	PABP1(J)	PABP1(J) + peptide
Resolution range	23.95 - 2.03 (2.103 - 2.03)	36.08 - 1.89 (1.958 - 1.89)
Space group	P 65	P 65
Unit cell	82.97 82.97 46.08 90 90 120	83.33 83.33 58.16 90 90 120
Total reflections	235407 (23284)	181863 (14218)
Unique reflections	11824 (1175)	18507 (1829)
Multiplicity	19.9 (19.8)	9.8 (7.8)
Completeness (%)	99.85 (99.91)	99.87 (99.84)
Mean I/sigma(I)	14.98 (1.67)	18.54 (1.32)
Wilson B-factor	39.23	42.68
R-merge	0.128 (1.821)	0.057 (1.5)
R-meas	0.1315 (1.868)	0.06019 (1.607)
R-pim	0.02967 (0.4187)	0.01918 (0.5737)
CC1/2	0.999 (0.683)	0.999 (0.586)
CC*	1 (0.901)	1 (0.86)

Statistics for the highest-resolution shell are shown in parentheses.

- 1. Kabsch W (2010) XDS. Acta Crystallogr D 66:125-132.
- 2. Winter G (2010) xia2: an expert system for macromolecular crystallography data reduction. *Journal of Appl Crystallogr* 43:186-190.
- 3. Collaborative Computational Project Number 4 (1994) The CCP4 suite: programs for protein crystallography. *Acta Crystallogr D* 50(Pt 5):760-763.
- 4. McCoy AJ, et al. (2007) Phaser crystallographic software. J Appl Crystallogr 40:658-674.
- 5. Adams PD, *et al.* (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr D* 66(Pt 2):213-221.
- 6. Terwilliger TC, et al. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr 64(Pt 1):61-69.
- 7. Emsley P, Lohkamp B, Scott WG, & Cowtan K (2010) Features and development of Coot. *Acta Crystallogr D Biol Crystallogr* 66(Pt 4):486-501.
- 8. Winn MD, Isupov MN, & Murshudov GN (2001) Use of TLS parameters to model anisotropic displacements in macromolecular refinement. *Acta Crystallogr D* 57(Pt 1):122-133.

Table S2. X-ray refinement statistics

	PAPB1(J)	PAPB1(J) + peptide					
Reflections used in refinement	11819 (1175)	18505 (1831)					
Reflections used for R-free	632 (56)	920 (79)					
R-work	0.2015 (0.2819)	0.1956 (0.3268)					
R-free	0.2251 (0.2644)	0.2307 (0.3492)					
CC(work)	0.972 (0.789)	0.961 (0.793)					
CC(free)	0.934 (0.829)	0.969 (0.746)					
No. of solvent	72	50					
Protein residues	159	155					
Solvent	72	50					
RMS(bonds)	0.002	0.007					
RMS(angles)	0.43	0.86					
Ramachandran favored (%)	99.35	98.83					
Rotamer outliers (%)	0.00	1.25					
Clashscore	3.11	1.03					
Average B-factor	50.12	55.67					
PAPB1(J)	49.93	54.49					
Peptide		63.11					
solvent	53.43	56.06					
Number of TLS groups	2	4					

Statistics for the highest-resolution shell are shown in parentheses.

Table S3. K_D estimates.

Technique	Proteins	K _{D1} / K _{D2}	Figure
SPR beterogeneous model	elF4E4(iv) + PABP1(J)	0.24 x 10 ⁻⁷ M / 6.3 x 10 ⁻⁷ M ⁺	5B
SPR homogeneous model	elF4E4(iv) + PABP1(J)	1.6 x 10 ⁻⁷ M	5B
		KD	
Microscale thermophoresis	elF4E4(iv) + PABP1(J)	0.22 x 10 ⁻⁷ M*	5A
	elF4E4(iv) + PABP1(J)F525A	5.5 x 10 ⁻⁷ M*	-
		K _D	
Fluorescence anisotropy	elF4G3 + elF4E4(v)::PABP1(J)	3.4 x 10 ⁻⁷ M	5C

*Average of three independent titrations.

