteins. Users may refer
to the link http://predmp.com/#/detail/1xxxA to check the details of the PredMP predictions,
where 1xxxA is the membrane protein id (PDB ID: 1xxx plus Chain ID: A).
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S3 Transmembrane region prediction by
DeepCNF

To train a machine learning model for predicting the transmembrane region at each residue
given a protein primary sequence, we performed the following procedures. We first collected
510 non-redundant transmembrane proteins (shown in Table S1) at the chain level from PDBTM
[7]. To label each residue from a given transmembrane protein sequence, we used the following
9 labels extracted from PDBTM: 1 (Sidel), 2 (Side2), B (Beta-strand), H (alpha-helix), C (coil), |
(membrane-inside), L (membrane-loop), F (interfacial helix), and U (unknown localizations). We
then trained a deep learning model, DeepCNF [8, 9], on this annotated sequence dataset.

As shown in Figure S2, DeepCNF has two modules: (i) the Conditional Random Fields (CRF) [10],
and (ii) the Deep Convolutional Neural Network (DCNN) [11]. DeepCNF can model not only
complex relationship between the sequence and transmembrane regions by a deep hierarchical
architecture, but also interdependency between adjacent transmembrane region labels [9]. To
deal with the imbalanced distribution of some transmembrane region labels, such as interfacial
helix and membrane-inside, we trained DeepCNF by maximizing AUC [6]. According to [9], the
DCNN architecture is set as follows: it consists of five layers where each layer has 100 neurons
and the window size at each layer is set to 11.

We used the following 68 input features: 20 one-hot encoding from the primary sequence, 20
position specific scoring matrix (PSSM) from PSI-BLAST [12] with E-value threshold 0.001 and
three iterations to search UniRef90 [13], 20 PSSM from HHblits [1] with E-value threshold 0.001
and three iterations to search UniProt20 [13], and 8 predicted eight-state secondary structure
element by DeepCNF_SS [9]. Note that although we used DeepCNF_SS to generate the
predicted secondary structure features for transmembrane region prediction, the training data
for DeepCNF_SS only come from non-MPs.

This method achieved 62% cross-validation predictive accuracy on classifying a residue into the
nine categories of the transmembrane region. If we merged label B, H, and C as ‘transmembrane
region’ label, and all other labels as ‘non-transmembrane region’ label, then this method could
achieve 89% predictive accuracy, as well as AUC and AUPRC 0.94 and 0.89, respectively. Finally,
using forward-backward algorithm in CRF [10], we assigned to each residue position a reliable
‘transmembrane’ or ‘non-transmembrane’ label based on the computed probability.

It should be noted that other transmembrane region (or, membrane protein topology)
predictors could also be used here, such as TOPCONS [14], MEMSAT-SVM [15], PHOBIUS [16], or
OCTOPUS [17], just name a few. We will add these third-party tools for predicting and visualizing
transmembrane regions in the next release version of PredMP.



Last but not least, this transmembrane region prediction module will be added to RaptorX-
Property [2] in the near future. Currently, users may refer to the source code at GitHub

https://github.com/realbigws/RaptorX Property Fast.
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Supplemental Figure S2. lllustration of DeepCNF. Here i is the position index and X; the associated input
features, H represents the k-th hidden layer, and Y is the output label. All the layers from the 1* to the K"
form a deep convolutional neural network (DCNN) with parameter WXk=1,2,...,K}, which is shown in
blue. The K™ layer and the label layer form a Conditional Random Fields (CRF), which is shown in red.
The parameter U specifies the relationship between the K" layer and the label layer, and T the binary
relationship between adjacent labels. This figure is taken from WangS. et. al. [2].


https://github.com/realbigws/RaptorX_Property_Fast

S4 Blind test of membrane protein cases in
CAMEO

Blind and live test in CAMEO

CAMEDO [18] can be interpreted as a fully automated CASP [19], but has a smaller number (about
40) of participating servers since many CASP-participating servers are not fully automated. By
“blind” it means that the experimentally solved structure of a test protein has not been
released in PDB when it is used as a test target. By “live” it means that every weekend CAMEO
releases about 20 sequences for prediction test. The test proteins used by CAMEO have no
publicly available native structures before it finishes collecting models from servers. The CAMEO
server ID of RaptorX-Contact (the main module in PredMP server to generate the 3D models) is
Server60, and it has been fully functioning since September 2016.

