Supporting Information

IL-34 cell surface localization regulated by the molecular chaperone 78 kDa glucose-regulated protein facilitates the differentiation of monocytic cells

Sayaka Ogawa¹, Yukiko Matsuoka¹, Miho Takada¹, Kazue Matsui¹, Fumihiro Yamane¹, Eri Kubota², Shiori Yasuhara¹, Kentaro Hieda¹, Naoki Kanayama³, Naoya Hatano³, Hiroshi Tokumitsu³, Masaki Magari^{3,*}

¹Division of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan, ²Department of Applied Chemistry and Biotechnology, Faculty of Engineering, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan, ³Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan

*To whom correspondence should be addressed: Masaki Magari, Applied Cell Biology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Tsushima-Naka 3-1-1, Kita-ku, Okayama 700-8530, Japan. Tel: +81-86-251-8199; FAX: +81-86-251-8198; E-mail: magari@cc.okayama-u.ac.jp

Supporting information consists of Figure S1-6 and Table S1.

Supplemental Figure S1. Ogawa et al.

L	7
Γ	

FL-Y IL-34 KO#1 IL-34 KO#2	56221	CCTGCCTTTCCCCTCAGTACTTGTCAGGCTTGATGATGGATG	56280
FL-Y IL-34 KO#1 IL-34 KO#2	56281	CACACCAGGTAGTGCGCAGACACAGTGCCCAGCGCTCATCCGCTCTTGTTGGGTGTGTCC CACACCAGGTAGTGCGCAGACACAGTGCCCAGCGCTCATCCGCTCTTGTTGGGTGTGTCC	56340
FL-Y IL-34 KO#1 IL-34 KO#2	56341	CACAGGTCTTGGGATCCTACTTGACGTGGCTTTGGGAAACGAGAATTTGGAGATATGGAC	56400
FL-Y IL-34 KO#1 IL-34 KO#2	56401	Exon 3 TCTGACCCAAGATAAGGAGTGTGACCTTACAGGCTACCTTCGGGGCAAGCTGCAGTACAA TCTGACCCAAGATAAGGAGTGTGACCTTACAGGCTACCTTCGGGGCAAGCTGCAGTACAA	56460
FL-Y IL-34 KO#1 IL-34 KO#2	56461	GAACCGGCTTCAGTACATG GTAACCTGGAGAGCGTCTGCCTCCCCGTGCTAGGGTTGCAA GAACCGGCTTCAGTACATGGTAACCTGGAGAGCGTCTGCCTCCCCGTGCTAGGGTTGCAA GAACCGGCTTCAGTACATGGTAACCTGGAGAGCGTCTGCCTCCCCGTGCTAGGGTTGCAA	56520
В	1		20

	T	Ιч	P	VV	G	Ц	А	VV	Ц	Ţ	C	Ц	G	T	Ц	Ц	D	V	А	Ц	G	20
FL-Y	584	ΑT	GCC	CTG	GGG.	ACT	CGC	CTG	GCTA	ATA	CTG	гстт	GGG	ATC	CTA	CTT	GAC	GT	GGC	TTTC	GGA	
IL-34 KO		AT	GCC	CTG	GGG.	ACT	CGC	CTG	GCTA	ATA	CTA	AACA	ATTA	CTI	CCC	CAT	CAA	ACT <i>I</i>	ACA	GGAI	ГТGC	
#1#2#3	1	М	Ρ	M	G	L	А	M	L	Y	*	10										
	21	Ν	Ε	Ν		//P	G	S	Ρ	S	S	S	Η	G	S	L	Ρ	*		235		
FL-Y	644	AA	CGA	GAA'	г //	/ C(CCG	GAT	CCCC	CAAC	GCT	CAAG	GCCA	TGG	GCTC	GTT	GCC	СТС	GA	1291	L	
					//																	

Supplemental Figure S1. Generation of IL-34 KO FL-Y

(A) Genomic DNA extracted from IL-34 KO FL-Y (#1 and #2) clones was subjected to PCR amplification of the *Il34* gene. DNA Sequence of the *Il34* gene in IL-34 KO FL-Y cells was compared with that in the original FL-Y line. (B) Sequence of *Il34* mRNA extracted from IL-34 KO FL-Y cells as shown in Fig. 1*C* (top panel).