⁺The heterogeneous model provided the best fits to the SPR data (Supplementary Figure 7) and these values are accordingly taken to provide the most reliable indication of the affinity between eIF4E4(iv) and PABP1(J). K_{D1} and K_{D2} are the dissociation constants corresponding to the two states of eIF4E4(iv) in the model. The average of these two values (K_{av}) is 3.3 x 10⁻⁷M.

Fig. S1. Synthesized peptides.

A: eIF4E4 PAM2 motif peptide (Fig. 3, Fig. S4A)

Sequence: Ac-HHMNPNATEFMPGR-NH₂

Calculated mass: 1678.7357 ; Observed mass: 1679.7497

HRMS deconvoluted spectrum

Analytical HPLC chromatogram

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	3.38	n.a.	39.870	1.959	4.93	n.a.	BM *
2	3.53	n.a.	738.756	37.810	95.07	n.a.	MB*
Total:			778.626	39.769	100.00	0.000	

Fig. S1. Synthesized peptides.

B: eIF4G3 dorsal face (eIF4E4-binding) peptide (Fig. S4B)

Sequence: Ac-FTVEQIRSVRNNYLEPPYPGFSLDEVVR-NH2

Calculated mass: 3364.7094 ; Observed mass: 3364.7217

HRMS deconvoluted spectrum

Analytical HPLC chromatogram

No.	Ret.Time	Peak Name	Height	Area	Rel.Area	Amount	Туре
	min		mAU	mAU*min	%		
1	3.73	n.a.	1496.757	78.672	100.00	n.a.	BMB
Total:			1496.757	78.672	100.00	0.000	

Fig. S1. Synthesised peptidesC: Commercially sourced peptides used in mutational analysis of the *Leishmania* eIF4E4-PAB1P binding interface.

eIF4E4 ₁₃₈₋₁₅₁ WT	HH M NP N AT EFM PGR
eIF4E4 ₁₃₈₋₁₅₁ M140A	HH A NP N AT EFM PGR
eIF4E4 ₁₃₈₋₁₅₁ N143A	HH M NP A AT EF MPGR
eIF4E4 ₁₃₈₋₁₅₁ E146A	HH M NP N AT AF MPGR
eIF4E4 ₁₃₈₋₁₅₁ F147A	HH M NP N AT EA MPGR
eIF4E4 ₁₃₈₋₁₅₁ M148A	HH M NP N AT EFA PGR
$eIF4E4_{138-151}$ NEFM $\rightarrow A$	HH M NP A AT AAA PGR

							Created with SnapGene"
T7 promoter RBS	12His-	2000 ¹ 1 on Carlos AmpR T7 terminator AmpR promoter	4000 ori	bom	rop	6000 ¹	lacI promoter
		pET22b	12His LeishPABP 7154 bp	1			
	IF4E4 doma	iins:					
		pET22b Leish eIF4E4-sector-4-12His					
		pET22b Leish eIF4E4-12His					
	Pabp1 dom	ains:					
		pET22b 12His-LeishPabp1 full length		pET22b 12	2His-LeishPabp1	-domain I	
		pET22b 12His-LeishPabp1-domain A		pET22b 12	2His-LeishPabp1	-domain J	
		pET22b 12His-LeishPabp1-domain B		pET22b 12	2His-LeishPabp1	-domain K	
		pET22b 12His-LeishPabp1-domain C		pET22b 12	2His-LeishPabp1	-domain M	
		pET22b 12His-LeishPabp1-domain D		pET22b 12	2His-LeishPabp1	-domain N	
		pET22b 12His-LeishPabp1-domain E		pET22b 12	2His-LeishPabp1	-domain O	
		pET22b 12His-LeishPabp1-domain F		pET22b 12	2His-LeishPabp1	dA	
		pET22b 12His-LeishPabp1-domain G		pET22b 12	2His-LeishPabp1	dC	
		pET22b 12His-LeishPabp1-domain H		pET22b 12	2His-LeishPabp1	LdJ	

