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Empirical estimates for m

We used the extensive metabolic data from many sources listed in the Supplementary Information
ofl Makarieva et al. [2008] as well as a table from White and Seymour [2003], and matched the
listed taxa with the Global Biotic Interactions (GloBI) database [Poelen et al., 2014], either at the
species or the genus level (results shown here correspond to matches at the genus level; 20% are also
matches at the species level, restricting to these matches does not change the results significantly, see
Fig. S6) Taxa were categorized in large classes following the labels of Tables S1 to S11 in [Makarieva
et al., 2008]. We could thus compute metabolic ratio m across 11822 predator-prey and 150 parasite-
host pairs, involving 2560 species in total. We also characterized the differences between top and
intermediate predators in the 63127 tritrophic chains (50% within the same large taxonomic class,
e.g. birds or fish in Fig. S3).

In particular, we found metabolic data for the predator-prey pair of Sebastes caurinus and
Ophiodon elongatus, belonging to the same genera as some of the fish species in the kelp forest
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study [Trebilco et al., 2016], and could thus estimate m ∼ 0.2 for this pair, although this estimate
is probably a lower-bound given the median m ∼ 1 for piscivory (see Fig. S5) and the fact that
metabolic data on the predator and prey may not have been obtained at the same life history stage,
see the original data in FishBase [Froese and Pauly, 02/2018].

Chain equations

Let us assume that each trophic level is characterized by a given rate mi that governs its growth,
mortality and uptake, so we can write

1

B1

dB1

dt
= m1 (g −DB1)−m2αB2,

1

Bi

dBi
dt

= mi (−r −DBi + εαBi−1)−mi+1αBi+1 (S1)

with r, D and α simple scaling constants that are the same for all species (all differences between
levels are now assumed to be contained in the rates mi). We divide by Dmi everywhere:

1

Dm1B1

dB1

dt
= 1−B1 −maB2,

1

DmiBi

dBi
dt

= − r

D
−Bi + εaBi−1 −maBi+1. (S2)

Here a = α/D is the strength of interactions compared to self-regulation D, and m is the ratio of a
predator’s metabolic rate to its prey’s. We retain the explicit expressions εa and ma to contrast a,
which is a property of ecological interactions and dynamics, with ε and m, which can be characterized
using physiological data.

Finally, notice that the carrying capacity of the basal level is K = g/D in the absence of
consumers. We can write the equilibrium condition of (S2) as

0 = −ρ−Bi + εaBi−1 −maBi+1 (S3)

with
ρ =

r

g
K (S4)

If we want to compare the density-dependent and independent terms directly, we can choose to
express all biomasses in units of the carrying capacity, so that K = 1, ρ = r/g. In that case, it is
clear that ρ > 1 entails that metabolic costs are at least comparable to self-regulation (Bi in (S3),
which is at most 1).

Derivation of the energetic formula

Our equilibrium equation (S3) admits as a special case the energetic formula discussed in the main
text,

miBi = Emi−1Bi−1 ⇔ 0 = −Bi +
E

m
Bi−1. (S5)

It emerges in our model when we neglect both metabolic costs (ρ→ 0) and predation losses (λ→ 0).
Comparing this and (S3) yields the identification

E = mεa. (S6)

Note that various works posit E = ε [Jennings et al., 2007, Trebilco et al., 2013, Woodson et al.,
2018], which only holds in the special case

a = 1/m ⇔ αi,i−1 = Dmi−1. (S7)
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We now explain more generally why self-regulation is needed to yield the proportionality between
levels Bi ∝ Bi−1 assumed in the energetic formula (S5). As discussed in the main text, the basic
principle of the energetic paradigm is the proportionality of energy fluxes [Lindeman, 1942], i.e.

Pi ∼ εPi−1. (S8)

with Pi the biomass created per unit time.
To obtain a similar relation between Bi and Bi−1, we must find an allometric relationship Pi ∼ Bγi

with some exponent γ. This allometric relationship can come from two sources: either it is imposed
by the functional response, or it arises dynamically by the equality at equilibrium of growth (Pi)
and losses (that scale with Bi).