Since experimentally solving the structures of membrane proteins (MPs) is challenging, starting
from September 2016 and up to January 2018, we have observed 10 non-homologous MPs
among all CAMEO hard targets, as shown in Table S2.

Supplemental Table S2. A list of 10 non-homologous membrane proteins among all CAMEO
hard targets from Sep 2016 to Jan 2018.

5h35E (CAMEO ID: 2017-01-07 00000030 3)
5jkiA (CAMEO ID: 2017-02-18 00000075 1)
510wA (CAMEO ID: 2017-03-18 00000059 2)
5khnA (CAMEO ID: 2017-06-10 00000043 1)
SkymB (CAMEO ID: 2017-07-22 00000026 1)
SmmOA (CAMEO ID: 2017-08-05 00000083 1)
SgufA (CAMEO ID: 2017-10-07 00000005 1)
SogkH (CAMEO ID: 2017-11-18 00000021 1)
6bmsB (CAMEO ID: 2018-01-06 00000139 1)

5vkvA (CAMEO ID: 2018-01-27 00000035 1)

We show in the following sections that RaptorX-Contact successfully modeled all ten MPs
belonging to the hard category of CAMEO.



Long range accuracy Medium range accuracy
L L2 L/5 L/10 L L/2 L/5 L/10
Our method 0.778 0.953 1.000 1.000 0.316 0.547 0.905 1.000
metaPSICOV | 0.571 0.774 0.929 1.000 0.245 0.401 0.619 0.810
Gremlin 0.340 0.528 0.786 0.810 0.137 0.217 0.429 0.619
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Supplemental Figure S3. Case study of CAMEO target 5h35E. This protein is an intracellular cation channel
ortholog from Sulfolobus solfataricus. (A) The long- and medium-range contact prediction accuracy of our
methods, MetaPSICOV, and Gremlin. (B-C) The overlap between the native contact map and contact maps
predicted by our method, Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A
gray, red, and green dot represents a native contact, a correct prediction, and a wrong prediction,
respectively. (D) The superimposition between our predicted model (in red) and the native structure (in
blue). (E) The list of top models submitted by CAMEO servers and their quality scores.
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Supplemental Figure S4. Case study of CAMEO target 5jkiA. This protein is a transmembrane PAP2 type
phosphatidylglycerolphosphate phosphatase from Bacillus subtilis. (A) The long- and medium-range
contact prediction accuracy of our methods, MetaPSICOV, and Gremlin. (B-C) The overlap between the
native contact map and contact maps predicted by our method, Gremlin, and MetaPSICOV. Top L
predicted all-range contacts are displayed. A gray, red, and green dot represents a native contact, a
correct prediction, and a wrong prediction, respectively. (D) The superimposition between our predicted
model (in red) and the native structure (in blue). (E) The list of top models submitted by CAMEO servers

and their quality scores.
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Long range accuracy

Medium range accuracy

L L2 L/5 L/10 L L/2 L/5 L/10

Our method | 0.397 0.674 0.889 1.000 0.103 0.207 0.444 0.778
metaPSICOV | 0.250 0.391 0.528 0.722 0.098 0.163 0.278 0.389
Gremlin 0.087 0.109 0.222 0.333 0.016 0.033 0.056 0.056
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Supplemental Figure S5. Case study of CAMEO target 5l0wA. This protein is a post-translational
translocation Sec71/Sec72 complex from Escherichia coli. (A) The long- and medium-range contact
prediction accuracy of our methods, MetaPSICOV, and Gremlin. (B-C) The overlap between the native
contact map and contact maps predicted by our method, Gremlin, and MetaPSICOV. Top L predicted all-
range contacts are displayed. A gray, red, and green dot represents a native contact, a correct prediction,
and a wrong prediction, respectively. (D) The superimposition between our predicted model (in red) and
the native structure (in blue). (E) The list of top models submitted by CAMEO servers and their quality

scores.
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Long range accuracy Medium range accuracy