eIF4G3 expression:

pET22b Leish eIF4G3-12His full length

						W Created with Shape	GING
12H (0 17464-se 77 promoter RBS lac operator RBS	2000 ctor 5 f1 ori T7 terminator	AmpR AmpR pror	ori Vocol	rop	lac	60001	••
		pETduet 12-His-Pabp1- 64	-domain-J IF4E4-sector 5				
	Co-expres	sion of Pabp1 and e	IF4E4 domains:				
		pETduet 12His-Pa	bp1-domain-J eIF	4E4 ful length			
		pETduet 12His-Pa	bp1-domain-J eIF	4E4-sector 5			
		pETduet Pabp1-do	omain-J eIF4E4-se	ector 5			
		pETduet Pabp1-do	omain-G eIF4E4-s	ector 5			
						Created with SnapG	iene™
T7 promoter lac operator RBS	1000 Leish IF4G3-10his	2000 T7 terminator	SmR C AmpR promoter	4000 CloDF13 ori		soool •••	• oter
		pCDF-1b 53	IF4G3-HIS 67 bp				
	co-expres (use	sion of eIF4G3 or Pa ed together with pE ⁷	bp1 Iduet or pET22b v	vectors):			
		pCDF-1b Leish e	elF4G3-12His				
		pCDF-1b Leish e	elF4G3				
		pCDF-1b Leish F	Pabp1				

Fig. S2 Scheme of the co-expression plasmids used in *E.coli* as the starting point for generating *Leishmania* protein complexes.

Fig. S3 Microscale thermophoresis screening of PABP1 protein sections for binding to eIF4E4(iv). Multiple examples of the titrations underpinning the data summarised in Fig. 1*C* are shown, collectively covering the complete sequence of PABP1. A control experiment, in which bovine serum albumin (BSA) was substituted for PABP1, is also shown. Aggregation of the PABP1(Δ C) protein at higher concentrations caused a distortion of the titration curve.

Fig. S4 (*A*) Triple resonance (CBCANNH, CBCA(CO)NNH) assignments were performed and titrations of ¹³C-¹⁵N- PABP1(J) vs unlabeled eIF4E4 peptide (sequence shown) were used to generate assigned ¹H-¹⁵N- HSQC spectra (free ¹³C-¹⁵N- PABP1(J) in blue; bound to eIF4E4 peptide in red).

(*B*) 1 H- 15 N- HSQC spectra of the heterodimeric complex formed by 15 N-, 13 C- labeled PABP1(J) and 15 N, 13 C- labeled eIF4E4(v) [in blue: just this heterodimer; in red: upon addition of a synthetic 28mer peptide (amino acid sequence given in red) that includes the eIF4G3 motif that binds the eIF4E4 dorsal face].

Fig. S5 Hydrophobicity plots for the complex between PABP1(J) and the eIF4E4 PAM2 peptide. Three different orientations (**A-C**) of the complex (compare Fig. 3C) are shown. Panel **D** shows, on the left, the backbone structure of the eIF4E4 peptide (presented separately) and, on the right, the PABC sequence from PABP1. The intensity of the red colour corresponds to the degree of hydrophobicity calculated for the respective regions of the molecular structures. Panel **E** is a LIGPLOT (*see SI Text*) representation of the respective atomic interactions between the two protein molecules.

Α

2667L.major eIF4E3:AVAKPPSTQPATKLSAAAEPFVPGGPKQMSATSTHVDPKATTEL.major eIF4E4:PTRFSPATVPRHHMNPNATEFMPGRRNGPDGGLEA-LPTSTAD127168

Fig. S6

(A) Overall structure (and motif) comparisons for eIF4G and PABP1 proteins from *H.sapiens* and *Leishmania*. These highlight the absence of recognised (canonical) PABP1-binding motif residues in *L.major* eIF4G3 and of key residues in *L.major* PABP1 that are known to be important for eIF4G binding in *H.sapiens* PABP1.

