SUPPLEMENTARY MATERIAL AND METHODS

Gene deletions and mutant complementations

Gene deletions were performed using pJQ200mp19 derivatives containing ~350 to 450 bp regions flanking the gene(s) to be deleted: *ku1* (SMa0426), *ku2* (SMb20686), *ku3 ku4* (SMb21406-SMb21407), *ligD1* (SMa0414-SMa0417), *ligD2* (SMb20685), *ligD3* (SMb21044), *ligD4* (SMc03959). Open reading frames-flanking DNA fragments were amplified by PCR using *S. meliloti* GMI11495 genomic DNA as template and the oligonucleotides listed in Table S2 as primers, and individually cloned into pGEM-T. These regions were then subsequently juxtaposed as *SalI-Bam*HI and *Bam*HI-*SacI* fragments into *SalI-SacI*-digested pJQ200mp19. Plasmids were introduced in *S. meliloti* by electrotransformation as described (1). Single-crossover genomic integration of each pJQ200mp19 derivative was generated by selecting for Gm resistance. The resulting strains were then propagated in the absence of antibiotic, and cells having lost the plasmid by a second recombination event were selected by plating on LBMC supplemented with 5% sucrose (Suc). Suc^R Gm^S colonies were screened by PCR analysis using primers indicated in Table S2. Multiple mutants were constructed by the introduction of successive deletions as indicated in Table S3.

For complementations, *ligD2* and *ku2* genes, including their own promoters, were amplified by PCR using *S. meliloti* GMI11495 genomic DNA as template and OCB1444-OCB1445 and OCB1502-OCB1503 as primers, respectively, and cloned into pJET1.2. *ligD2* was extracted from pJET1.2 by *Bgl*II digestion and subcloned into the pJQ200mp19-derivative pLS272 (see construction details below) in *Bam*HI. *ku2* was extracted from pJET1.2 by *XhoI-XbaI* digestions and subcloned into pLS272 in *NsiI-Avr*II. Before *XbaI* or *Avr*II digestions, *XhoI* and *NsiI* DNA ends were blunted using the T4 DNA polymerase. *ku2* and *ligD2* genes were introduced into the *S. meliloti* chromosome (*rhaS* gene) by a double recombination event as described above for gene deletions.

For *ku3* and *ku3-ku4* operon complementation, genes including their own promoters were amplified by PCR using *S. meliloti* GMI11495 genomic DNA as template and OCB1426-OCB1427 and OCB1426-OCB1428 as primers, respectively. For *ku4* complementation, PCR amplification was carried out with OCB1426-OCB1428 using CBT1811 (*S. meliloti* GMI11495 $\Delta ku3$) genomic DNA as template to produce a fragment containing *ku4* preceded by the promoter of the *ku3-ku4* operon. These fragments were cloned into pGEM-T before being subcloned into the pJQ200mp19 derivative pLS282-3 (see construction details below) as *XbaI-Bam*HI (*ku3* and *ku3-ku4* complementation) or *XbaI-NdeI* (*ku4* complementation) fragments.

I-SceI expression and restriction site integration

For *I-SceI* expression, a plasmid derived from pQF was used to clone the *I-SceI* coding sequence under the control of a cumate inducible promoter. pQF was first modified by inserting in between the *AseI-SpeI* restriction sites a dsDNA adapter obtained by annealing oligonucleotides OCB1481 and OCB1482, giving pLS256-1. Using OCB1483 and OCB1484, a second adapter was then cloned into *Bam*HI-*MfeI*-cut pLS256-1 giving pLS257-1. Then, an *NdeI-PstI* fragment containing the *I-SceI* coding sequence was purified from pDA*I-SceI* and subcloned into *AseI-NsiI*-cut pLS257-1, giving pLS273-25. Among the first *S. meliloti* clones carrying the *I-SceI* expressing plasmid but still having an intact *I-SceI* restriction site on the chromosome, several were streaked out on TY medium containing tetracycline and supplemented or not by 100 μ M cumate. All tested clones but one (containing pLS273-25*) were able to grow on cumate-containing medium suggesting that this latter was still able to cleave *I-SceI* restriction site on the chromosome when induced with cumate. The plasmid from this cumate sensitive clone was extracted and sequenced, revealing a stop codon (TAC>TAG), leading to the synthesis of a truncated protein lacking the last 31 amino acids, presumably less active than WT form of I-SceI meganuclease.

To introduce an *I-SceI* restriction site into the *S. meliloti* chromosome, the first half of the *rhaS* coding sequence was PCR amplified using OCB1531 and OCB1532, generating a fragment flanked by *SacI* and *Bam*HI restriction sites. The second half of *rhaS* was PCR amplified using OCB1533 and OCB1534 giving a fragment flanked by *Bam*HI and *SalI* restriction sites and bearing an *I-SceI* restriction site in the vicinity of *BamHI*. These two fragments were individually cloned into pGEM-T before being juxtaposed into *SacI-SalI*-cut pJQ200mp19 as *SacI-Bam*HI and *Bam*HI-*SalI* fragments, giving pLS272-1. Addition of a second *I-SceI* restriction site and a multiple cloning site between the two halves of *rhaS* was performed by inserting an adapter into *Bam*HI-cut pLS272-1. This adapter was obtained by annealing OCB1581 and OCB1582 and the orientation of adapter insertion was checked by PCR followed by *I-SceI* restriction. pLS282-3 contains an inverted orientation of the adapter, leading to two successive I-*SceI* sites followed by the multiple cloning site (*XhoI*, *XbaI*, *SmaI*, *XmaI*, *SpeI*, *MfeI*, *NdeI*).

Plasmid constructions for \beta-galactosidase assays. Plasmids were constructed from the *ku* and *ligD* upstream regions cloned into pGEM-T for gene deletions, and containing the gene promoters. Gene promoters were extracted from pGEM-T derivatives with *Bam*HI/*Nsi*I digestions and subcloned into pCZ962 in *Xba*I/*Nsi*I sites. Before the *Nsi*I digestion, *Bam*HI and *Xba*I DNA ends were blunted using the T4 DNA polymerase.

Plasmid-based NHEJ assay

To measure NHEJ efficiency, several pBBR1MCS-5 derivatives were constructed. The 5' region of *lacZ* was amplified by PCR using pCZ962 as template and OCB1317-OCB1318 as primers, and cloned into pGEM-T. The *SacI/AgeI lacZ* 5' region was subcloned into pBBR1MCS-5 giving pDP59. The *lacZ* 3' region was extracted from pCZ962 with *Aat*II and *AscI* digestions and subcloned into pDP59 in *Aat*II/*Mlu*I sites giving pDP62. The *sacB* gene was amplified by PCR using pJQ200mp19 as template and OCB1319-OCB1320 as primers, cloned into pGEM-T and subcloned in *Bam*HI, *SmaI* or *PstI* in pDP62 giving respectively pDP63, pDP64 and pDP65.