Supplemental Figure S2. Antibody responses are significantly suppressed in IL-34 KO mice.

(A, B) Reduced number of FDMC-like cells in the spleen of IL-34 KO mice after immunization. Wild-type (WT) and IL-34 KO mice were immunized with 50 µg of 4-hydroxy-3-nitrophenylacetyl-conjugated chicken y globulin (NP-CGG) plus 2 mg alum intraperitoneally. After 12 days, splenocytes were prepared from immunized mice and used for analyses of FDMC-like cells. IL-34 KO mice were kindly provided by Prof. Burkhard Becher at the University of Zürich. (A) T cell and adherent cell-depleted splenocytes were treated with 10 µg/mL rat IgG at 4 °C for 15 min, and subsequently stained with fluorescence-labeled antibodies at 4 °C for 30 min. The following antibodies were used: APC-anti-CD11b, PE-anti-CD115, Pacific blue-anti-B220, Pacific blue-anti-CD3, FITC-anti-I-Ad, and FITC-anti-CD11c. The frequency of FDMC-like cells was estimated by measuring the percentage of CD11b⁺CD115⁺ cells in a B220⁻CD3⁻I-A^{d-}CD11c⁻-gated population using a FACSAria flow cytometer. (B) The frequency of FDMC-like cells was estimated by detecting CD11b ⁺CD115⁺ cells in CD3⁻B220⁻I-A^{d-}CD11c⁻-gated population in the spleen cells from each mouse. Statistical differences are marked: *, p < 0.05 versus WT mice. (C) Antigen-specific antibody responses in IL-34 KO mice after immunization. WT (open circles) and IL-34 KO (closed circles) mice were immunized with 5 µg of NP-CGG plus 2 mg alum intraperitoneally, and serum was collected on day 12 after immunization. Anti-NP IgG1 Ab levels in sera were assayed by ELISA using microplates coated with NP25-BSA. Anti-NP IgM and IgG1 Abs bound to the plates were detected with peroxidase-conjugated goat anti-mouse IgM (Invitrogen) or peroxidaseconjugated goat anti-mouse IgG1 Ab (SouthernBiotech, Birmingham, AL, USA), respectively. Statistical differences are marked: *n.s.*, not significant, **, p < 0.01 versus WT mice.

Supplemental Figure S3. Soluble IL-34 secreted from FL-Y is not involved in FDMC differentiation.

(A) M-NFS-60 (1 × 10⁴ cells/mL) were cultured the medium containing none (–), 10 ng/mL recombinant mouse IL-34 (rIL-34) (BioLegend), or 5% of culture supernatants of FL-Y cells. Culture supernatants were collected after 3-day culture of FL-Y cells that were untreated (–) or treated (PFA) with 0.1% paraformaldehyde (PFA). After 3 days, number of M-NFS-60 cells was determined by hemocytometer. Data are presented as the means \pm S.D. of triplicate cultures. Statistical differences are marked: *, *p* < 0.05 versus the culture in the presence of supernatants from PFA-untreated FL-Y cells. (B) The supernatants (20 mL) collected from FL-Y-IL-34-Nst culture were reacted with 60 µL of Strep-Tactin sepharose (IBA) overnight at 4 °C. Then, the Strep-Tactin sepharose was centrifuged at 390 × *g* at 4 °C for 2 min and washed five times with 1 mL of NP buffer (50 mM Na₂PO₄/300 mM NaCl pH 8.0). Finally, IL-34-Nst protein bound to sepharose was eluted with elution buffer (MEM contaning 25 mM desthiobiotin). Purified IL-34-Nst was added to medium of FDMC-inducing culture every 3 days. After 8 days, cultured cells were analyzed by flow cytometry after staining with an anti-CD11b mAb as shown in Figs. 1*D* and *E*. Data are presented as the means \pm S.D. of triplicate cultures. Statistical differences are marked: *n.s.*, not significant.

Supplemental Figure S4. IL-34-Nst is capable of stimulating CSF-1R.