(**B**) The PAM2 sequence in the N-terminal extension of *L.major* eIF4E4 is only partially shared by the N-terminal region of eIF4E3. Identical amino acids are highlighted in red; non-identical residues belonging to the same amino-acid-class are highlighted in blue.

С

```
PABP1:LPPITPQELESMSPQEQRAALGDRLFLKVYEIAPELAPKITGMFLEMKPKPABP2:QGQNLAAVLANLNPEQQKNVLGERLYSYIVRSHPSVAAKITGMLLEMDNAPABP3:QDGVDMNYLSTLSPEQQKNYLGELLYSRILPLESSNAAKITGMLLEMSRE
```

PABP1: EAYELLNDQKRLEERVTEALCVLKAHQTA
PABP2: EILNMLDSPTMLDSKIAEAQDVLNRHMSV
PABP3: EIFEILADHFALLSKIQEANAVLQQHTGN

D

611 464	
L.major	PAVAARSVPTRFSPATVPRHH MNPNATEFMPGR RNG
L.panamensis	MSPNATEFVPGRSNG
L.guyanensis	PAVAARSVPTRFSPATVPR-HMSPNATEFVPGRSNG
L.braziliensis	PAVAARSVPTRFSPATVPR-H MNPNATEFVPGR SNG
L.mexicana	MNPNATEFMPGRRNG
L.infantum	MNPNATEFMPGRRNG
T.brucei	PVSTHVIPTRMSPVHAPSAAFHMSPNAVSYVPRGA
T.theileri	PTAALRFPTRMSPMHAPFPPVSST MNP DAKD FIP HLS
T.cruzi Brener	PTTALRLPTRMSPMHAPFPSVSIS MNPNAT DFVPHLT-