The Tet^R pBBR1MCS-5 derivative used for normalization of transformation efficiencies was constructed as follows. The *tetA tetR* region was amplified by PCR using pCZ962 as template and OCB1414-OCB1415 as primers, cloned into pGEM-T, and subcloned into pBBR1MCS-5 as a *NcoI/Bgl*II fragment (*NcoI/Bgl*II digestion removes the Gm^R gene from pBBR1MCS-5).

DNA integration assays

The DNA fragment conferring spectinomycin resistance was amplified from pHP45- Ω using OCB1535 and OCB1543, each one carrying a *Bst*XI restriction site contiguous to an external *Bam*HI restriction site. For each primer, the *Bst*XI restriction site was designed to generate a 3' protruding end compatible with the 3' protruding ends generated by *I-Sce*I. The PCR fragment was cloned into pGEM-T, and then subcloned into *Bam*HI-cut pBBR1MCS-5 giving pLS278-9.

SUPPLEMENTARY TABLES

Strain or plasmid	Description	Reference or				
<u> </u>		source				
Strains Sinouhizahium malilati						
GMI11495	wild-type strain (Sm ^R). Rm2011 background	(2, 3)				
CBT1809	GMI11495 Δkul (SMa0426)	This work				
CBT1810	GMI11495 $\Delta ku2$ (SMb20686)	This work				
CBT1823	GMI11495 Δ <i>ku34</i> (SMb21406-21407)	This work				
CBT1892	GMI11495 Δ <i>ku12</i>	This work				
CBT1893	GMI11495 ∆ <i>ku234</i>	This work				
CBT1960	GMI11495 Δ <i>ku123</i>	This work				
CBT1961	GMI11495 Δ <i>ku124</i>	This work				
CBT1899	GMI11495 Δ <i>ku1234</i>	(4)				
CBT1938	GMI11495 $\Delta recA$	(4)				
CBT1943	GMI11495 Δ <i>recA</i> Δ <i>ku1234</i>	(4)				
CBT2183	GMI11495 Δku2 rhaS::ku2	This work				
CBT2381	GMI11495 Δku123 rhaS::ku3	This work				
CBT2383	GMI11495 Δku124 rhaS::ku4	This work				
CBT2385	GMI11495 Δku1234 rhaS::ku34	This work				
CBT2382	GMI11495 Δku1234 rhaS::ku3	This work				
CBT2384	GMI11495 ∆ku1234 rhaS::ku4	This work				
CBT1813	GMI11495 Δ <i>ligD1</i> (SMa0414-0417)	This work				
CBT2162	GMI11495 Δ <i>ligD2</i> (SMb20685)	This work				
CBT1811	GMI11495 Δ <i>ku3</i> (SMb21406)	This work				
CBT1815	GMI11495 Δ <i>ligD3</i> (SMb21044)	This work				
CBT1816	GMI11495 Δ <i>ligD4</i> (SMc03959)	This work				
CBT2158	GMI11495 Δ <i>ligD134</i>	This work				
CBT2180	GMI11495 Δ <i>ligD234</i>	This work				
CBT2164	GMI11495 ∆ <i>ligD1234</i>	This work				
CBT2172	GMI11495 $\Delta ligD2 \ rhaS::ligD2$	This work				
CBT2000	GMI11495 $\Delta ku12 \Delta ligD2$	This work				
CBT1962	GMI11495 $\Delta ku12 \Delta ligD4$	This work				
CBT2005	GMI11495 $\Delta ku12 \Delta ligD24$	This work				
CBT2082	GMI11495 $\Delta ku12 \Delta ligD234$	This work				
CBT2120	GMI11495 Δ <i>ku12</i> Δ <i>ligD1234</i>	This work				
CBT2173	GMI11495 rhaS::I-SceI	This work				
CBT2175	GMI11495 ∆ku2 rhaS::I-SceI	This work				
CBT2177	GMI11495 ∆ku1234 rhaS::I-SceI	This work				
CBT2496	GMI11495 ∆ligD1234 rhaS::I-SceI	This work				
CBT907	GMI11495 rpoE2::hph	(3)				
CBT2003	GMI11495 ∆ku12 rpoE2::hph	This work				
Escherichia coli						
DH5a	F^{-} Φ80 <i>lac</i> ZΔM15 Δ(<i>lac</i> ZYA- <i>arg</i> F) U169 <i>rec</i> A1 <i>end</i> A1 <i>hsd</i> R17(r_{k}^{-} , m_{k}^{+}) <i>phoA sup</i> E44 <i>thi</i> -1 gyrA96 <i>rel</i> A1 λ^{-}	Invitrogen				

Ta	ble S1	: St	rains	and	plasmids used in this study.	
C .	•	1	• •	2		D C

Plasmids		
pGEM-T	Cloning vector (Amp ^R)	Promega
pJET1.2	Cloning vector (Amp ^R)	ThermoScientific
pJQ200mp19	Gene replacement vector (Gm ^R)	(5)
pBBR1MCS-5	Expression vector (Gm ^R)	(6)
pHP45-Ω	vector (Spec ^R)	(7)
pCZ962	Cloning vector (Tet ^R Amp ^R)	(8)
pDAI-SceI	<i>I-SceI</i> constitutive expression vector (Tet ^R)	(9)
pQF	Cumate inducible expression vector (Tet ^R)	(10)
pDP39	pJQ200mp19 derivative for ku1 deletion	this work
pDP40	pJQ200mp19 derivative for ku2 deletion	this work
pDP41	pJQ200mp19 derivative for ku3 deletion	this work
pDP42	pJQ200mp19 derivative for ku4 deletion	this work
pDP56	pJQ200mp19 derivative for ku34 deletion	this work
pDP43	pJQ200mp19 derivative for <i>ligD1</i> deletion	this work
pDP113	pJQ200mp19 derivative for <i>ligD2</i> deletion	this work
pDP45	pJQ200mp19 derivative for <i>ligD3</i> deletion	this work
pDP46	pJQ200mp19 derivative for <i>ligD4</i> deletion	this work
pDP55	pJQ200mp19 derivative for <i>ligD2ku2</i> deletion	this work
pDP52	pJQ200mp19 derivative for <i>recA</i> deletion	this work
pLS272-1	pJQ200mp19 derivative for I-SceI insertion at the rhaS locus	this work
pLS282-3	pJQ200mp19 derivative for 2 <i>I-SceI</i> insertion at the <i>rhaS</i> locus	this work
pDP115	pLS272-1 derivative for <i>ligD2</i> insertion at the <i>rhaS</i> locus	this work
pDP116	pLS272-1 derivative for ku2 insertion at the rhaS locus	this work
pLS289-9	pLS282-3 derivative for ku3 insertion at the rhaS locus	this work
pLS290-13	pLS282-3 derivative for ku4 insertion at the rhaS locus	this work
pLS294-8	pLS282-3 derivative for ku34 insertion at the rhaS locus	this work
pDP66	pCZ962 derivative for measure of ku34 promoter activity	this work
pDP67	pCZ962 derivative for measure of <i>ligD4</i> promoter activity	this work
pDP68	pCZ962 derivative for measure of ku1 promoter activity	this work
pDP69	pCZ962 derivative for measure of ku2 promoter activity	this work
pDP70	pCZ962 derivative for measure of <i>ligD2</i> promoter activity	this work
pDP92	pCZ962 derivative for measure of <i>ligD1</i> promoter activity	this work
pDP93	pCZ962 derivative for measure of <i>ligD3</i> promoter activity	this work
pDP58	pGEM-T derivative with <i>sacB</i>	this work
pDP62	pBBR1MCS-5 with complete <i>lacZ</i> gene	this work
pDP63	pDP62 with <i>sacB</i> inside <i>lacZ</i> in <i>Bam</i> HI site	this work
pDP64	pDP62 with sacB inside lacZ in SmaI site	this work
pDP65	pDP62 with <i>sacB</i> inside <i>lacZ</i> in <i>PstI</i> site	this work
pDP90	pBBR1MCS-5 derivative (Tet ^R)	this work
pLS257-1	pQF derivative without 3' and 5' Flag	this work
pLS273-25	pLS257-1 derivative for <i>I-SceI</i> constitutive expression	this work
pLS273-25*	pLS273-25 derivative for <i>I-SceI</i> cumate inducible expression	this work
pLS278-9	pBBR1MCS-5 derivative with Spec ^R cassette	this work