L L/2 L/5 L/10 L L/2 L/5 L/10

Our method 0.700 0.871 0.926 0.977 0.138 0.245 0.500 0.750
metaPSICOV | 0.297 0.426 0.602 0.750 0.076 0.109 0.193 0.284
Gremlin 0.254 0.388 0.585 0.704 0.063 0.122 0.256 0.454
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Supplemental Figure S6. Case study of CAMEO target 5khnA. This protein is the Burkholderia multivorans
hopanoid transporter HpnN. (A) The long- and medium-range contact prediction accuracy of our methods,
MetaPSICOV, and Gremlin. (B-C) The overlap between the native contact map and contact maps predicted
by our method, Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A gray, red,
and green dot represents a native contact, a correct prediction, and a wrong prediction, respectively. (D)
The superimposition between our predicted model (in red) and the native structure (in blue). (E) The list

of top models submitted by CAMEO servers and their quality scores.
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Long range accuracy Medium range accuracy
L L2 L/5 L/10 L/2 L/5 L/10
Our method 0.773 0.927 0.918 1.000 0.2 0.472 0.673 0.667
metaPSICOV | 0.534 0.748 0.939 0.958 0.2 0.398 0.592 0.708
Gremlin 0.563 0.780 0.837 0.917 0.142 0.260 0.551 0.625
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Supplemental Figure S7. Case study of CAMEO target 5kymB. This protein is the 1-acyl-sn-
glycerophosphate (LPA) acyltransferase, PIsC, from Thermotoga maritima. (A) The long- and medium-
range contact prediction accuracy of our methods, MetaPSICOV, and Gremlin. (B-C) The overlap between
the native contact map and contact maps predicted by our method, Gremlin, and MetaPSICOV. Top L
predicted all-range contacts are displayed. A gray, red, and green dot represents a native contact, a
correct prediction, and a wrong prediction, respectively. (D) The superimposition between our predicted
model (in red) and the native structure (in blue). (E) The list of top models submitted by CAMEO servers

and their quality scores.
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Long range accuracy Medium range accuracy
L L2 L/5 L/10 L L/2 L/5 L/10
Our method 0.703 0.904 1.000 1.000 0.235 0.412 0.784 0.946
metaPSICOV | 0.398 0.652 0.838 0.973 0.163 0.230 0.392 0.622
Gremlin 0.436 0.604 0.784 0.838 0.174 0.278 0.419 0.541
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The superimposition between our predicted model (in red) and the native structure (in blue). (E) The list
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Supplemental Figure S8. Case study of CAMEO target 5mmOA. This protein is a Dolichyl phosphate
mannose synthase. (A) The long- and medium-range contact prediction accuracy of our methods,
MetaPSICOV, and Gremlin. (B-C) The overlap between the native contact map and contact maps predicted
by our method, Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A gray, red,
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LOIIg range accuracy

Medium range accuracy

L L/2 L/S L/10 L L/2 L/5 L/10

Our method 0.593 0.835 1.000 1.000 0.280 0.495 0.667 0.667
metaPSICOV | 0.209 0.286 0.472 0.722 0.165 0.253 0.389 0.389
Gremlin 0.181 0.330 0.472 0.611 0.082 0.121 0.250 0.389
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Supplemental Figure S9. Case study of CAMEO target 5gufA. This protein is a CDP-archaeol synthase
(CarS). (A) The long- and medium-range contact prediction accuracy of our methods, MetaPSICOV, and

Gremlin. (B-C) The overlap between the native contact map and contact maps predicted by our method,
Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A gray, red, and green dot
represents a native contact, a correct prediction, and a wrong prediction, respectively. (D) The
superimposition between our predicted model (in red) and the native structure (in blue). (E) The list of
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Long range accuracy Medium range accuracy
L L/2 L/5 L/10 L L2 L/5 L/10
Our method 0.697 0.881 0.970 1.000 0.042 0.083 0.209 0.424
metaPSICOV | 0.487 0.696 0.910 0.970 0.045 0.089 0.194 0.364
Gremlin 0.442 0.625 0.761 0.818 0.039 0.077 0.194 0.364

(A)

Our
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SWISS-MODEL

59.35 67.56

(D) (E)