This allometric scaling is however not necessarily present. In the dynamical paradigm, we have

Pi = F (Bi, Bi−1) (S9)

with F the functional response. The Lotka-Volterra case gives

Pi = εαBiBi−1 (S10)

If we insert this into (S8), this gives

BiBi−1 ∼ εBi−1Bi−2 ⇒ Bi ∼ εBi−2 (S11)

Hence the flux equation in a Lotka-Volterra model entails a biomass proportionality between levels
at a distance of 2, not between adjacent levels.

There are multiple ways to recover the energetic formula (S5) and the pyramidal structure Bi ∝
Bi−1 in a dynamical context, and all involve some form of self-regulation. These ways include the
following scalings, detailed below:

Pi ∼ B2
i (density-dependent mortality),

Pi ∼ Bi−1 (predator interference),

Pi ∼ Bi (handling time). (S12)

We can see that inserting any of these into (S8) will then give the proportionality Bi ∝ Bi−1.
The basic argument is that, from a dynamical perspective, the biomass at level i − 1 does not

immediately determine the biomass at level i. Instead, it induces growth in the consumers, until
this growth is compensated by equal losses.

One option is for self-regulation to cause losses to increase sufficiently with Bi, via density-
dependent mortality Di. If we assume Lotka-Volterra functional response, Pi = εαBiBi−1, then the
only way to get a classic pyramidal structure is if the dynamics eventually give rise to the scaling

Pi ∼ B2
i (S13)

We can interpret the left-hand side as a growth term, and the right hand side as a loss term; the two
must be equal at equilibrium. Thus, losses must be proportional to B2

i , i.e. they must arise from
competition within level i. This is the assumption that has guided our choice of synthetic model, as
it is the one for which we can most easily interpolate between bottom-up and top-down limits.

Another option is for self-regulation to cause growth to decrease sufficiently with Bi. This can
be achieved with consumer interference: if

Pi = εα
BiBi−1
1 + IBi

(S14)

with I the interference term (see Discussion in main text), then in the limit of very large I,

Pi ∼ Bi−1 (S15)
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and the principle (S8) directly entails

Bi−1 ∼ εBi−2. (S16)

This case is the one implicitly assumed by energetic models [Borgmann, 1987] which posit an allo-
metric relation Pi ∼ Bi−1.

A third option is a saturating (Type 2) functional response, representing predators that must
spend time H handling each prey

Pi = εα
BiBi−1

1 +HαBi−1
(S17)

In the limit of very large H, we then get Pi ∼ Bi.
These three options seem very distinct, but they have similar equilibrium properties: they all

entail a linear relationship between the biomasses of adjacent levels i and i− 1 that is independent
of other levels (because we can ignore either the biomass of levels above, as in interference and
competition, or of levels below, as in Type 2 functional response).

Stability matrices

We detail here the statements in the main text on the equilibrium’s stability properties, i.e. its
response to various types of perturbations. As mentioned in Box 3, the dynamical equation (3)
becomes

dBi
dt

=Bi (gi −DiBi + εαi,i−1Bi−1 − αi+1,iBi+1)

+Biξi(t) (S18)

where ξi(t) represents the perturbation.

A press perturbation ξi(t) = ξ can be interpreted as a permanent change ∆gi in growth or
mortality, which is why we chose in main text to emphasize gi = 0 for i > 0 (low mortality limit
ρ = r/g � 1) and suggest to represent the effects of higher mortality as the result of a press
perturbation. Such a change in mortality shifts down the biomasses but preserves the qualitative
shape of the distribution as long as r is moderate. Furthermore, it does not change the response to
further press perturbations (due to linearity of equilibrium conditions in Lotka-Volterra equations)
as long as all levels survive.

A stochastic perturbation will have a time-dependent ξi(t), here scaled by Bi. In the case of
demographic stochasticity resulting from random birth and death processes [Haegeman and Loreau,
2011], we expect the variance over time to be proportional to the abundance

Var(Biξi) ∼ Bi (S19)

which corresponds to ξi(t) = W (t)/
√
Bi with W (t) a white noise term with mean 0 and variance 1.

