Supplementary Materials

1. RT-PCR analysis of expression of K2P channels in MSCs

Target gene	5'-sequence-3' (Forward/Reversed)	Product size (bp)
KCNK1 (TWIK1)	GATTGGGATCACGTGTTACC	334
	TTAAGCCTCTTCCTTGCACC	
KCNK2 (TREK1)	GTGGAAGATACGTTTATTAAGTGG	361
	CTCTGAACTCTCCCACCTC	
KCNK3 (TASK1)	TCATCACCACCATCGGCTAC	305
	GTAGTAGGCCTGGAAGAAG	
KCNK4 (TRAAK)	AAGCCATCTTCTTGAAGTGG	319
	ACTACTCGCAGCCAGTTC	
KCNK5 (TASK2)	ACCGTCATTACCACCATTGG	377
	TAG TTG GCG CTG GGG TTC	
KCNK6 (TWIK2)	TGTCTTGGCTGAGCATGCGT	275
	GCCCAGGAAGAGGTAGACTG	
KCNK7	CATCCTCACCACCAGG	430, 530,
	GTCCTAGAAGCAAGTAACCAAG	630, or 730
		depending
		on splice
		variant
KCNK9	ACGGTCATCACCACCATAGG	293
	AAGCTCCACTCCTCACAC	
KCNK10 (TREK2)	AACTGTCATTACGACCATAGGG	528
	GCCTTGATTTCACCCACCTC	
KCNK12	GGTGTCAACCATAGGTTTCG	279
	ATGAGCAGCACGTGGTAC	
KCNK13	TCATCGTGCTCTACCTGC	274
	GTTGTCATCCCAAACCCTATG	
KCNK15 (TASK5)	CGTCATCACTACCATCGAGTAC	211
	CAGGTTCTCCGTGGACAC	
KCNK16	ACAGTCGTCACTACCATAGG	276
	CTCCACATGGCTGAAGAC	
KCNK17	ACTCGCTGATCCGGGATG	264
	CCCAGTGGTTTACTCCCTG	
KCNK18	TTCAGCACCGTGGGCTATG	320
	CGTGAAGGACATGTGCCAAG	
CD73	AAGACATGACTCTGGTGACC	266
	CTGTCACAAAGCCAGGTCC	
CD90	GTCACAGTGCTCAGAGAC	344
	TACAAAAAGACAGCCAGAGG	
CD105	AGCAGAGCTTTGTGCAGGTC	317
	GCTGATGATGTTCAAGCGCATG	

Table 1S. Sequences of gene-specific primers

2. Effects of arachidonic acid on cytosolic Ca^{2+} in MSCs.

In a number of experiments, the responsiveness of MSCs to AA and ATP, an effective Ca^{2+} mobilizer, was assayed with Ca^{2+} imaging. As illustrated in Fig.1S, 10 μ M AA affected cytosolic Ca^{2+} inessentially in all cells assayed (n=76), while purinergic MSCs (9 cells) responded to 3 μ M ATP with marked Ca^{2+} transients sufficient to activate Ca^{2+} -gated K⁺ channels (Tarasov et al. Pflugers Arch. 2017; 469: 349-362).

Figure 1S. Representative monitoring of intracellular Ca^{2+} in MSC stimulated by 3 μ M ATP and 10 μ M AA.

Method. For Ca^{2+} imaging, cells were plated onto a photometric chamber of nearly 150 µl volume. This chamber was a disposable coverslip (Menzel-Glaser) with an attached ellipsoidal resin wall. The chamber bottom was coated with Cell-Tak (BD Biosciences), enabling strong cell adhesion. Attached cells were then loaded with the Ca²⁺ indicator Fluo-4 for 20 min at room temperature (23–25°C) by adding Fluo-4AM (4 µM) or Fluo-4AM (4 µM) + NP-EGTA-AM (4 µM) and Pluronic (0.02%) (all from Molecular Probes) to a bath solution. Loaded cells were rinsed with the bath solution three times and kept at 4°C for 1 hour prior to recordings. Generally, the incubation of MSCs at low temperature stabilized intracellular Ca²⁺ and decreased a fraction of spontaneously oscillating cells.

Cells loaded with Fluo-4 were imaged using a fluorescent microscope Axiovert 135 equipped with an objective Plan-Neofluar 20×/0.75 (Zeiss) and ECCD camera LucaR (Andor Technology). Fluo-4 fluorescence was excited at 480±5 nm using LED controlled by a computer. Fluo-4 emission was collected at 535±20 nm. Serial fluorescent images were captured every second and analyzed using the Imaging Workbench 6 software (INDEC). Deviations of cytosolic Ca²⁺ from the resting level were quantified by a relative change in the intensity of Fluo-4 fluorescence ($\Delta F/F_0$) recorded from an individual cell.