Supplemental Figure S10. Case study of CAMEO target 5ogkH. This protein is a nucleotide sugar
transporter. (A) The long- and medium-range contact prediction accuracy of our methods, MetaPSICOV,
and Gremlin. (B-C) The overlap between the native contact map and contact maps predicted by our
method, Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A gray, red, and
green dot represents a native contact, a correct prediction, and a wrong prediction, respectively. (D) The
superimposition between our predicted model (in red) and the native structure (in blue). (E) The list of
top models submitted by CAMEO servers and their quality scores.
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Supplemental Figure S11. Case study of CAMEO target 6bmsB. This protein is a DHHC (Asp-His-His-Cys)
palmitoyltransferases. (A) The long- and medium-range contact prediction accuracy of our methods,
MetaPSICOV, and Gremlin. (B-C) The overlap between the native contact map and contact maps predicted
by our method, Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A gray, red,
and green dot represents a native contact, a correct prediction, and a wrong prediction, respectively. (D)
The superimposition between our predicted model (in red) and the native structure (in blue). (E) The list

250 300

(D)

300

200

150

100

50

Long range accuracy Medium range accuracy
L L/2 L/5 L/10 L L/2 L/5 L/10
Our method 0.408 0.612 0.912 1.000 0.205 0.288 0.456 0.647
metaPSICOV | 0.252 0.394 0.647 0.824 0.117 0.188 0.353 0.471
Gremlin 0.226 0.329 0.559 0.676 0.103 0.182 0.353 0.500
(A)
Our Our

" metaPSICOV

250 300

IDDT IDDT
Server Name e Ca
Server 60 41.28 49.01
Server 45 32.81 37.92
RaptorX 30.09 35.21
Robetta 30.05 35.46
Server 55 29.39 34.98

(E)

of top models submitted by CAMEO servers and their quality scores.
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Long range accuracy Mediumn range accuracy
L L/2 L/5 L/10 L L/2 L/5 L/10
Our method 0.207 0.293 0.413 0.435 0.004 0.009 0.000 0.000
metaPSICOV | 0.168 0.259 0.326 0.391 0.004 0.009 0.000 0.000
Gremlin 0.099 0.155 0.283 0.435 0.000 0.000 0.000 0.000
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Supplemental Figure S12. Case study of CAMEO target 5vkvA. This protein is the membrane electron
transporter CcdA. (A) The long- and medium-range contact prediction accuracy of our methods,
MetaPSICOV, and Gremlin. (B-C) The overlap between the native contact map and contact maps predicted
by our method, Gremlin, and MetaPSICOV. Top L predicted all-range contacts are displayed. A gray, red,
and green dot represents a native contact, a correct prediction, and a wrong prediction, respectively. (D)
The superimposition between our predicted model (in red) and the native structure (in blue). (E) The list
of top models submitted by CAMEO servers and their quality scores.
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S5 Estimation of the 3D modeling accuracy

We performed a statistical study to show the relationship between 3D model quality and the
number of effective sequence homologs (i.e., Meff) using 356 multi-pass helical MPs from the
510 dataset (as shown in Table S1).

We used Meff to measure the amount of homologous information in an MSA (multiple
sequence alignment). It can be interpreted as the number of non-redundant (or effective)
sequence homologs in an MSA when 70% sequence identity is used as cutoff [20].

We measured the quality of a 3D model by TM-score [21], which ranges from 0 to 1 indicating
the worst and the best quality, respectively. A 3D model with TM-score=0.6 is likely to have a
correct fold while a 3D model with TM-score<0.5 usually does not. TM-score = 0.5 is also used
by the community as a cutoff to judge if a model has a correct fold or not [22].

Figure S13 shows the TM-score of the 356 MPs with respect to the length-normalized Meff (or,
Neff which is defined as Meff/L°’). When In(Neff) is larger than 1.5 and 3.5, the predicted
models on average have TM-score >0.5 and >0.6, respectively.