In the main text, we focus on relative response, i.e. the fractional response ∆Bi/Bi to a press, or
the coefficient of variation std(Bi)/Bi in response to noise. The corresponding matrices V in Fig. 3
and C(i) in Fig. 4 are computed as follows [Arnoldi et al., 2016]. Let A be the matrix

Aij = (εaδi−1,j −maδi+1,j − δij)
Bj
Bi

(S20)

where δij = 1 if i = j and Bi, Bj are equilibrium abundances. The relative response to a press is
the solution V of

AV = I (S21)

with I the identity matrix, i.e. V = A−1.
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To represent a white noise applied to species i only, we define a S × S matrix Σ(i) where all

elements are zero except Σ
(i)
ii = 1. Then, the relative covariance matrix C(i) is the solution of the

Lyapunov equation

AC(i) + C(i)AT = Σ(i). (S22)

The similarity of (S21) and (S22) reflects the connectedness between different stability properties.

Two levels: Control and production

Let us consider a two-level chain, where we allow each level to have a different self-regulation con-
stant, so that we can explore the role of self-regulation independently at each level. At equilibrium,

0 = g −D1B1 −mαB2

0 = −r −D2B2 + εαB1 (S23)

The solution is

B1 =
mαr +D2g

D1D2 +mεα2

B2 =
εαg − rD1

D1D2 +mεα2
. (S24)

Top-down control and mortality

Without self-regulation, D1 = D2 = 0, it is well known, as shown in the main text (9), that each
level is controlled by the other,

B1 =
r

mα
, B2 =

g

εα
(S25)

where B1 depends on consumer mortality r, and B2 depends on basal growth g.
If one level has self-regulation, but not the other (either D1 = 0 or D2 = 0), each species always

plays an important role in controlling the other, as shown by the fact that mεα2 (the absolute
strength of the feedback through the other species) is present at the denominator in the biomasses
of both levels. Intuitively, whichever level has no self-regulation will grow (pushing its consumers up
or its resources down) until the top level consumes all extra basal growth and cannot grow further.

However, if both levels have self-regulation, D1, D2 > 0, consumers need not grow until they
control resources.

In the limit of large D2 (strong consumer self-regulation) i.e. when terms containing D2 dominate
all other terms in (S24), we find a situation of pure donor control. The expressions simplify to

B1 ≈
g

D1
(S26)

i.e. the equilibrium biomass of the basal level is that of a simple logistic equation, ignoring all effects
of consumption. On the other hand, for the consumer

B2 ≈
εα(g/D1)− r

D2
(S27)

and consumer mortality r simply acts as a negative press perturbation on the consumer.
Recall that without self-regulation, r controls resource biomass B1, and is thus a crucial factor

in functioning and stability patterns, such as trophic cascade strength. In (S27), r simply plays the
role of a threshold for consumer survival (which requires εαg > rD1) and does not impact lower
levels.
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Consumption-biomass relationships

Finally, let us discuss consumption-biomass relationships in this two-level system. In (S23) the
fraction of production at level 1 removed by consumers is simply

f =
mαB2

g
= 1− D1B1

g
(S28)

Hence, we see that f is always 1 unless the basal level self-regulates D1 6= 0. We also find the
relationship between f and the ratio of primary production to basal biomass, i.e. the basal energy
influx g. Empirically [Cebrian and Duarte, 1994], it has been proposed that

f ∼ g0.6 (S29)

across aquatic and terrestrial plants. But we see here from a simple argument that this relationship
might not be a power-law; rather, it may be a saturating curve that starts from zero when g = B1D1,
allowing us to estimate primary producer self-regulation D1.

This simple relationship may, however, be modified in two ways. First, if g is tied to primary
productivity p1 but not equal to it, i.e. g = p1−l with some losses l, then the true value f ≡ mαB2/p1
may be smaller than the estimate (S28). Second, if herbivore biomass B2 is significantly brought
down by predation from a higher level, so that mαB2 < g−D1B1, and in turn f will be smaller than
the estimate (S28). In both cases, our estimate is thus an upper bound, and we may overestimate
D1 if we compute it from fitting this relationship.

Three levels: Trophic cascades

Let us now consider a three-level chain with different self-regulation coefficients, and let us also allow
different metabolic rate ratios m21 = m2/m1 and m32 = m3/m2 (and thus m31 = m3/m1 can be
defined for convenience).

We will further assume that α is fixed and independent of m, meaning that consumption is driven
by consumer metabolism (αi,i−1 ∼ mi).