PABP1

~~~~/~~/

| L. | major        | KITGMFLEMKPKEAYELLNDQKRLEERVTEALCVLKAHQTA |
|----|--------------|-------------------------------------------|
| L. | panamensis   | KITGMFLEMNPKEAYELLNDQKRLEERVTEALCVLKAHQTV |
| L. | guyanensis   | KITGMFLEMNPKEAYELLNDQKRLEERVTEALCVLKAHQTA |
| L. | braziliensis | KITGMFLEMNPKEAYELLNDQKRLEERVTEALCVLKAHQTV |
| L. | mexicana     | KITGMFLEMKPKEAYELLNDQKRLEDRVTEALCVLKAHQTT |
| L. | infantum     | KITGMFLEMKPKEAYELLNDQKRLEERVTEALCVLKAHQTA |
|    |              |                                           |
| T. | brucei       | KITGMFLEMNPKEALALLSNPKLMHEKVTEALCVLKVHASS |
| T. | theileri     | KITGMFLEMDLKEAFTLLYNQKLLHEKVTEALCVLKAHGTT |
| T. | cruzi Brener | KITGMFLEMDLKEAFTLLTNQRLLQEKVIEALCVLKAHEST |

### Fig. S6

(**C**) Comparison of the PABC domains of *L.major* PABP1, 2 and 3. Identical residues are in bold, amino acids belonging to the same category are in blue.

(D) Comparison of eIF4E4 (PAM2) and PABP1 PABC sequences of other trypanosomatid species. It is evident that the PABP1 sequences across the respective species are much more similar to each other than are the sequences of PABP1, 2 and 3 within one species, in this case *L.major*.



### Fig. S7

Curve fitting for the SPR data shown in Figure 5B. Here we have applied a heterogeneous ligand model, which is recommended as an approximation for binding to an amine-coupled protein, since the latter can be immobilized in different orientations. This model assumes that the ligand [here PABP1(J)] binds to two alternative states of the immobilized protein [here eIF4E4(iv)], each with its own association and dissociation rates. The fitting lines (**A**) are shown in black; the residuals (**B**) are small, indicating that this model generates good fits. The Tables present the parameters used to achieve the fits. We also compared a simpler, single binding state model, which generated less convincing fits (data not shown).

# С

| Report | Residuals Parameter | 3          |           |          |            |           |          |            |            |          |          |               |            |         |                                     |         |
|--------|---------------------|------------|-----------|----------|------------|-----------|----------|------------|------------|----------|----------|---------------|------------|---------|-------------------------------------|---------|
| Curve  |                     | ka1 (1/Ms) | kd1 (1/s) | KD1 (M)  | ka2 (1/Ms) | kd2 (1/s) | KD2 (M)  | Rmax1 (RU) | Rmax2 (RU) | Conc (M) | tc       | Flow (ul/min) | kt (RU/Ms) | RI (RU) | Chi <sup>2</sup> (RU <sup>2</sup> ) | U-value |
|        |                     | 1929       | 5.748E-4  | 2.980E-7 | 3.221E+4   | 0.01853   | 5.753E-7 |            |            |          | 4.664E+6 |               |            |         | 33.7                                | N/A     |
| Cycle: | 77 0.0015 mg/ml     |            |           |          |            |           |          | 5978       | 1029       | 2.329E-8 |          | 10.00         | 1.005E+7   | -18.24  |                                     |         |
| Cycle: | 78 0.0015 mg/ml     |            |           |          |            |           |          | 441.3      | 2818       | 2.329E-8 |          | 10.00         | 1.005E+7   | -16.27  |                                     |         |
| Cycle: | 79 0.003 mg/ml      |            |           |          |            |           |          | 1291       | 5747       | 4.658E-8 |          | 10.00         | 1.005E+7   | -7.436  |                                     |         |
| Cycle: | 80 0.006 mg/ml      |            |           |          |            |           |          | 643.2      | 1866       | 9.317E-8 |          | 10.00         | 1.005E+7   | -30.22  |                                     |         |
| Cycle: | 81 0.0121 mg/ml     |            |           |          |            |           |          | 1073       | 1075       | 1.879E-7 |          | 10.00         | 1.005E+7   | -30.78  |                                     |         |
| Cycle: | 82 0.0242 mg/ml     |            |           |          |            |           |          | 986.2      | 657.9      | 3.758E-7 |          | 10.00         | 1.005E+7   | -30.37  |                                     |         |
| Cycle: | 83 0.0484 mg/ml     |            |           |          |            |           |          | 824.8      | 465.3      | 7.516E-7 |          | 10.00         | 1.005E+7   | -18.06  |                                     |         |
| Cycle: | 84 0.0968 mg/ml     |            |           |          |            |           |          | 681.2      | 422.4      | 1.503E-6 |          | 10.00         | 1.005E+7   | -18.64  |                                     |         |