0.8 i
Unreliable | Reliable
region I threshold

High quality _
threshold

74_

Correct fold

Model Accuracy (TMscore)

v = 0.1025In(x) +0.3961
R =049717

O 065 1 15 2 25 3 35 4 45 5 5.5
In(Neff)

Supplemental Figure S13. 3D modeling accuracy of transmembrane proteins
(measured by TM-score) with respect to the number of effective sequence
homologs in MSA (measured by Neff defined as Meff/L®’). The blue curve shows
the mean and standard deviation at each In(Neff) bin at 0.5 unit, whereas the
red line is a fitted curve of the blue curve.
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S6 Input/output explanation of the PredMP
server

Input of the PredMP server

Sequence
An input
sequence
Email Address (Optional)
Input email
(optional)

Fill in Example

Submit the job ! An example

Supplemental Figure S14. The only required input of PredMP is the membrane protein sequence. The
"Job Submission" section also allows users to provide an email address to be used for notification when
the job is done. An email is not required, but strongly recommended since it can be used to retrieve the
results of your job.

Output of the PredMP server

The outputs of the PredMP server include:

1) Five full-length de novo constructed 3D models of the input membrane protein sequence.
These models are ranked according to the energy function of Crystallography & NMR System
(CNS) [4]. These models are then embedded into the bilayer membrane by the Positioning of
Proteins in Membranes (PPM) method [23], as shown in Figure S15.

2) Estimated accuracy of the predicted 3D models in three categories: high confidence, medium
confidence, and low confidence. The confidence score is calculate based on Neff (defined as
Meff/L%’) which measures the amount of homologous information in the multiple sequence
alignment (MSA), as explained in Figure S13.
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3) 1D annotation of local structural properties, including the predicted secondary structure, the
disordered region, and the transmembrane topology, as illustrated in Figure S16.

Predicted contact map and

3D models are provided by
Quality RaptorX-Contact server Five de novo
estimation | predicted models

T
3D View provided by RamtorX?>7) _ Trans (Predicted)

Contact Predictiv==-

CACIGEIEE]

> Embedded
3D protein model

Supplemental Figure S15. The result page of the PredMP server for the 3D model prediction followed by
the embedding into the bilayer membrane. PredMP will remotely call RaptorX-Contact server to provide
five full-length de novo constructed 3D models of the input membrane protein sequence. PredMP also
estimates the accuracy of the predicted 3D models in three categories: high confidence (in green),
medium confidence (in yellow), and low confidence (in red), respectively.
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| Summary prediction result:
i 1%t line shows the result of order/disorder regions prediction,
i 2"]ine shows the result of transmembrane topology prediction,

| 31 line shows the result of 3-state secondary structure prediction.

Sequence

Ordered
1 Trans (Predicted)
2nd Structure

1D annotation provided by RapterX ymety - Trans (Predicted)
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MEQKQQSERL GTEAIPKLLR
EGVAGVTIAF PIMMIMMSMA
LTVILVLSVI GFISAFTLLG
FFAFAANNII RSEGNATFAM
ATVIAQASVT GLVLRYFLTG
QQSSASLMMI AINSMLLRFG
PIVGYNYGAK QYSRLRETVM
DREVIQAGYS AMHILFCVTF
IFLIPLVLIL PHIFGLSGVW
EERELDLVKT ASST

SLSIPAMIGM
GALGIGGASV
PALQLFGATS
VTMIVPAVLN
KSTLSLHWSD
SDFYVGVFGL
LGFKVATIFS
LIGAQIVAGG
WAFPIADVLS

T T L
200 280 300 350 400 450

FVMALYNVVD TIFISYAVGI
ISRRLGERRG EEANQVFGNI
VTQGYATDYL FPILLGSIFF
ILLDVLFIFG LNMGVLGASI
LRMKGSVIKE VCLVGLPAFV
VQRIMMFVMI PHMMGIMQAMQ
IGIFALLMLF PEALLRVFTA
LYQSLGKPKQ ALILSLSRQI
FILTWLLYR DRNVFFLKTK

> Detailed
1D annotation

Supplemental Figure S16. The result page of the PredMP server for the 1D annotation of local structural
properties. PredMP will remotely call RaptorX-Property server to provide these local structural properties.
Specifically, the upper section shows the summary predicted results, with the first row showing the result
of order/disorder regions, and the remaining rows showing the prediction of transmembrane topology,
and 3-state secondary structure, respectively. By clicking on a specific summary result, such as the
predicted transmembrane topology, the detailed annotation on the input sequence is shown in the lower

section.
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