The equilibrium is then

B1 =
1

b

(
g(D2D3 + α2εm32) + αD3m21r2 − α2m32m21r3

)
(S30)

B2 =
1

b
(gD3αε+ αD1m32r3 −D1D3r2) (S31)

B3 =
1

b

(
gα2ε2 − αD2εr2 − (D1D2 + α2εm21)r3

)
(S32)

b = D1D2D3 + α2ε(D1m32 +D3m21) (S33)

Note that each level’s biomass depends on basal productivity g only if higher levels (if they exist)
are limited, either by self-regulation or by predation mortality.

Trophic cascades

To study the strength of trophic cascades, two distinct scenarios are conceivable. The first is to
perform a press perturbation ∆r3 around equilibrium, increasing the mortality at the predator level
i = 3, and compute the relative change ∆B1/B1 as a response. The second is to remove the predator

level altogether and compare biomass in a two-level chain B
(2)
i to that in a three-level chain B

(3)
i .

The general expressions are cumbersome, but enough intuition can be gathered from two special
cases: self-regulation only happens at the bottom D2 = D3 = 0 (which is the most conventional
choice in food web theory), or at the top D1 = D2 = 0.
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Perturbations around equilibrium

In the case of a perturbation around equilibrium, we find

∆B1/B1

∆r3

∣∣∣∣
D2=D3=0

= − 1

g/m21 − r3
(S34)

∆B1/B1

∆r3

∣∣∣∣
D1=D2=0

= − αm32

D3r2 +m32(εg/m21 − r3)
(S35)

where the minus sign indicates that increasing mortality r3 decreases basal biomass, as expected.

In both limits, the effect of basal growth g (and hence of enrichment) is to reduce cascade
strength: looking more carefully, we see that in general

∆B1

∆r3
=
−α2m32m21

b
(S36)

is independent of g, while B1 increases with g, thus the relative change ∆B1/B1 becomes negligible
in the limit of high enrichment.

Note also that, if self-regulation only happens at the basal level D2 = D3 = 0, we do not expect
cascade effects to increase with predator metabolism m3 or decrease with herbivore metabolism m2,
as found empirically [Borer et al., 2005] (see main text). This prediction is, however, borne out in
the case with predator self-regulation: the predator-plant metabolic ratio m31 is at the numerator,
and the herbivore-plant ratio m21 is at the denominator.

Adding or removing a level

We next compute the ratio of basal biomass without predator to that with predator. In a two-level
chain we have

B
(2)
1 =

m21αr2 +D2g

D1D2 +m21εα2

while in a three level chain we have (S30). Thus, we find

B
(3)
1

B
(2)
1

∣∣∣∣∣
D2=D3=0

= α
gε−m21r3

r2D3
(S37)

B
(3)
1

B
(2)
1

∣∣∣∣∣
D1=D2=0

=
m32

m21

B
(3)
1

B
(2)
1

∣∣∣∣∣
D2=D3=0

(S38)

Here, the conclusion on the effect of enrichment appears opposite: high enrichment means low

∆B1/B1 around equilibrium, but this also means high B
(3)
1 /B

(2)
1 , i.e. a large increase in biomass

when adidng predators.

In general, enrichment can go either way: both B
(2)
1 and B

(3)
1 depend on g, and which dependence

is faster (meaning how g influences cascade effects) is a function of all other dynamical parameters.

The effect of enrichment can also disappear if D2 and D3 are both large, in which case both B
(3)
1

and B
(2)
1 are proportional to g and it cancels out of the ratio.

While the effect of enrichment is inconsistent, the role of metabolism remains similar to the case
of smaller press perturbations: if D3 6= 0, we now expect the change in B1 to increase linearly
with m32/m21 = m3m1/m

2
2, and thus to be positively correlated with m3 and anticorrelated with

m2, still in agreement with experimental conclusions. Note that this predicts that the log ratio

log
(
B

(3)
1 /B

(2)
1

)
∼ logm3 + logm1 − 2 logm2 decreases with m2 twice as fast as it increases with

m3, also in agreement with empirical data [Borer et al., 2005].
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Cascade attenuation or intensification

We can also compute how much the cascade effect of a perturbation around equilibrium is attenuated
as it goes down the chain:

∆B2

∆B1
= − D1

αm21
(S39)

and thus the relative change

∆B2/B2

∆B1/B1
= − D1B1

αm21B2

= 1− 1

f1
. (S40)