| Report Residuals Parameters |            |         |           |         |            |         |           |         |            |           |            |           |           |          |        |            |         |        |
|-----------------------------|------------|---------|-----------|---------|------------|---------|-----------|---------|------------|-----------|------------|-----------|-----------|----------|--------|------------|---------|--------|
| Curve                       | ka1 (1/Ms) | SE(ka1) | kd1 (1/s) | SE(kd1) | ka2 (1/Ms) | SE(ka2) | kd2 (1/s) | SE(kd2) | Rmax1 (RU) | SE(Rmax1) | Rmax2 (RU) | SE(Rmax2) | Conc (M)  | tc       | SE(tc) | f (ul/min) | RI (RU) | SE(RI) |
|                             | 1929       | 7.2     | 5.748E-4  | 2.1E-6  | 3.221E+4   | 2.6E+2  | 0.01853   | 1.2E-4  |            |           |            |           |           | 4.664E+6 | 1.4E+4 |            |         |        |
| Cycle: 77 0.0015 mg/ml      |            |         |           |         |            |         |           |         | 5978       | 37        | 1029       | 27        | 2.329E-08 |          |        | 10         | -18.2   | 0.14   |
| Cycle: 78 0.0015 mg/ml      |            |         |           |         |            |         |           |         | 441.3      | 35        | 2818       | 21        | 2.329E-08 |          |        | 10         | -16.3   | 0.10   |
| Cycle: 79 0.003 mg/ml       |            |         |           |         |            |         |           |         | 1291       | 96        | 5747       | 60        | 4.658E-08 |          |        | 10         | -7.4    | 0.13   |
| Cycle: 80 0.006 mg/ml       |            |         |           |         |            |         |           |         | 643.2      | 7.3       | 1866       | 6.9       | 9.317E-08 |          |        | 10         | -30.2   | 0.15   |
| Cycle: 81 0.0121 mg/ml      |            |         |           |         |            |         |           |         | 1073       | 3.9       | 1075       | 3.4       | 1.879E-07 |          |        | 10         | -30.8   | 0.16   |
| Cycle: 82 0.0242 mg/ml      |            |         |           |         |            |         |           |         | 986.2      | 2.8       | 657.9      | 1.7       | 3.758E-07 |          |        | 10         | -30.4   | 0.20   |
| Cycle: 83 0.0484 mg/ml      |            |         |           |         |            |         |           |         | 824.8      | 1.8       | 465.3      | 1.1       | 7.516E-07 |          |        | 10         | -18.1   | 0.26   |
| Cycle: 84 0.0968 mg/ml      |            |         |           |         |            |         |           |         | 681.2      | 1.0       | 422.4      | 0.84      | 1.503E-06 |          |        | 10         | -18.6   | 0.35   |

ka1= association rate constant

kd1= dissociation rate constant

KD1= equilibrium dissociation constant

ka2= association rate constant

kd2= dissociation rate constant

KD2= equilibrium dissociation constant

Rmax1= Maximum response

Rmax2= Maximum response

Con= Concentration

kt= Mass transfer constant

RI= Refractive Index

RU= Resonance units

Chi2=Chi-squared

U-value= Uniqueness correlation parameter

SE(ka1)= Standard error of the association rate constant

SE(kd1)= Standard error of the dissociation rate constant

SE(ka2)= Standard error of the association rate constant

SE(kd2)= Standard error Standard error of the dissociation rate constant

SE(Rmax1)= Standard error of the maximum response

SE(Rmax2)= Standard error of the maximum response

tc= flow rate-independent component

SE(tc)= Standard error of the flow rate-independent component

SE(RI)= Standard error of the refractive index

### Fig. S7

(**C**) Parameters used in the fitting of the heterogeneous binding model to the SPR data (see panel A).



**Fig. S8.** eIF4G3 binds to eIF4E4 via dorsal-face motifs. (*A*) Microscale thermophoresis reveals binding between Alexa-647-labelled-eIF4G3 and eIF4E4(v):PABP1(J) but not between Alexa-647-labelled-eIF4G3 and PABP1(J) alone. The binding of PABP1(J) hinders aggregation of eIF4E4(v). We observed evidence of ligand-dependent quenching of the fluor attached to eIF4G3, which means that an accurate K<sub>D</sub> value cannot be calculated directly from these data. (*B*) Pull-down experiments performed with lysates from *E.coli* expression strains producing eIF4E4-His<sub>12</sub> + PABP1, PABP1-His<sub>12</sub> alone, and eIF4G3-His<sub>12</sub> + PABP1 (Fig. S4). In each case, Lysates were incubated with a tetradentate chelating agarose resin charged with divalent cobalt lons and, after column washing, the His<sub>12</sub>-tagged proteins were eluted using imidazole. The eluates were subjected to Western blotting using rabbit anti-*L.major*-PABP1 serum. We could detect no co-eluted PABP1 when eIF4G3 was His<sub>12</sub>-tagged. There was a low level of cross-recognition of *E.coli* proteins by the antibody (purple and blue dots).