Supporting Information

Crystal structures of fumarate hydratases from *Leishmania major* in a complex with inhibitor 2-thiomalate

Patricia R. Feliciano^{1,2,3,4}, Catherine L. Drennan^{1,2,3,*}, and Maria Cristina Nonato^{4,*}

¹Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139.
²Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139.
³Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139.
⁴Laboratório de Cristalografia de Proteínas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo 14040-903, Brazil.

*Correspondence: <u>cdrennan@mit.edu</u> or <u>cristy@fcfrp.usp.br</u>

Data name	LmFH-1-thio	LmFH-2-thio	LmFH-2-thio-S-peak ^{a,b}
Co-crystallization	RS-2-thiomalate	RS-2-thiomalate	RS-2-thiomalate
Ligand in the structure	S-2-thiomalate	S-2-thiomalate	S-2-thiomalate
Data collection			
Space group	$P2_1$	$P2_{1}2_{1}2_{1}$	$P2_{1}2_{1}2_{1}$
Cell dimensions			
<i>a, b, c</i> (Å)	78.74, 138.44, 138.07	65.73, 84.68, 239.99	65.97, 84.82, 240.96
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 90, 90
Wavelength (Å)	0.9792	0.9792	1.7969
Resolution (Å)	$50 - 2.05 (2.09 - 2.05)^{c}$	$50 - 1.6 (1.63 - 1.60)^{c}$	$50 - 2.03 (2.07 - 2.03)^{c}$
No. of unique reflections	180,831	178,641	166,783
R _{sym}	$0.150(0.605)^{c}$	$0.135(0.805)^{c}$	$0.163 (0.804)^{c}$
$I/\sigma(I)$	$9.75(1.33)^{c}$	$10.16(1.11)^{c}$	$25.56(1.80)^{c}$
CC1/2	$(0.706)^{c}$	$(0.642)^{c}$	$(0.687)^{c}$
Completeness (%)	98.6 (94.7) ^c	99.8 (99.5) ^{<i>c</i>}	99.5 (96.7) ^c
Redundancy	$6.3(4.5)^{c}$	$5.4(4.8)^{c}$	$10.0(5.0)^{c}$
Refinement			
No. of reflections used	180,807 (16,857) ^{<i>c</i>}	178,536 (16,623) ^{<i>c</i>}	
R_{work} / R_{free}^{d}	0.1594 / 0.2045	0.1530 / 0.1699	
No. atoms			
Protein	16,437	8,647	
[4Fe-4S] cluster	32	16	
S-2-thiomalate	54	36	
Glycerol	48	-	
Pentaethylene glycol	16	-	
Tetraethylene glycol	26	-	
Triethylene glycol	50	-	
Di(hydroxyethyl)ether	14	-	
Water	870	821	
Average B-factors $(Å^2)$			
Protein	28.5	17.8	
[4Fe-4S] cluster	25.2	12.1	
S-2-thiomalate	16.5	6.8	
Glycerol	30.7	-	
Pentaethylene glycol	32.0	-	
Tetraethylene glycol	20.6	-	
Triethylene glycol	32.5	-	
Di(hydroxyethyl)ether	30.0	-	
Water	25.5	28.1	
R.m.s deviations	0.000	0.004	
Bond lenghts (A)	0.008	0.004	
Bond angles (°)	1.021	0./1/	
Kotamer outliers (%) Demochandren $= 1 - \frac{1}{2} e^{\frac{\theta}{2}}$	1.03	0.57	
Kainachandran analysis (%)	06.4	07.2	
Favored	90.4 2.5	۲.5 ۲	
Allowed	5.5 0.1	2.1	
Outliers	0.1	U	

Table S1. Data collection and refinement statistics of LmFH isoforms

^a Bijvoet pairs were not merged during data processing. ^b Structure was not refined to completion. ^c Highest resolution shell is shown in parenthesis. ^d R_{free} was calculated with 5% of the data. ^e Distribution of dihedral angles in Ramachandran diagram were calculated with *MolProbity* program.¹