Thus, we can predict how much the cascade effect will be attenuated or amplified, depending on the
fraction of removed production at level 1. When the data is given by log ratios [Hedges et al., 1999]
such as

∆ logB1 = log

(
B

(3)
1

B
(2)
1

)
(S41)

we can convert them to relative changes and back using

∆ logB1 = log

(
B1 + ∆B1

B1

)
(S42)

∆B1/B1 = exp(∆ logB1)− 1. (S43)

Pyramid slope

In the general chain, we have:

1

Bi

dBi
dt

= miεαBi−1︸ ︷︷ ︸
p

−mi+1αBi+1︸ ︷︷ ︸
fB

−miDBi −mir︸ ︷︷ ︸
d

(S44)

where p is productivity (the production/biomass ratio P/B), fB is the fraction of biomass removed
by predators per unit time (e.g. per day) [Cebrian and Duarte, 1994] and d is the remaining mortality
term. Note that r may in fact have to be split into metabolic costs reducing productivity, and real
mortality, which respectively enter into p and d.

The fraction of production removed is simply

f =
fB
p

=
mBi+1

εBi−1
=

Bi+1

κBi−1
(S45)

which we easily interpret in the equilibrium condition (6) as the relative contribution of predation
mortality among all the negative terms that balance out the positive biomass influx from consump-
tion.

If f = 1 (strict top-down control), then Bi+1 = κBi−1 and on average Bi ∼ κi/2. More generally,
if we assume a biomass pyramid with Bi+1 = uBi, we easily deduce from (6) with r = 0 that

u =
√
κ

√
1 + 4λ− 1

2
√
λ

u−→
λ→0

εa, u −→
λ→∞

√
κ. (S46)

This simplified calculation from an ansatz Bi+1 = uBi is made more precise below in the section
“Explicit chain solution”. Note that (S45) entails

u =
√
κf, (S47)
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and hence we get the expression for the fraction of production removed by predators:

f = 1−
√

1 + 4λ− 1

2λ
, λ =

f

(1− f)2
(S48)

and for the average biomass trend
Bi ∼ ui = (κf)i/2 (S49)

Finally, notice that the condition for linear mortality r to be negligible in d in (S44) is (using
D = g in our choice of units)

r

g
� Bi (S50)

If it is not negligible, then we find

λ =
f

(1− fR)
2 , R = 1− r

gamBi+1
(S51)

f =
1

R
−
√

1 + 4λR− 1

2λR2
(S52)

With high mortality, R < 1 and f is higher than expected from the low-mortality expression in the
main text.

If r/g is a constant, in a regular pyramid, the condition r/g � Bi will fail for upper levels more
than for lower levels. Thus, low basal growth (low enrichment, high mortality) will tend to suppress
top predators more and reduce cascades, in accordance with empirical intuitions [Pace et al., 1999].

Size spectrum exponents

The widely-used argument in the study of (especially marine) size spectra goes as follows: according
to (1), the “energy content” miBi of a level depends on that of the level below:

miBi ∼ Emi−1Bi−1.

Therefore

Bi ∼
E

m
Bi−1 (S53)

with m the predator-prey metabolic ratio, and

Bi ∼
(
E

m

)i
. (S54)

Now, following the argument in main text to express the trophic level i as a function of body size
W

i ∼ logW

logM
(S55)

with M the predator-prey mass ratio, and the allometric scaling

m ∼M−β ⇒ logm ∼ −β logM. (S56)

Putting this all together, we find

B(W ) ∼ ei log(E/m)

= e
logW

logE + β logM

logM

= W b, b = β +
logE

logM
. (S57)
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Finally, some works [Trebilco et al., 2013, Woodson et al., 2018] assume that E ≈ ε, i.e. the
proportionality factor E is the real physiological conversion efficiency.

As we noted above, in our model E = mεa, which can be larger than one, yielding an inverted
energy pyramid. This is not a new result [Borgmann, 1987]. But it is important to note that
E = λ/a, and a pyramidal biomass distribution (hence the energetic formula above) only occurs if
λ < 1. Hence, E > 1 requires a small value of a. In the case of resource-driven consumption, as
defined in the main text (Box 2), a ∼ 1/m and this could be achieved by having large m.