(A) IL-34-Nst was purified from FL-Y-IL-34-Nst cell-cultured medium (20 mL) by using a Strep-Tactin sepharose according to the manufacturer's instruction. Briefly, the culture medium was reacted with the Strep-Tactin sepharose resin overnight, and the resin was washed with NP buffer. IL-34-Nst bound to the resin was eluted with the elution buffer (MEM containing 25 mM desthiobiotin). The eluate was separated by SDS-PAGE and subjected to western blotting with an anti-IL-34 Ab. (B) M-NFS-60 (1 × 10⁴ cells/mL) were cultured in the medium containing none (-), recombinant IL-34 (rIL-34: 10 ng/mL), or purified IL-34-Nst. After 3 days, the number of M-NFS-60 cells was determined by hemocytometer. Data are represented as the means \pm S.D. of triplicate cultures. (C) rIL-34 and purified IL-34-Nst were untreated (-) or treated (+) with PNGase (N-Zyme Scientifics) according to the manufacturer's instruction. Samples were separated by SDS-PAGE and subjected to western blotting with an anti-IL-34 Ab. (D) IL-34-Nst proteins prepared from the culture medium (CM), whole cell lysate (WC), and plasma membrane fraction (PM) of FL-Y-IL-34-Nst, and recombinant IL-34 Ab. Data are presented as the means \pm S.D. of triplicate cultures are separated by SDS-PAGE and subjected to western blotting with an anti-IL-34 Ab. (D) IL-34-Nst proteins prepared from the culture medium (CM), whole cell lysate (WC), and plasma membrane fraction (PM) of FL-Y-IL-34-Nst, and recombinant IL-34 Ab. Data are presented as the means \pm S.D. of triplicate cultures. Statistical differences are marked: *, p < 0.05 versus unstimulated culture (-).

GRP78: 83 NQLTSNPENTVFDAK 97

Supplemental Figure S5. LC-MS/MS analysis for identification of GRP78 as an IL-34-binding molecule IL-34-Nst proteins in the plasma membrane fraction prepared from FL-Y-IL-34-Nst (IL-34-Nst) cells were pull-downed by using Strep-Tactin sepharose and eluted by 2.5 mM desthiobiotin. Eluate was separated by SDS-PAGE and subjected to mass spectrometry analysis. All of the identified GRP78 peptides are listed in Table 1. Data show the profile of identified peptides whose ions score was \geq 50.

GRP78: 187 DAGTIAGLNVMR 198

Monoisotopic mass of neutral peptide Mr(calc): 1216.6234 lons Score: 51 Expect: 0.0057

Matches: 12/100 fragment ions using 16 most intense peaks

#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Seq.	У	y++	у*	y*++	у ⁰	y ⁰⁺⁺	#
1	115.0502	58.0287	98.0237	49.5155			N							15
2	243.1088	122.0580	226.0822	113.5448			Q	1563.7649	782.3861	1546.7384	773.8728	1545.7544	773.3808	14
3	356.1928	178.6001	339.1663	170.0868			L	1435.7064	718.3568	1418.6798	709.8435	1417.6958	709.3515	13
4	457.2405	229.1239	440.2140	220.6106	439.2300	220.1186	Т	1322.6223	661.8148	1305.5957	653.3015	1304.6117	652.8095	12
5	544.2726	272.6399	527.2460	264.1266	526.2620	263.6346	S	1221.5746	611.2909	1204.5481	602.7777	1203.5640	602.2857	11
6	658.3155	329.6614	641.2889	321.1481	640.3049	320.6561	N	1134.5426	567.7749	1117.5160	559.2617	1116.5320	558.7696	10
7	755.3682	378.1878	738.3417	369.6745	737.3577	369.1825	Ρ	1020.4997	510.7535	1003.4731	502.2402	1002.4891	501.7482	9
8	884.4108	442.7091	867.3843	434.1958	866.4003	433.7038	Ε	923.4469	462.2271	906.4203	453.7138	905.4363	453.2218	8
9	998.4538	499.7305	981.4272	491.2172	980.4432	490.7252	N	794.4043	397.7058	777.3777	389.1925	776.3937	388.7005	7
10	1099.5014	550.2544	1082.4749	541.7411	1081.4909	541.2491	Т	680.3614	340.6843	663.3348	332.1710	662.3508	331.6790	6
11	1198.5699	599.7886	1181.5433	591.2753	1180.5593	590.7833	V	579.3137	290.1605	562.2871	281.6472	561.3031	281.1552	5
12	1345.6383	673.3228	1328.6117	664.8095	1327.6277	664.3175	F	480.2453	240.6263	463.2187	232.1130	462.2347	231.6210	4
13	1460.6652	730.8362	1443.6387	722.3230	1442.6546	721.8310	D	333.1769	167.0921	316.1503	158.5788	315.1663	158.0868	3
14	1531.7023	766.3548	1514.6758	757.8415	1513.6918	757.3495	Α	218.1499	109.5786	201.1234	101.0653			2
15							ĸ	147.1128	74.0600	130.0863	65.5468			1