	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Name	Sequence $(5' \rightarrow 3')^a$	Target
Amplification of	of upstream and downstream regions of genes for de	eletions
OCB1284	GGATCCGGCCATGGCGACCTCCG	fw ku1 upstream
OCB1285	GAGCTCCGACGGCCTTCTGCTTGG	rev ku1 uptream
OCB1286	GTCGACGAAATCGGACCGTCCTTCC	fw ku1 downtream
OCB1287	GGATCC GCCTTGCGGAAATCAGTCG	rev kul downstream
OCB1272	GTCGACTAAAGACATCTGGCGGCAGG	fw ku2 upstream
OCB1273	GGATCCTGCCATGGTTTTCTCCCTACG	rev ku2 uptream
OCB1274	GGATCCGCCAAGAAGAAAGCCTGATGG	fw ku2 downtream
OCB1275	GAGCTCGAGGCGACGTTTCCGGAGC	rev ku2 downstream
OCB1260	GTCGACACGCGGTCAAGGCCACC	fw ku3 upstream
OCB1261	GGATCC TGCCATGGCTAACTCCCTG	rev ku3 uptream
OCB1262	GGATCCGCCAGCTAGGAAGGTGAACG	fw ku3 downstream
OCB1263	GAGCTCCGCACGGTTCTAGCATCACG	rev ku3 downstream
OCB1264	GTCGACAAGTCGCCGCAATCGCCC	fw ku4 upstream
OCB1265	GGATCC CGCCATCGTTCACCTTCC	rev ku4 uptream
OCB1266	GGATCCAAGTCTTAAGGAGGGATGGC	fw ku4 downtream
OCB1267	GAGCTCCGTTGTGGTCCAGTACTGC	rev ku4 downstream
OCB1292	GAGCTCCTAGAACGAGGAACCCGG	fw <i>ligD1</i> upstream
OCB1293	GGATCCCTGAGCCTCGCCGCTTGG	rev <i>ligD1</i> uptream
OCB1294	GGATCCGCTGCGTGAGCACCAGG	fw <i>ligD1</i> downtream
OCB1295	GTCGACGGCTCACTGCGCTCGGC	rev <i>ligD1</i> downstream
OCB1268	GAGCTCCTCGCCCATGCCGGAAACG	fw <i>ligD2</i> upstream
OCB1269	GGATCCCGTCGCCATGCGCCCAAGC	rev <i>ligD2</i> uptream
OCB1525	GGATCCCGCAAGCTGCTCGGCAAGC	fw <i>ligD2</i> downtream
OCB1526	GTCGACGTTTCCGCCTGCATCCCG	rev <i>ligD2</i> downstream
OCB1280	GGATCCGTCCACCCATCCAACCC	fw <i>ligD3</i> upstream
OCB1281	GAGCTCCAAAGACGGCAAGCTCACC	rev <i>ligD3</i> uptream
OCB1282	GTCGACGTGCGGAAACGCATGGAGG	fw <i>ligD3</i> downtream
OCB1283	GGATCCAGCTAATCATCTGCCTGGG	rev <i>ligD3</i> downstream
OCB1276	CTCTTGTCGACGACGATAGC	fw <i>ligD4</i> upstream
OCB1277	GGATCCGGCCATGGATCGTCAGCC	rev <i>ligD4</i> uptream
OCB1278	GGATCCGTCGAATGAGCCGGCCG	fw <i>ligD4</i> downtream
OCB1279	GAGCTCATCCTCCCGGAGAATGCC	rev <i>ligD4</i> downstream
OCB1302	GAGCTCCCGAGCATCTCGAAGAAGG	fw recA upstream
OCB1303	GGATCCGATATGTAATCGGGAACAACC	rev <i>recA</i> uptream
OCB1304	GGATCCCGATTTGTCCTCTACGAGC	fw recA downtream
OCB1305	GTCGACGCTTCCTCGAACCAAGCGC	rev recA downstream

 Table S2: Oligonucleotides used in this study.

Screening of genomic deletions or insertions

	•	•
fw screening of Δkul	GATGCTTGGCGATGATCCC	OCB1321
rev screening of Δkul	GCCACTGGCATGACGTCG	OCB1322
fw screening of $\Delta ku2$	CGCAAGCTGCTCGGCAAGC	OCB1323
rev screening of $\Delta ku2$	GAGCGAAGAGATCTTCGAGC	OCB1324

OCB1325	TTCTGACGAGCGTGATCGC
OCB1328	CTGCGGTCTGCTCCATGC
OCB1329	ACTGCGGAATATCAGTCACC
OCB1330	GCCTCGTCTTGTTGCGTCC
OCB1331	GTGCGCCGACGCGATTCC
OCB1332	GCACCTCGTTGGGATTGCG
OCB1333	CTGGAATGCGCTCTTCGC
OCB1334	CGGATGAAGTTGGCGATGC
OCB1335	CCATTCCGCTCGTCTGCC
OCB1336	GCTCGGGAAGAGGACAGG
OCB1339	TGACGAGCAGACGCTTGGC
OCB1340	CACACCGGCAGCTTCCGC
OCB1539	TCGGGCAGGAAGACGCAGC
OCB1547	CAAACACCCCAGCACGATCAG
OCB1579	ATAGACGGTGGCGACCAC
OCB1580	GGCAACATGATCATCAAGC

Amplification of genes for complementations

	e 1
OCB1502	AAGCTTACTCGCCTGATATTGCAGCC
OCB1503	TCTAGA ATGTCCGACCGGCAAGCG
OCB1444	TCTAGA CGCAAGGCTTATGAGAAGG
OCB1445	GGATCC GGCACTACGATCACATCTGC
OCB1426	TCTAGAACGCGGTCAAGGCCACC
OCB1427	GGATCC CGCCATCGTTCACCTTCC
OCB1428	GGATCC GCTTCCGCTATCGACCACC