From our solution, we instead found in the main text

B(W ) ∼W b, b =
1

2

(
β +

log εf

logM

)
. (S58)

This coincides with the above formula if

λ� 1, ⇒ f ≈ λ = mεa2 (S59)

In that case, εf ≈ E2/m, hence

b ≈ 1

2

(
β + 2

logE

logM
− logm

logM

)
. (S60)

and since again m ∼M−β , we recover the previous expression.
This calculation assumes that interaction strength a is independent from mass ratio M . However,

see Fig. S7 for indications to the contrary, suggesting further corrections in the exponent b.

Explicit chain solution

Neglecting linear mortality, we can rewrite the equilibrium (6) as

Bi+1 = −
√
κ

λ
Bi + κBi−1 (S61)

If linear mortality is non negligible, then the same relation and all subsequent calculations hold for
∆Bi = Bi −Bi−1 instead. The solution to this recurrence equation can be written as

Bi = c+B
i
+ + c−B

i
− (S62)

where c± are two constants given by boundary conditions (basal growth and the top level), while
the two roots of the characteristic polynomial are

B± =
√
κ
−1±

√
1 + 4λ√

4λ
. (S63)

where it becomes apparent that

B+ = u =
√
κf

B− =

√
κ

λ
−B+ =

1

ma
− u (S64)

according to our definitions above. Note the limits

B+ −→
λ→0

√
κλ = εa, B+ −→

λ→∞

√
κ

B− −→
λ→0
∞, B− −→

λ→∞
−
√
κ

10



We can define a weighted average B̃i such that

B̃i =
Bi+1 −B−Bi

2
=
Bi+1 +Bi(

√
κf −

√
κ/λ)

2

= c+B
i
+

B+ −B−
2

= c+(κf)i/2
√

1

4λ
+ 1

∼ (κf)i/2. (S65)

In other words, both in the pyramid and the cascade regimes, there always exists a weighted average
of consecutive levels, comprised between Bi (if λ� 1) and Bi +Bi+1/

√
κ (if λ� 1) that will scale

like (κf)i/2, thus giving general applicability to our conclusions on the biomass spectrum (19).

Body size dependence

The predator-prey ratio in metabolic rates m is an important parameter that could depend on
organism body size. Metabolic scaling [Hemmingsen, 1960] suggests m ∼M−β with M the predator-
prey body mass ratio. However, we show in Fig. S4 that this simple scaling makes erroneous
predictions when compared to direct estimation of m for various interactions, in particular predicting
the overall distribution of m to be skewed toward values smaller than 1 (as consumers are typically
larger than their prey), while empirical distributions do not exhibit this skew – consumers have
faster or slower metabolism depending on taxonomy, without a clear bias.

Furthermore, predator-prey metabolic ratio m might not be the only body size-dependent prop-
erty. In particular, interaction strength (which enters a) may also vary with M . From data on
kelp forest herbivores [Sala and Graham, 2002], we find that their predation effect on kelp, propor-
tional to ma, decreases as M−3/4 (see Fig. S7), significantly faster than the metabolic expectation
m ∼M−1/4. This suggests that the interaction strength decreases as

a ∼M−1/2. (S66)

If we still assumed that this arises from metabolic scaling, we could use (8) and obtain

a ∼ mν , ν =
1

2β
(S67)

an unexpected scenario with ν > 0 (where we recall that dynamical models typically assume ν =
0 and energetic models ν = −1), i.e. consumption rate increasing superlinearly with consumer
metabolism and decreasing with prey metabolism. Other physiological explanations based on size
difference could thus be more plausible than a metabolic argument.
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Supporting Figures

We show in Fig. S1 the importance of using relative rather than absolute stability metrics, as the
latter do not display clear patterns. Food chain stability and biomass patterns reported in the main
text are more exhaustively mapped out in Fig. S2.