GRP78: 449 SQIFSTASDNQPTVTIK 465

Monoisotopic mass of neutral peptide Mr(calc): 1835.9265 lons Score: 50 Expect: 0.0045

Matches: 15/186 fragment ions using 20 most intense peaks

#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Seq.	у	y++	у*	y*++	у ⁰	у ⁰⁺⁺	#
1	88.0393	44.5233			70.0287	35.5180	S							17
2	216.0979	108.5526	199.0713	100.0393	198.0873	99.5473	Q	1749.9018	875.4545	1732.8752	866.9412	1731.8912	866.4492	16
3	329.1819	165.0946	312.1554	156.5813	311.1714	156.0893	1	1621.8432	811.4252	1604.8166	802.9120	1603.8326	802.4199	15
4	476.2504	238.6288	459.2238	230.1155	458.2398	229.6235	F	1508.7591	754.8832	1491.7326	746.3699	1490.7486	745.8779	14
5	563.2824	282.1448	546.2558	273.6316	545.2718	273.1395	S	1361.6907	681.3490	1344.6642	672.8357	1343.6801	672.3437	13
6	664.3301	332.6687	647.3035	324.1554	646.3195	323.6634	Т	1274.6587	637.8330	1257.6321	629.3197	1256.6481	628.8277	12
7	735.3672	368.1872	718.3406	359.6740	717.3566	359.1819	Α	1173.6110	587.3091	1156.5844	578.7959	1155.6004	578.3039	11
8	822.3992	411.7032	805.3727	403.1900	804.3886	402.6980	S	1102.5739	551.7906	1085.5473	543.2773	1084.5633	542.7853	10
9	937.4262	469.2167	920.3996	460.7034	919.4156	460.2114	D	1015.5419	508.2746	998.51 <mark>5</mark> 3	499.7613	997.5313	499.2693	9
10	1051.4691	526.2382	1034.4425	517.7249	1033.4585	517.2329	N	900.5149	450.7611	883.4884	442.2478	882.5043	441.7558	8
11	1179.5277	590.2675	1162.5011	581.7542	1161.5171	581.2622	Q	786.4720	393.7396	769.4454	385.2264	768.4614	384.7343	7
12	1276.5804	638.7938	1259.5539	630.2806	1258.5699	629.7886	Р	658.4134	329.7103	641.3869	321.1971	640.4028	320.7051	6
13	1377.6281	689.3177	1360.6016	680.8044	1359.6175	680.3124	Т	561.3606	281.1840	544.3341	272.6707	543.3501	272.1787	5
14	1476.6965	738.8519	1459.6700	730.3386	1458.6859	729.8466	V	460.3130	230.6601	443.2864	222.1468	442.3024	221.6548	4
15	1577.7442	789.3757	1560.7176	780.8625	1559.7336	780.3705	Т	361.2445	181.1259	344.2180	172.6126	343.2340	172.1206	3
16	1690.8283	845.9178	1673.8017	837.4045	1672.8177	836.9125	I	260.1969	130.6021	243.1703	122.0888			2
17							ĸ	147.1128	74.0600	130.0863	65.5468			1

GRP78: 525 ITITNDQNR 533

Monoisotopic mass of neutral peptide Mr(calc): 1073.5465 lons Score: 60 Expect: 0.0009