Constructions for transformation assays

	2	
OCB1414	CCATGGTGAGATAGATCCGTCAATTCC	fw <i>tetA tetR</i> (pCZ962)
OCB1415	AGATCTGCTCTGCTGTAGTGAGTGG	rev tetA tetR (pCZ962)
OCB1319	CTGCAGGATCCCGGGGGATCGACTCTAGC	fw sacB (pJQ200mp19)
	TAGAGG	
OCB1320	CTGCAGGATCCCGGGGGATATCGACCCA	rec <i>sacB</i> (pJQ200mp19)
	AGTACCG	
OCB1317	GAGCTCCGTCGTTTTACAACGTCGTG	fw lacZ N-ter (pCZ962)
OCB1318	ACCGGTACGCGTGAGTGGCAACATGGAA	rev lacZ N-ter (pCZ962)
	ATCG	
OCB1531	GAGCTCAAGTCCTGAAATCATTGATGG	fw 5' rhaS (I-SceI addition)
OCB1532	GGATCC CCACGTATTCTGATTGGTCG	rev 5' rhaS (I-SceI addition)
OCB1533	GGATCC <u>TAGGGATAACAGGGTAAT</u> GGA	fw 3' rhaS (I-SceI addition)
	TCGCCGAAATGAAGAAGG	
OCB1534	GTCGACAGAAGATCTTCGCGAATTCC	rev 3' rhaS (I-SceI addition)
OCB1535	GGATCCCCAAATAATTGGAGCTTAGTAA	fw $spec^{R}BstXI$ DNA end (pHP45- Ω)
	AGCCCTCGC	
OCB1543	GGATCCCCAATTATTTGGGCCTGTTCGG	rev $spec^{R}$ BstXI DNA end (pHP45- Ω)
	TTCGTAAGC	
OCB1581	GATCCATATGCAATTGACTAGTCCCGGGT	fw linker mcs + I -SceI addition
	CTAGACTCGAGTAGGGATAACAGGGTAA	(pLS272-1 BamHI site)
	Т	-

fw screening of $\Delta ku34$ rev screening of $\Delta ku34$ fw screening of $\Delta ligD1$ rev screening of $\Delta ligD1$ fw screening of $\Delta ligD2$ rev screening of $\Delta ligD2$ fw screening of $\Delta ligD3$ rev screening of $\Delta ligD3$ fw screening of $\Delta ligD4$ rev screening of $\Delta ligD4$ fw screening of $\Delta recA$ rev screening of $\Delta recA$ fw screening of insertions in rhaS rev screening of insertions in rhaS fw sequencing of insertions in I-SceI rev sequencing of insertions in I-SceI

fw ku2 for ku2 complementation rev ku2 for ku2 complementation fw ligD2 for ligD2 complementation rev ligD2 for ligD2 complementation fw ku3 for ku3/ku4 complementations rev ku3 for ku3 complementation rev ku4 for ku4 complementation

OCB1582 GATCATTACCCTGTTATCCCTACTCGAGT CTAGACCCGGGACTAGTCAATTGCATATG (pLS272-1 BamHI site)

rev linker mcs + I-SceI addition

Screening of NHEJ repair infidelity

GGAAACAGCTATGACCAT M13 rev OCB1043 AAGGGGGATGTGCTGCAAGG OCB1178 CGTGCCTTCATCCGTTTCC

Universal primer pBBR1MCS-5 and derivatives (upstream multiple cloning site) pBBR1MCS-5 and derivatives (downstream multiple cloning site)

^arestriction sites are indicated in bold letters. *I-SceI* and *BstXI* sites are underlined.

Strains	Description
CBT1809	<i>ku1</i> deletion in GMI11495 (WT)
CBT1810	ku2 deletion in GMI11495 (WT)
CBT1813	<i>ligD1</i> deletion in GMI11495 (WT)
CBT1815	<i>ligD3</i> deletion in GMI11495 (WT)
CBT1816	<i>ligD4</i> deletion in GMI11495 (WT)
CBT1822	ligD2 and ku2 deletion in GMI11495 (WT)
CBT1823	ku34 deletion in GMI11495 (WT)
CBT1892	<i>ku1</i> deletion in CBT1810
CBT1893	<i>ku34</i> deletion in CBT1810
CBT1899	<i>ku1</i> deletion in CBT1893
CBT1938	recA deletion in GMI11495
CBT1943	recA deletion in CBT1899
CBT1946	<i>ku4</i> deletion in CBT1810
CBT1957	<i>ku3</i> deletion in CBT1810
CBT1960	<i>ku1</i> deletion in CBT1957
CBT1961	<i>ku1</i> deletion in CBT1946
CBT1962	<i>ligD4</i> deletion in CBT1892
CBT1997	ku2 deletion in CBT907 (rpoE2::hph)
CBT2000	<i>ku1</i> deletion in CBT1822
CBT2003	<i>ku1</i> deletion in CBT1997
CBT2005	<i>ligD4</i> deletion in CBT2000
CBT2082	<i>ligD3</i> deletion in CBT2005
CBT2119	<i>ligD1</i> deletion in CBT1815
CBT2120	<i>ligD1</i> deletion in CBT2082
CBT2158	<i>ligD4</i> deletion on CBT2119
CBT2162	ligD2 deletion in GMI11495 (WT)
CBT2163	<i>ligD2</i> deletion in CBT1816
CBT2164	<i>ligD2</i> deletion in CBT2158
CBT2180	<i>ligD3</i> deletion in CBT2163

 Table S3: Multiple mutant constructions.

Figure	DNA end	total n values	F value	DFn	DFd	P value
Fig.1A	5' end (BamHI)	38	40.52	7	30	< 0.0001
Fig.1A	Blunt end (SmaI)*	27	3.831	4	22	0.0165
Fig.1A	3' end (<i>Pst</i> I)	43	8.068	7	35	< 0.0001
Fig.1B	5' end (BamHI)	24	64.42	4	19	< 0.0001
Fig.1B	Blunt end (SmaI)*	19	1.437	2	16	0.2668
Fig.1B	3' end (<i>Pst</i> I)	26	5.24	4	21	0.0044
Fig.2A	5' end (BamHI)	40	71.58	6	33	< 0.0001
Fig.2A	Blunt end (SmaI)*	32	39.16	4	27	< 0.0001
Fig.2A	3' end (<i>Pst</i> I)	45	15.59	6	38	< 0.0001
Fig.2B	5' end (BamHI)	67	110.2	13	53	< 0.0001
Fig.2B	Blunt end (SmaI)*	45	29.07	8	36	< 0.0001
Fig.2B	3' end (<i>Pst</i> I)	70	35.21	13	56	< 0.0001
Fig.3A	5' end (<i>Bam</i> HI)	25	191.7	6	18	< 0.0001
Fig.3A	Blunt end (SmaI)*	16	11.29	4	11	0.0007
Fig.3A	3' end (<i>Pst</i> I)	25	50.2	6	18	< 0.0001
Fig.3B	5' end (BamHI)	25	37.55	5	19	< 0.0001
Fig.3B	Blunt end (SmaI)*	18	39.55	3	14	< 0.0001
Fig.3B	3' end (<i>Pst</i> I)	24	10.82	5	18	< 0.0001
Fig.4A	-	48	504.8	15	32	< 0.0001
Fig.4B	-	36	450.8	11	24	< 0.0001
Fig.4C	5' end (BamHI)	27	33.91	3	23	< 0.0001
Fig.4C	Blunt end (SmaI)*	n.a	n.a	n.a	n.a	n.a
Fig.5A	-	59	17.98	6	52	< 0.0001
Fig.5B	-	24	48.98	7	16	< 0.0001

 Table S4: One way Anova detailed analysis values.