		Chai	in A			Ch	ain B		
Hydrogen	Atom	Residue	Residue	Chain	Atom	Residue	Residue	Chain	Distance
bond no.	name	name	number		name	name	number		
1	0	ALA	10	А	OH	TYR	145	В	2.12
2	OD1	ASP	116	А	NE2	HIS	316	В	2.77
3	NH2	ARG	126	А	Ο	SER	182	В	2.94
4	0	VAL	132	А	NZ	LYS	183	В	2.94
5	0	GLY	134	А	NZ	LYS	183	В	2.84
6	OD1	ASP	136	А	NZ	LYS	183	В	2.83
7	OH	TYR	145	А	О	ALA	10	В	2.34
8	0	SER	156	А	Ν	GLY	317	В	2.94
9	Ν	ASN	158	А	О	ARG	315	В	2.87
10	0	ASN	158	А	Ν	ARG	315	В	3.07
11	0	MET	163	А	NE	ARG	312	В	3.00
12	0	MET	163	А	NH2	ARG	312	В	2.86
13	OE1	GLU	166	А	NH2	ARG	315	В	3.03
14	OE2	GLU	166	А	NH2	ARG	312	В	3.18
15	OE2	GLU	166	А	NE	ARG	315	В	2.66
16	OE1	GLN	176	А	OG1	THR	245	В	2.87
17	OE1	GLN	176	А	OG	SER	246	В	2.52
18	OD1	ASP	178	А	NZ	LYS	252	В	2.72
19	0	LEU	179	А	Ν	ALA	181	В	2.86
20	Ν	ALA	181	А	О	LEU	179	В	2.79
21	0	SER	182	A	NH2	ARG	126	В	2.88
22	NZ	LYS	183	A	0	VAL	132	B	3.15
23	NZ	LYS	183	A	0	GLY	134	В	2.65
24	NZ	LYS	183	A	ODI	ASP	136	В	2.77
25	0	ALA	199	A	NE2	GLN	206	В	3.29
26	ODI	ASN	200	A	UG	SER	319	В	2.87
27	ND2	ASN	200	A		ALA	318	В	2.87
28		SER	202	A	NE2	GLN	206	В	2.92
29	NE2	GLN	206	A	0	ALA	199	В	3.19
30	NE2	GLN	206	A		SER	202	В	2.93
31	0	SEK	210	A	NH2	AKG	412	В	2.73
32	OGI		245	A	NE2	GLN	176	В	2.82
33 24	OG OE2	SEK	246	A	NE2	GLN	1/6	B	2.72
34 25	NZ		240	A	NZ OD1		233	D	2.42
35	NZ		252	A	OD1 OE2	GLU	248	D	2.03
30	NE	APG	233	A	012	MET	163	D	3.11
37	NH2	ARG	312	A	0	MET	163	D	2.04
30	NH2	ARG	312	A	OE2	GLU	165	B	2.80
40	NII2	ARG	315	Δ	012	ASN	158	B	3.03
40	0	ARG	315	Δ	N N	ASN	158	B	2.07
42	NE	ARG	315	Δ	OE^2	GLU	166	B	2.95
42	NH2	ARG	315	Δ	OE2 OE1	GLU	166	B	3 14
ч5 ДД	NF2	HIS	316	Δ		ASP	116	R	26
45	N	GLY	317	Δ	0	SER	156	R	2.0
46	0	ALA	318	A	ND2	ASN	200	B	2.00
47	0G	SER	319	A	0D1	ASN	200	B	2.88
48	NH2	ARG	412	A	0	SER	210	B	2.95
-		-			-		-		

Table S2. Hydrogen bonds formed between residues of chains A and B from LmFH-1

	100% Tacsimate pH 5	100% Tacsimate [*] pH 5 with 2- thiomalate
Ammonium citrate tribasic	0.25 M	0.25 M
Sodium acetate trihydrate	0.40 M	0.40 M
Sodium formate	0.50 M	0.50 M
Ammonium tartrate dibasic	0.16 M	0.16 M
RS-Malic acid	0.30 M	-
Malonic acid	1.83 M	-
Succinic acid	0.12 M	-
RS-2-thiomalate	-	0.30 M

Table S3. Tacsimate composition and its variation^{*} in the presence of 2-thiomalate.