Matches: 14/80 fragment ions using 21 most intense peaks

#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Seq.	У	y++	у*	y*++	у ⁰	y ⁰⁺⁺	#
1	114.0913	57.5493					I							9
2	215.1390	108.0731			197.1285	99.0679	Т	961.4697	481.2385	944.4432	472.7252	943.4592	472.2332	8
3	328.2231	164.6152			310.2125	155.6099	I	860.4221	430.7147	843.3955	422.2014	842.4115	421.7094	7
4	429.2708	215.1390			411.2602	206.1337	Т	747.3380	374.1726	730.3115	365.6594	729.3274	365.1674	6
5	543.3137	272.1605	526.2871	263.6472	525.3031	263.1552	N	646.2903	323.6488	629.2638	315.1355	628.2798	314.6435	5
6	658.3406	329.6740	641.3141	321.1607	640.3301	320.6687	D	532.2474	266.6273	515.2209	258.1141	514.2368	257.6221	4
7	786.3992	393.7032	769.3727	385.1900	768.3886	384.6980	Q	417.2205	209.1139	400.1939	200.6006			3
8	900.4421	450.7247	883.4156	442.2114	882.4316	441.7194	N	289.1619	145.0846	272.1353	136.5713			2
9							R	175.1190	88.0631	158.0924	79.5498			1

GRP78: 564 NELESYAYSLK 574

Monoisotopic mass of neutral peptide Mr(calc): 1315.6295 lons Score: 71 Expect: 3.7e-005

Matches: 13/114 fragment ions using 15 most intense peaks

#	b	b++	b*	b*++	b ⁰	b ⁰⁺⁺	Seq.	У	y++	у*	y*++	у ⁰	y ⁰⁺⁺	#
1	115.0502	58.0287	98.0237	49.5155			N							11
2	244.0928	122.5500	227.0662	114.0368	226.0822	113.5448	Ε	1202.5939	601.8006	1185.5674	593.2873	1184.5834	592.7953	10
3	357.1769	179.0921	340.1503	170.5788	339.1663	170.0868	L	1073.5514	537.2793	1056.5248	528.7660	1055.5408	528.2740	9
4	486.2195	243.6134	469.1929	235.1001	468.2089	234.6081	Е	960.4673	480.7373	943.4407	472.2240	942.4567	471.7320	8
5	573.2515	287.1294	556.2249	278.6161	555.2409	278.1241	S	831.4247	416.2160	814.3981	407.7027	813.4141	407.2107	7
6	736.3148	368.6610	719.2883	360.1478	718.3042	359.6558	Y	744.3927	372.7000	727.3661	364.1867	726.3821	363.6947	6
7	807.3519	404.1796	790.3254	395.6663	789.3414	395.1743	Α	581.3293	291.1683	564.3028	282.6550	563.3188	282.1630	5
8	970.4153	485.7113	953.3887	477.1980	952.4047	476.7060	Y	510.2922	255.6498	493.2657	247.1365	492.2817	246.6445	4
9	1057.4473	529.2273	1040.4207	520.7140	1039.4367	520.2220	S	347.2289	174.1181	330.2023	165.6048	329.2183	165.1128	3
10	1170.5313	585.7693	1153.5048	577.2560	1152.5208	576.7640	L	260.1969	130.6021	243.1703	122.0888			2
11							K	147.1128	74.0600	130.0863	65.5468			1

Supplemental Figure S6. GRP78 regulates IL-34 expression on cell surface of FL-Y-IL-34-Nst cells. (A) Genomic PCR analysis of GRP78-heterozygous (+/-) FL-Y-IL-34-Nst cells. PCR primers used are shown in Fig. 5*A*. (B) RT-PCR analysis of *Grp78* and *II34* mRNA expression in GRP78 (+/-) FL-Y-IL-34-Nst cells. (C) Western blot analysis of GRP78 expressed in GRP78 (+/-) FL-Y-IL-34-Nst cells. Whole cell lysates were separated by SDS-PAGE and subjected to western blotting. (D) IL-34 expression on the cell surface of the GRP78 (+/-) FL-Y-IL-34-Nst cell line was determined by flow cytometry after staining with an anti-IL-34 Ab. The level of IL-34 cell-surface expression is indicated as described in Fig. 2*C* (delta MFI). Data are representative of at least three independent experiments.