* for blunt end repair, strains unable to give colony were excluded from the test (treshold values reported on related figures instead of plot data).

Table 33. Fluency of repair events.	Table S5:	Fidelity	of repair	events.
--	-----------	----------	-----------	---------

	Fidelity (%) ^a			Total number of colonies		
Condition & genotype	BamHI	SmaI	PstI	BamHI	SmaI	PstI
Log phase 28°C						
WT	94.0	78.5	98.5	6578	177	6894
$\Delta recA$	91.5	83.3	98.6	199	6	138
Δkul	86.4	83.3	98.8	1481	24	1212
$\Delta ku2$	100.0	NA	100.0	26	0	415
$\Delta ku34$	88.7	72.4	97.2	2308	29	1153
∆ <i>ku1234</i>	100.0	NA	100.0	20	0	380
$\Delta ku1234 \Delta recA$	100.0	NA	100.0	93	0	170
$\Delta ligD2$	100.0	NA	100.0	22	0	640
$\Delta ligD134$	92.0	88.2	98.4	1391	17	610
$\Delta ligD1234$	100.0	NA	100.0	20	0	524
Stationary phase						
WT	89.2	73.0	98.5	21341	1562	20063
Δkul	82.1	71.1	99.2	8244	646	11728
$\Delta ku2$	95.1	67.8	97.0	1051	270	908
$\Delta ku34$	83.2	58.8	89.3	7171	719	2430
∆ <i>ku234</i>	100.0	NA	98.8	55	0	2550
∆ku1234	100.0	NA	100.0	58	0	727
Log phase 40°C						
WT	92.4	79.5	99.0	36035	2475	55006
Δkul	71.8	72.4	94.9	2050	4176	3702
$\Delta ku2$	66.2	67.7	90.4	130	155	539
$\Delta ku12$	87.1	69.3	83.7	3035	940	2881
$\Delta ku34$	95.5	79.2	98.1	32078	1606	40628
∆ku1234	100.0	NA	99.5	8	0	367
$\Delta ligD1234$	100.0	NA	100.0	124	0	2050
$\Delta ku12 \Delta ligD2$	74.5	63.4	80.4	987	1033	1400
$\Delta ku12 \Delta ligD4$	98.2	36.8	98.4	739	19	624
Δku12 ΔligD24	100.0	0.0	99.9	19	56	950
Δku12 ΔligD234	100.0	NA	100.0	10	0	165
$\Delta ku12 \Delta ligD1234$	100.0	NA	100.0	14	0	396

 $^{\mathrm{a}}\textsc{Fidelity}$ was calculated as the ratio of blue (Lac^+) vs total colony numbers

	BamHI			PstI		
Condition & Genotype	Blue (Lac^+)	White (Lac ⁻)	P value	Blue (Lac ⁺)	White (Lac)	P value
Log phase 28°C						
WT $\Delta ku2 + \Delta ligD2 + \Delta ku1234 + \Delta ligD1234$	6185 88	393 0	0.0098	6788 1959	106 0	< 0.0001
Stationary phase						
WT Δ <i>ku1234</i>	19026 58	2315 0	0.0023	19769 727	294 0	<0.0001
Δ <i>ku</i> 2 Δ <i>ku</i> 234				881 2518	27 32	0.0014
Δku2 Δku1234				881 727	27 0	< 0.0001
Log phase 40°C						
WT $\Delta ku 1234 + \Delta lig D1234$	33305 132	2730 0	< 0.0001	54440 2414	566 3	< 0.0001
Δ <i>ku</i> 2 Δ <i>ku</i> 1234				487 365	52 3	< 0.0001
Δku12 Δku1234				2411 365	470 2	< 0.0001
$\Delta ku12 \Delta ligD2$ $\Delta ku12 \Delta ligD24 + \Delta ku12 \Delta ligD234 +$				1125 1510	275 1	<0.0001
$\Delta ku12 \Delta ligD1234$ $\Delta ku12 \Delta ligD4$ $\Delta ku12 \Delta ligD24 + \Delta ku12 \Delta ligD234 +$				614 1510	10 1	<0.0001
$\Delta ku12 \Delta ligD1234$						

Table S6: Fidelity of repair events: two-sided Fisher tests

SUPPLEMENTARY FIGURES

Figure S1. Genomic context of *ku* and *ligD* genes in *Sinorhizobium meliloti* **(A)** Organization of the *ku* and *ligD* genes on the *S. meliloti* replicons (the chromosome and the two megaplasmids pSymA and pSymB). The arrows represent ORFs and their directions of transcription. Coordinates of each *ligD* and *ku* ORF are noted according to *S. meliloti* GMI11495 strain annotation (<u>https://iant.toulouse.inra.fr/S.meliloti2011</u>). When available, transcription start site is indicated for *ku* and *ligD* genes (black arrow with coordinate). Predicted nuclease (blue), ligase (yellow) and polymerase (green) domains of LigD proteins are indicated on the corresponding genes. Adapted from (11), with modifications. (**B**) Putative RpoE2 binding motifs in *ku3* and *ligD4* promoters. Top: consensus sequence of promoter motifs recognized by RpoE2 (adapted from previous work, 12); bottom: promoter sequences of *ku3* and *ligD4* genes.