Figure S1. *RS*-thiomalate characterization and use. (A) Circular dichroism (CD) of *RS*-2-thiomalate. The *Left* and *Right* panels show absorption and CD spectra of *RS*-2-thiomalate (10 and 40 mM), respectively. No chiroptical signals were observed in the CD spectra (~240 nm) indicating that *RS*-2-thiomalate is a 50:50 racemic mixture. (B) Activity of LmFH-2 with *S*-malate and *RS*-2-thiomalate as substrate. The production of fumarate was measured spectrophotometrically at 250 nm. No production of fumarate was observed with *RS*-2-thiomalate.

Figure S2. Stereo view of *R***-2-thiomalate modeled in the active site of LmFH-2.** *R*-2-thiomalate (grey) was modeled in two possible orientations (**A** and **B**) into F_o-F_c difference electron density map that was contoured at 3.0 rmsd (green mesh). Neither orientation of *R*-2-thiomalate is a good fit to the density. A sulfur anomalous difference electron density map contoured at 3.0 rmsd (purple mesh) indicates that the sulfur atom of 2-thiomalate must be coordinated to the unique Fe of the [4Fe-4S] cluster (orange (Fe) and yellow (S) spheres). (**A**) When the C2-thiol group of *R*-2-thiomalate is placed into the sulfur anomalous difference electron density map. This orientation of *R*-2-thiomalate also clashes with amino acids in the active site (not shown). (**B**) When *R*-2-thiomalate is positioned such that its C2-thiol group is pointed away from the cluster, the overall fit to the F_o-F_c difference electron density map is better, but there is no sulfur anomalous signal to support this orientation of the *R*-enantiomer.

Figure S3. Sequence alignment of mitochondrial class I FH isoforms. LmFH-1 (*Leishmania major*), LdFH-1 (*Leishmania infantum*), LmxFH-1 (*Leishmania mexicana*), LbFH-1 (*Leishmania braziliensis*), LgFH-1 (*Leishmania guyanensis*), LpFH-1 (*Leishmania panamensis*), TbFH-1 (*Trypanosoma brucei*), TcongoFH-1 (*Trypanosoma vivax*), TcFH-1 (*Trypanosoma cryzi*). Conserved residues are in blue boxes; similar residues are in blue text; active site residues that bind the inhibitor S-2-thiomalate are in pink boxes; cysteine residues that coordinate the [4Fe-4S] cluster are in yellow boxes; dimer interface residues Ser-210 and Arg-412 are in green boxes. The alignment was performed using MULTALIN² and graphically displayed using ESPript.³

Figure S4. Stereo view of LmFHs active sites in a complex with S-2-thiomalate and S-malate. (A) Superposition of LmFH-1 (green) and LmFH-2 (pink) active sites in a complex with S-2-thiomalate (green and double conformation). cyan, **(B)** Superposition of LmFH-2 (pink) in a complex with S-2-thiomalate (green, double conformation) and LmFH-2 (white) in a complex with S-malate (violet). (C) Superposition of LmFH-1 (green) in a complex with S-2-thiomalate (cyan, double conformation) and LmFH-2 (white) in a complex with S-malate (violet). (D) Superposition of LmFH-1 (green) in a complex with *S*-2-thiomalate (cyan, conformation) and LmFH-2 canonical (white) in a complex with S-malate (violet). The [4Fe-4S] cluster is shown in orange (Fe) and yellow (S) spheres. The water molecule is shown in red sphere. The residues numbers separated by a slash are from LmFH-1/LmFH-2. The PDB code of LmFH-2 in a complex with S-malate is 5L2R.

References

- (1) Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., and Richardson, D. C. (2010) MolProbity: all-atom structure validation for macromolecular crystallography, *Acta Crystallogr. D Biol. Crystallogr.* 66, 12–21.
- (2) Corpet, F. (1988) Multiple sequence alignment with hierarchical-clustering, *Nucleic Acids Res. 16*, 10881–10890.
- (3) Gouet, P., Courcelle, E., Stuart, D. I., and Metoz, F. (1999) ESPript: analysis of multiple sequence alignments in PostScript, *Bioinformatics* 15, 305–308.