Table S1. Primers used for PCR and RT-PCR in this study

Primer	Sequence (5'-3')
Construction of IL-34 KO vector	
IL-34-3'-F	TGCGGCCGCCCAGTGCTGTGTTAGGTGATC
IL-34-3'-R	AGTAGGATCCCAAGACCTGTGGGACACACC
IL-34-5'-F	CTGCAGTACAGGATCCGGCTTCAGTACATG
IL-34-5'-R	AGCAATCGATTAGTTGATGGGGAAGTAATG
Construction of IL-34 gRNA vect	or
IL-34-guide2 (sense)	AACACCGGCTTTGGGAAACGAGAATTGT
IL-34-guide2 (antisense)	TAAAACAATTCTCGTTTCCCAAAGCCGG
IL-34-guide3 (sense)	AACACCGACCTTACAGGCTACCTTCGGT
IL-34-guide3 (antisense)	TAAAACCGAAGGTAGCCTGTAAGGTCGG
IL-34-guide4 (sense)	AACACCGCGAGAGCTTCGGTACCTGTGT
IL-34-guide4 (antisense)	TAAAACACAGGTACCGAAGCTCTCGCGG
Targeting check for IL-34 KO allo	ele
IL-34-F	CCAAGATGCTATGACCTGGCTAGGTGATGAGTG
IL-34-R	CGAAGCTCTCGCTCACTCACGTGAGCCTTC
Puro	CAGCGCCCGACCGAAAGGAGCGCACGACC
BSR2	GTGATGATGAGGCTACTGCTGACTCTCAACATTCTACTCCTCC
r-plox	TCGAGGATCTGGGCTAGCCCTGATCAATAAC
Construction of IL-34 expression	vector
mIL-34-F-Kozak-EcoRI	GGGGAATTCAGTGCGCCACCATGCCCTG
IL-34-R2-BgIII	CCAGATCTACTAGGGCAACGAGCC
Construction of IL-34-Nst express	sion vector
IL-34-Strep-1 st	CGCAGTTCGAGAAAGGTGGAGGTTCCGGAGGTGGATCGGGAGGTTC
_	GGCCTGGAGCCACCCGCAGTTCGAAAAAAACGAGAATTTG
IL-34-Strep-2 nd	GGAATTCAGTGCGCCACCATGCCCTGGGGACTCGCCTGGCTATACTG
-	TCTTGGGATCCTACTTGACGTGGCTTTGGGATGGAGCCACCCGCAGT
	TCGAG
IL-34-R2-BglII	CCAGATCTACTAGGGCAACGAGCC
Construction of GRP78 KO vecto	r
GRP78-5'-F	GAATTCCATCTCATGGTGGAAAGTGCTCG
GRP78-5'-R	GGATCCAGCAGTCAGGCAGGAGTCTTAG
GRP78-3'-F	GGATCCGGCGGCGTTGCTGCTGCTG
GRP78-3'-R	GCGGCCGCTCAAACACTCAACACTG
Construction of GRP78 gRNA ve	ctor
GRP78-guide 1 (sense)	AACACCGGAGCGACTGGTCCTCAGCGCGT
GRP78-guide 1 (antisense)	TAAAACGCGCTGAGGACCAGTCGCTCCGG
	•

Targeting check for GRP78 KO all	lele
GRP78-F	TATCAGCCCTATTCCAAGAGTCGAATAGGGTGGTG
GRP78-R	GTGAGATGGCTCGGCAGGTAAGGGC
<i>il34</i> mRNA	
F	GACACACTTCTGGGGACAGTGCCTC
ex3F	GAGATATGGACTCTGACCCAAGATAAGGAGTGTG
R	GCTCAGGGCAACGAGCCATGGCTTG
<i>csf1</i> mRNA	
F	GCCGGGAATTCGCTGCCACCATGAC
R	CATAGAATTCTTTCTATACTGGCAGTTCCACCTGTCTG
<i>grp78</i> mRNA	
F	CTCGAGGAGGAGGAGGACAAGAAGG
R	GGATCCCTACAACTCATCTTTTTCTGATGTATC
<i>βactin</i> mRNA	
F	AGTGTGACGTTGACATCCGTA
R	GCCAGAGCAGTAATCTCCTTCT