CGCCGGCGAGATCTTGATCACCTAGGGGGCCCGACGTCCTTAAGCTATA	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCCGGCGAGATCTTGATCACCTAGGGGGCCCGACGTCCTTAAGCTATA						
GCGGCCGCTCTAGAACTAGT GGATCCC CCCCGGGCTGCAGGAATTCGATAT		26					
GCGGCCGCTCTAGAACTAGTGGATCCCCCCCGGGCTGCAGGAATTCGATAT		1					
(28°C)		3					
	total	30					
GCGGCCGCTCTAGAACTAGT GGATCCC CCCCGGGCTGCAGGAATTCGATAT		28					
WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCCGGGCTGCAGGAATTCGATAT		3					
Stationary phase GCGGCCGCTCTAGAACTAGTGGATCGATCCCCCCGGGCTGCAGGAATTCGAT	AT	1					
(28°C) large deletion		1					
	total	33					
GCGGCCGCTCTAGAACTAGT GGATCCC CCCCGGGCTGCAGGAATTCGATAT		4					
WT GCGGCCGCTCTAGAACTAGT GGATCCCC CCCCGGGCTGCAGGAATTCGATAT		1					
Log phase GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT		1					
(40 C) large deletion	tatal	1					
	total	/					
		8					
		1					
		1					
		1					
(40°C) AGCTCCACC A27 GATCCCCCGGGCTGCAGGAATTCGATAT		1					
		1					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT							
GCGGCCGCTCTAGAACTAGTGGAT ∆35 CGATACCGTCGACCT large deletion	tatal	3					
GCGGCCGCTCTAGAACTAGTGGAT Δ35 CGATACCGTCGACCT large deletion	total	3 16					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCCGGCGGAGATCTTGATCACCTAGGGGGCCCGACGTCCTTAAGCTATA	total	3 16 number					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT	total	3 16 number 8					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCCGGCGGCGAGATCTGATCACCTAGGGGCCCGACGTCCTTAAGCTATA GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT	total	3 16 number 8 3					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCCGGCGGCGAGATCTGATCACCTAGGGGCCCGACGTCCTTAAGCTATA WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Log phase Iarge deletion	total	1 3 16 number 8 3 1					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCCGGCGGCGAGATCTTGATCACCTAGGGGCCCGACGTCCTTAAGCTATA WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion	total	1 3 16 number 8 3 1 12					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT	total	Image: 16 number 8 3 1 20					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT	total	Image: red with the second s					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCCGGCGGCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Log phase GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Stationary phase GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion	total	Image: 1 3 16 number 8 3 1 20 7 2					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion Iarge deletion	total total total total	16 number 8 3 1 20 7 2 29					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT UT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT UT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Stationary phase GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion	total total total total	16 number 8 3 1 20 7 2 29 2					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGCTGCAGGAATTCGATAT CCGGCCGCTCTAGAACTAGTGGATCCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCC A32 TACCGT	total total total total	1 3 16 number 8 3 1 12 20 7 2 20 7 2 29 2 1					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Iarge deletion WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT MT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCC A32 TACCGT GCGGCCGCCGCTCTAGAACTAGTGGATCCCCCCGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCC A32 TACCGT GCGGCCGCCGCGCGCGCGCGCGCGCAGGAATTCGATAT	total total total	16 number 8 3 12 20 7 29 2 1 2					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT Stationary phase (28°C) GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT GCGGCCGCCCCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT WT Log phase GCTTAGA A92 GCGCTGCAGGAATTCGATAT (40°C) large deletion large deletion I	total total total total	1 3 16 number 8 3 1 12 20 7 2 2 2 2 1 1 3 3 7					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT UT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCC A32 TACCGT WT GCGGCCGCTCTAGAACTAGTGGATCCCCC A32 TACCGT GATTAAG A92 GGGCTGCAGGAATTCGATAT GCCGCCCCCTCTACAACTAGTGGATCCCCCCCCCCCCCC	total total total total	1 3 16 number 8 3 1 20 7 29 2 1 3 7 2 1 3 7 4					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT UT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT UT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCCCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT GCGGCCGCCCCTAGAACTAGTGGATCCCCCCGGCCTGCAGGAATTCGATAT GCGGCCGCCCCCAGGAACTAGTGGATCCCCCCGGCCTGCAGGAATTCGATAT	total total total total	1 3 16 number 8 3 1 12 20 7 2 20 7 2 2 2 1 1 3 7 4 1					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT large deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT UT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCAGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT Ku12 GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT	total total total total	1 3 16 number 8 3 1 20 7 29 2 1 3 7 4 1 4 1					
Smal GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT Iarge deletion Iarge deletion Iarge deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT Ku12 GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGG	total total total total total	1 3 16 number 8 3 1 12 20 7 2 20 7 2 29 2 1 1 1 3 7 4 1 1 1					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT Iarge deletion Smal GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT CGCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCC A32 TACCGT GATTAAG A92 GGGCTGCAGGAATTCGATAT Ku12 GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT Ku12 GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT Ku12 GCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT GCCGGCCGCTCTAGAACTAGTGGATCCCCCGGCTGCAGGAATTCGATAT CCCAG A113 GCCGGCTGCAGGAATTCGATAT	total total total total total	1 3 16 number 8 3 1 12 20 7 2 20 7 2 29 2 1 1 1 3 7 4 1 1 1 1 1 1					
GCGGCCGCTCTAGAACTAGTGGAT A35 CGATACCGTCGACCT Iarge deletion Smal GCGGCCGCCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCTCTAGAACTAGTGGATCCCCC A32 TACCGT WT GCGGCCGCTCTAGAACTAGTGGATCCCCC A32 TACCGT WT GCGGCCGCTCTAGAACTAGTGGATCCCCCCGGCTGCAGGAATTCGATAT GCGGCCGCCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCCCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCCCCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCCCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCGGCCGCCCCCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT GCCGCCCCCCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT	total total total total total	1 3 16 number 8 3 1 12 20 7 2 20 7 2 2 2 2 1 1 1 3 7 4 1 1 1 1 1 1 1 2					

Pstl	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT CGCCGGCGAGATCTTGATCACCTAGGGGGGCCC GACGTC CTTAAGCTATA	number
WT Log phase	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	3
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT	1
	large deletion	3
(20 C)	total	7
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	2
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	3
\A/T	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	1
VV I	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	1
(28°C)	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAGGAATTCGATAT	1
(20 0)	GGGGTTTTA78 GAACTAGTGGATCCCCCGGGCTGCAGGAATTCGATAT	1
	large deletion	8
	total	17
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	2
\\/T	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	1
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	1
(40°C)	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTG ∆ 34 CCTCGAAAAAA	1
(40 0)	large deletion	2
	total	7
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	5
ku12	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	2
Log phase	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	1
(40°C)	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAGGAATTCGATAT CAA	1
	GCGGCCGCTCTAGAACTAGTGGATCCCCCGGG CTGCAG GAATTCGATAT	1
	total	10

Figure S2. Infidelity of NHEJ during linear plasmid repair in Sinorhizobium meliloti. Linear plasmid DNA generated by restriction digest with either BamHI (5' overhang), Smal (blunt) or Pstl (3' overhang) was used to transform WT (CBT707) and $\Delta ku12$ (CBT1892) competent cells prepared from exponential phase cultures at 28°C (blue) or after heat stress at 40°C (red) or from stationary phase cultures (green). This figure shows the DNA sequence of junctions in Laccolonies resulting from unfaithful repair events. Parental sequences are indicated as double-stranded DNA, whereas only the upper strand is shown for the sequenced DNA junctions. The restriction sites are in dark blue (with black triangles indicating the cut sites), the nucleotide additions in red, and the deletions in bold green. Large deletions are noted as numbers of deleted nucleotides (when known), or as large deletions when estimated to be > 100 nt by agarose gel electrophoresis of the plasmids. The number of events found is indicated in the right column. Note that insertions or deletions of 3 nucleotides were never found, presumably because they led to Lac+ colonies. Sequencing of plasmid DNA from 51 randomly chosen blue (Lac+) colonies obtained upon transformation of various strains with linear plasmids carrying all types of DNA ends revealed the WT sequence in every case, showing that the level of false positives resulting from addition or deletion of nucleotide triplet(s) is less than 2%.