Figs. S3 to S6 provide more information about our empirical estimates of m. Fig. S4 compares
empirical values of metabolic ratio m to predictions from body mass ratio M1/4, showing significantly
different patterns, and Fig. S7 shows that other parameters may depend on body size.
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Figure S1: Absolute response ∆Bi to a press perturbation ∆gj . No clear pattern emerges here,
due to being skewed by a changing biomass distribution. In Fig. S2, the symmetry with κ and
the separation into pyramids and cascades becomes apparent when considering relative response
∆Bi/Bi to proportional perturbation ∆gj/Bj .
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Figure S2: Exhaustive map of chain properties shown in Fig. 1 to 3. a) Biomass pyramids: the color
bar shows the biomass per trophic level, the grey bar the biomass that would be reached without
predation (allowing to estimate the importance of top-down control for each level). b) Relative
response to a press perturbation. Blue represents a positive response (i.e. the response goes in
the same direction as the perturbation) while red represents a negative or opposite response. An
alternation of blue and red thus indicates a trophic cascade. c) Relative response to stochastic noise:
adding noise on a given species, we can see the resulting covariance matrix between all the species.
Blue represents positive covariance (variance is necessarily non-negative) and red represents negative
covariance. An alternation of blue and red indicates a covariance cascade.
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Figure S3: Empirical metabolic ratios m for various predator-prey pairs. Food chains can involve
various types of organisms with different physiologies; therefore, the parameters held constant in (4)
may in fact vary from link to link in the chain. We demonstrate this for m which varies over a large
range [10−2, 102]. We studied ∼12000 predator-prey pairs by matching extensive species metabolic
data from Makarieva et al. [2008] with the Global Biotic Interactions (GloBI) database [Poelen
et al., 2014] (see Supplementary Appendix). Colors and labels indicate mean values, while dot size
indicates standard deviation. We find significant differences between large taxonomic classes: insect
and bird predators tend to have faster metabolism than their prey, while aquatic organisms and
terrestrial ectotherms tend to be slower (see also Fig. S5). In inset, we show differences between
positions in tritrophic chains of species within the same class: intermediate predators exhibit much
faster metabolism than their prey in the bird data, and much slower in the fish data, while top
predators display a less skewed pattern in both. This data is used in Fig. 2 to estimate parameters
in various ecosystems.
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Figure S4: Empirical consumer-resource metabolic ratio m = mi/mi−1 and allometric predictions
M−1/4 with mass ratio M = Wi/Wi−1, derived from empirical measurements of mi and Wi for
in [Makarieva et al., 2008]. Every time, the ratio is measured from the perspective of the consumer i
(see Fig. S5), and we distinguish different trophic positions for that consumer. We see that empirical
measurements and scaling predictions present two starkly different pictures [Makarieva et al., 2008,
Glazier, 2009]), especially by underestimating the occurrence of predators with faster metabolism
m > 1 (red edges in the network). The allometric prediction log10M

−1/4 is strongly skewed toward
the negative for predator-prey and the positive for parasite-host interactions, while empirical data
shows no such skew. Body mass ratios also do not account fully for significant differences between
top and intermediate predators.
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Figure S5: Distributions of m for various classes of organisms, measured either from the perspective
of the predator or the prey,. The prey perspective corresponds more closely to the discussion in main
text, as m = mi+1/mi in the equations for the prey i throughout the text. The two perspectives
tend to be anticorrelated: systematic differences between classes entail that, for instance, fish have
globally lower metabolism and thus are the slower partner in a pair both when they are predators
(log10m < 0, top-left panel) and when they are prey (log10m > 0, top-right panel). This issue
disappears when considering only predator-prey pairs in the same class (bottom panel), although
this necessarily skews the distribution in other ways (e.g. removing all classes that do not contain
pairs).
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Figure S6: Results for distribution of log10m (see Fig. S3) when retaining only exact species matches
(left) versus genus matches (right). While the exact species matches retain much less informa-
tion (1824 species pairs instead of 11822), statistics are fairly similar whenever they occur in both
datasets, and this restriction does not affect our qualitative conclusions.
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Figure S7: Strength of predation against predator-prey body mass ratio in herbivory in kelp forests.
Data on per-capita predation mortality from Sala and Graham [Sala and Graham, 2002] was divided
by predator body mass W to obtain the specific (per unit biomass) mortality coefficient, proportional
to ma. The dashed line gives the metabolic prediction with constant interaction strength, ma ∼
M−1/4. The solid line is a guide for the eye, suggesting a much steeper scaling ma ∼M−3/4 which
would entail a fast decrease of the interaction strength (e.g. through the attack rate) with increasing
body size ratio, a ∼M−1/2.
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