I-Scel	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA TCTTATGCACCCCTAGG ATCCCTATTGTCCCATTA CCTAGCGGCTTTACT	number
	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	1
	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	3
wт	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	1
Log phase	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	2
(28°C)	AGAATACGTGGGGATCC TAGGGATAA A251 ATGGCCGGACACGTGAAG	1
	GCGCTCGTCCCGGCACTGAA Δ214 CAGGGTAAT GGATCGCCGAAATGA	1
	total	9
	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	1
	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	3
WT Log phase	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	3
(40°C)	AGAATACGTGGGGATCC TAGGGCATAACAGGGTAAT GGATCGCCGAAATGA	1
	AGAATACGTGGGGATCC TAGGGATA Δ343 CCTCATCAACGGTGCCGAA	1
	total	9
	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	2
	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	4
∆ku2	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	11
(40°C)	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	2
× ,	AGAATACGTGGGGATCC TAGGGATAACAGGGTAAT GGATCGCCGAAATGA	3
	total	22

Figure S3. Infidelity of NHEJ during repair of chromosomal double-strand breaks. Competent cells of the *S. meliloti* strains CBT2173 (WT) and CBT2175 ($\Delta ku2$) carrying a *I-Scel* site in the chromosome were prepared either at 28°C (blue) or 40°C (red) and were transformed with the *I-Scel*-expressing plasmid pLS273-25. This figure shows the DNA sequence of junctions in transformants carrying a *I-Scel* site resistant to restriction digest, which all result from unfaithful repair events. The parental sequence is shown as double-stranded DNA, whereas only the upper strand is shown for the sequenced DNA junctions. The *I-Scel* restriction site is in dark blue (with black triangles indicating the cut sites), the nucleotide insertions in red, and the deletions in bold green. Large deletions are noted as numbers of deleted nucleotides. The number of events found is indicated in the right column.

Strain and condition	plasmid sequence	mutation	plasmid position of mutation (nt)	<i>I-Sce</i> ICDS position of mutation (nt)	mutation effect
WT	TGAACACCAAGTCTTTCAC	C>A	3057	487	CAG (Q163) > AAG (K)
Log phase (28°C)	CCTGATCCCGTAGATGATGTAC	C>T	3219	649	CAG (Q217) > T AG (<mark>STOP</mark>)
	CAACAAAAACAAACAGATCATCTACAT	C>A	3151	581	CCG (P194) > C A G (Q)
∆ku2	GGGTCCGAACTCTAAACTGCTGAAAGAATACAA IS	ISRm1 (~1.3 kb) insertion	2632	62	Protein interrupted by IS after Y20
Log phase (28°C)	CAGGTATCGGTCTGATCCTGGG IS	ISRm1 (~1.3 kb) insertion	2692	122	Protein interrupted by IS after L40
	CCCAGACTTT-AAACACCAA	Deletion : C	2875	305	Frameshift after T101
	GAAGCAGGTATCG <mark>C</mark> TCTGATCCTGGG	G> C	2680	110	GGT (G37) > G C T (A)
∆ku1234	GGTCTGATCCTGG A TGATGCTTACATCC	G>T	2692	122	GGT (Q41) > GAT (D)
Log phase (28°C)	TACATGGACCACGTATGTCTG IS	ISRm1 (~1.3 kb) insertion	2783	213	Protein interrupted by IS after L71
	AAAAACAAACCGATCATCT IS	ISRm1 (~1.3 kb) insertion	3160	590	Protein interrupted by IS after I196
	ACATCCGTTCTCGTGAT IS	ISRm1 (~1.3 kb) insertion	2719	149	Protein interrupted by IS after D49
∆ligD1234	GATGCTTACATCACGTTCTCGTGA	Insertion : A	2706	136	Frameshift after I45
Log phase (28°C)	AACTGAACATCGAACAGT IS	ISRm1 (~1.3 kb) insertion	2664	94	Protein interrupted by IS after Q31
WT	TTCTATGTCTTAACTGATCTTCTAC	C>A	3179	609	TAC (Y203) > TA <mark>A</mark> (STOP)
Log phase (40°C)	GCAGGTATCGGTCTG A80 bp CATGGACCACGTATG	Deletion : 80 bp	2685	115	Loss of 26 a.a. and frameshift after L38
	GGTGGTAAA A17 bp CTCTACCAAC	Deletion : 17 bp	3009	439	Loss of 5 a.a. and frameshift after K146
∆ku2	AACTGAACATCGAA <mark>T</mark> AGTTCGAAGCAGG	C>T	2661	91	CAG (Q31) > TAG (STOP)
Log phase (40°C)	GACTTTCAAACAC Δ994 bp TTTCTCCAACGAGCCT	Deletion : 994 bp	2883	313	Loss of last 129 a.a. after H104
	GAAGAAGTA T AATACCTGG	G>T	3081	511	GAA (E170) > <mark>T</mark> AA (<mark>STOP</mark>)
	ACTGCGCCGGTTAA Δ124 bp GCTGATCGAACTGAA	Deletion : 124 bp	2514	-56	124 bp deleted just downstream the transcription start site
	GGGGCGCCCAGAATTTCAAACACCAAG	C>A	2872	302	ACI (1101) > AAI (N)
	TACGATCAG <mark>C</mark> GGGTACTGT		2796	226	GG(W76) > CGG(R)
∆ku1234	AAATGGGATTA <mark>G</mark> AACAAAAA	C>G	3017	447	TAC (Y149) > TA <mark>G</mark> (STOP)
Log phase (40°C)	GTACGATCAGTG T GTACTGTCCCC	G>T	2798	228	TGG (W76) > TG <mark>T</mark> (C)
	GATGCTTACATCACGTTCTCGTGA	Insertion : A	2706	136	Frameshift after 145
∆ligD1234	TTCCAACTGAACT T TTACGTAAAAAT	G>T	3124	554	TGT (C185) > T T T (F)
Log phase (40°C)	AAAAACAAACCGATCATCTAC IS	ISRm1 (~1.3 kb) insertion	3162	592	Protein interrupted by IS after Y197
	ACTGAACACC <mark>G</mark> AGTCTTTCACTTT	C>G	3057	487	CAG (Q163) > <mark>G</mark> AG(E)
	AAAACCTACTATATGCAGTTC	G>A	2734	164	TGT (C55) > T <mark>A</mark> T (Y)

Figure S4. Sequence analysis of *I-SceI*-expressing plasmids extracted from clones showing an intact *I-SceI* restriction site. Competent cells of the *S. meliloti* strains CBT2173 (WT), CBT2175 ($\Delta ku2$), CBT2177 ($\Delta ku1234$) and CBT2496 ($\Delta ligD1234$) carrying a *I-SceI* restriction site in the chromosome were prepared either at 28°C (blue) or 40°C (red) and were transformed with the *I-SceI*-expressing plasmid pLS273-25. Plasmid DNA was extracted from 29 colonies carrying an intact *I-SceI* site originating from the different strains and conditions, and the sequence of the I-SceI meganuclease encoding gene of these plasmids was determined. The figure shows the mutations found in red.

insertion in the expected orientation $spec^{R}$ insert						
	TGGGGATCCTAGGG ATAA TT ACCCCTAGGATCCC TATT AA	GGAGCTT CCTCGAA	// //	CCCAA ATAA CAGGGTAATGGATCGCCG GGGTT TATT GTCCCATTACCTAGCGGC		number
WT	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA CAGGGTAATGGATCGCCG		2
(Log phase 28°C)	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA CAGGGTAATGGATCGCCG		1
					total:	3
WT	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA CAGGGTAATGGATCGCCG		14
(Log phase 40°C)	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA CAGGGTAATGGATCGCCG		1
	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA Δ146 ATCAT		1
	TGGGGATCCTAGGG ATAA 🛆	262 GCC	//	CCCAA ATAA CAGGGTAATGGATCGCCG		1
					total:	17
∆ku2	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA CAGGGTAATGGATCGCCG		2
(Log phase 40°C)	TGGGGATCCTAGGG ATAA TT	GGAGCTT	//	CCCAA ATAA CAGGGTAATGGATCGCCG		1
					total:	3
insertion in the opposite orientatior	insertion in the opposite orientation spec ^R insert					
	TGGGGATCCTAGGG ATAA	TTGGG	\boldsymbol{H}	TCCAA TTAT CAGGGTAATGGATCGCCG		number
	ACCCCTAGGATCCC AA	TA AACCC	//	AGGTT TATT GTCCCATTACCTAGCGGC		
WT	TGGGGATCCTAGGG ATAATT	AT TTGGG	//	TCCAA TTATATAA CAGGGTAATGGATCGCCG		1
(Log phase 28°C)						
					total:	1
WT	TGGGGATCCTAGGG ATAATT	AT TTGGG	//	TCCAA TTATATAA CAGGGTAATGGATCGCCG		1
(Log phase 40°C)	TGGGGATCCTAGGG ATAATT	AT TTGGG	//	TCCAA TTATATAA CAGGGTAATGGATCGCCG		1
	TGGGGATCCTAGGGATAATT	AT TTGGG	11	TCCAA TTATATAA CAGGGTAATGGATCGCCG		1
	TGGGGATCCTAGGGATAATT	AT TTGGG	11	TCCAA TTATATAA CAGGGTAATGGATCGCCG		1
	TGGGGATCCTAGGGATAATT	ATTTGGG	//	TCT Δ252 ATAAC AGGGTAATGGATCGCCG		1
					total:	5

Figure S5. Sequence of junctions of insertion events at the *rhaS* locus carrying a *I-Sce*I restriction site. Competent cells of the *S. meliloti* strains CBT2173 (WT) and CBT2175 ($\Delta ku2$) carrying a *I-Sce*I restriction site in the chromosome and the *I-SceI*-expressing plasmid pLS273-25* under the control of a cumate inducible promoter were prepared either at 28°C (blue) or 40°C (red) in the presence of cumate. Cells were transformed with a linear DNA cassette carrying a Spec resistance gene flanked by *I-SceI*-compatible restriction sites generated with *BstX*I (dark blue). This figure shows the DNA sequence of junctions in transformants having inserted the Spec resistance cassette at the chromosomal *I-SceI* site.

Insertions in the expected (upper part) or opposite (lower part) orientation are shown. Parental sequences are indicated as double-stranded DNA, whereas only the upper strand is shown for the sequenced DNA junctions. The 3' compatible protruding ends are shown in bold and the non-compatible 3' ends of inverted insertion events are in bold underlined.

Deleted nucleotides are indicated in green and large deletions are noted as numbers of deleted nucleotides. The number of events found is indicated in the right column.

SUPPLEMENTARY REFERENCES

- 1. Ferri, L., Gori, A., Biondi, E.G., Mengoni, A. and Bazzicalupo, M. (2010) Plasmid electroporation of *Sinorhizobium* strains: The role of the restriction gene *hsdR* in type strain Rm1021. *Plasmid*, **63**, 128–135.
- Pobigaylo,N., Wetter,D., Szymczak,S., Schiller,U., Kurtz,S., Meyer,F., Nattkemper,T.W. and Becker,A. (2006) Construction of a large signature-tagged mini-Tn5 transposon library and its application to mutagenesis of *Sinorhizobium meliloti*. *Appl. Environ. Microbiol.*, 72, 4329–4337.
- Sallet,E., Roux,B., Sauviac,L., Jardinaud,M.-F., Carrère,S., Faraut,T., de Carvalho-Niebel,F., Gouzy,J., Gamas,P., Capela,D., *et al.* (2013) Next-generation annotation of prokaryotic genomes with EuGene-P: application to *Sinorhizobium meliloti* 2011. *DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes*, **20**, 339–354.
- 4. Dupuy, P., Gourion, B., Sauviac, L. and Bruand, C. (2017) DNA double-strand break repair is involved in desiccation resistance of *Sinorhizobium meliloti*, but is not essential for its symbiotic interaction with *Medicago truncatula*. *Microbiology*, **163**, 333–342.
- 5. Quandt, J. and Hynes, M.F. (1993) Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. *Gene*, **127**, 15–21.
- Kovach,M.E., Elzer,P.H., Hill,D.S., Robertson,G.T., Farris,M.A., Roop,R.M. and Peterson,K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. *Gene*, 166, 175–176.
- 7. Prentki,P. and Krisch,H.M. (1984) *In vitro* insertional mutagenesis with a selectable DNA fragment. *Gene*, **29**, 303–313.
- 8. Déjean,G., Blanvillain-Baufumé,S., Boulanger,A., Darrasse,A., Dugé de Bernonville,T., Girard,A.-L., Carrére,S., Jamet,S., Zischek,C., Lautier,M., *et al.* (2013) The xylan utilization system of the plant pathogen *Xanthomonas campestris pv campestris* controls epiphytic life and reveals common features with oligotrophic bacteria and animal gut symbionts. *New Phytol.*, **198**, 899–915.
- Flannagan,R.S., Linn,T. and Valvano,M.A. (2008) A system for the construction of targeted unmarked gene deletions in the genus *Burkholderia*. *Environ. Microbiol.*, 10, 1652–1660.
- 10. Kaczmarczyk, A., Vorholt, J.A. and Francez-Charlot, A. (2013) Cumate-inducible gene expression system for sphingomonads and other *Alphaproteobacteria*. *Appl. Environ*. *Microbiol.*, **79**, 6795–6802.
- Kobayashi,H., Simmons,L.A., Yuan,D.S., Broughton,W.J. and Walker,G.C. (2008) Multiple Ku orthologues mediate DNA non-homologous end-joining in the free-living form and during chronic infection of *Sinorhizobium meliloti*. *Mol. Microbiol.*, 67, 350–363.

 Sauviac,L., Philippe,H., Phok,K. and Bruand,C. (2007) An extracytoplasmic function sigma factor acts as a general stress response regulator in *Sinorhizobium meliloti*. J. *Bacteriol.*, 189, 4204–4216.