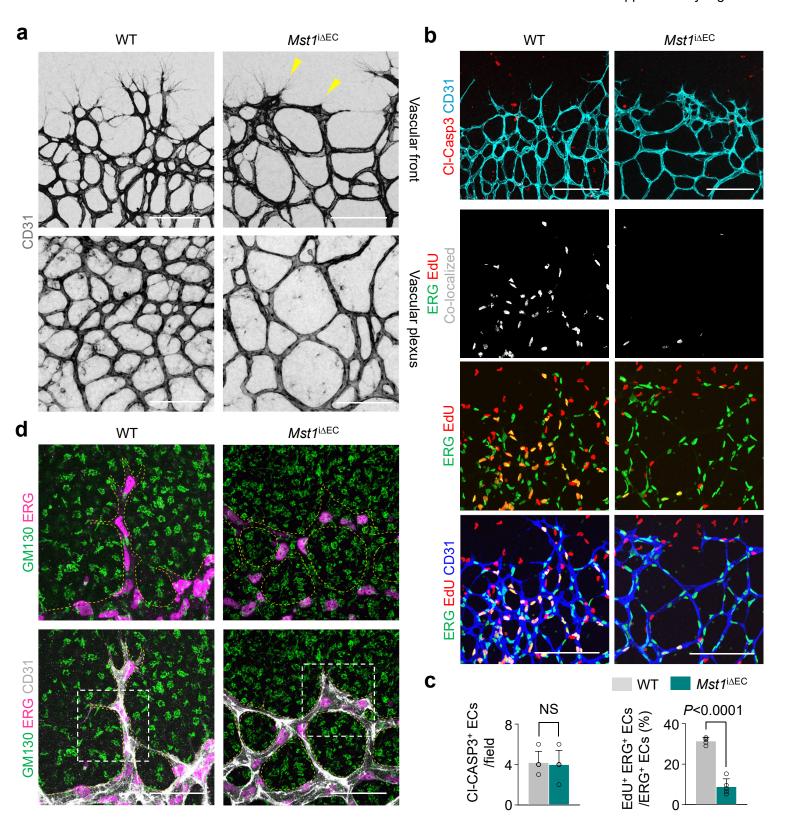
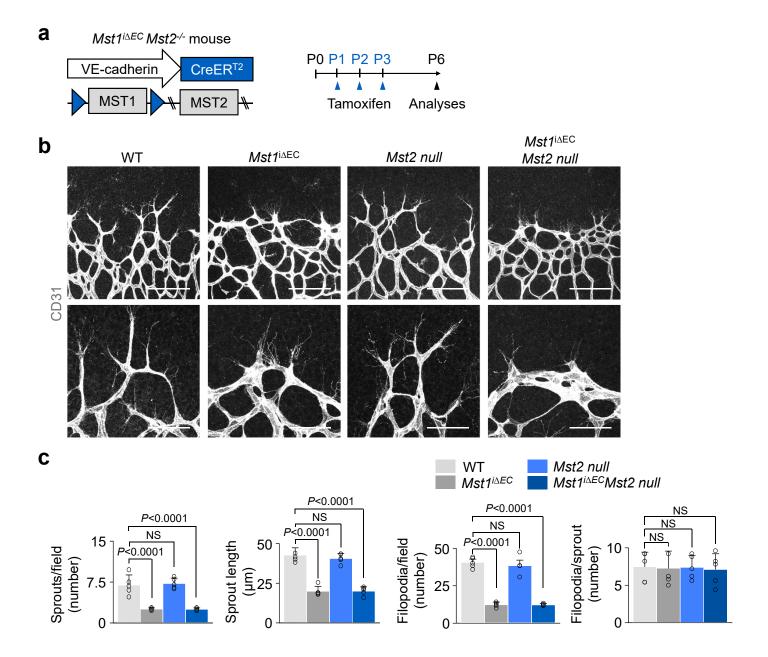

Supplementary Information

A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis

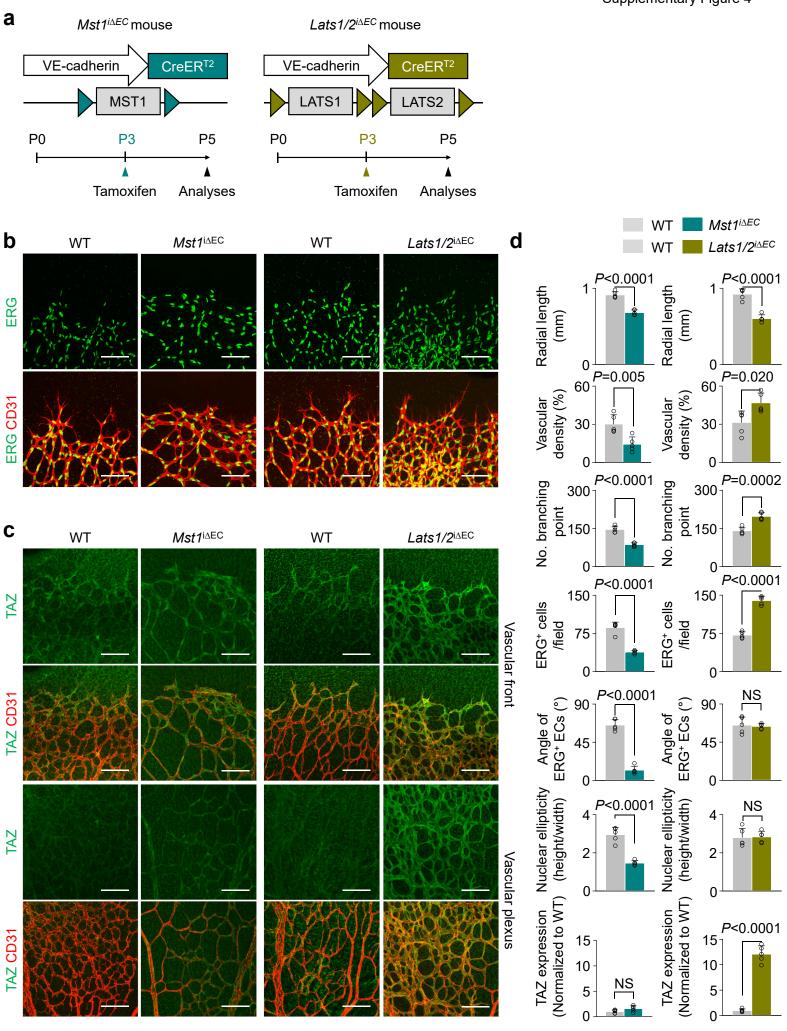
Yoo Hyung Kim, Jeongwoon Choi, Myung Jin Yang, Seon Pyo Hong, Choong-kun Lee, Yoshiaki Kubota, Dae-Sik Lim, Gou Young Koh


It includes;

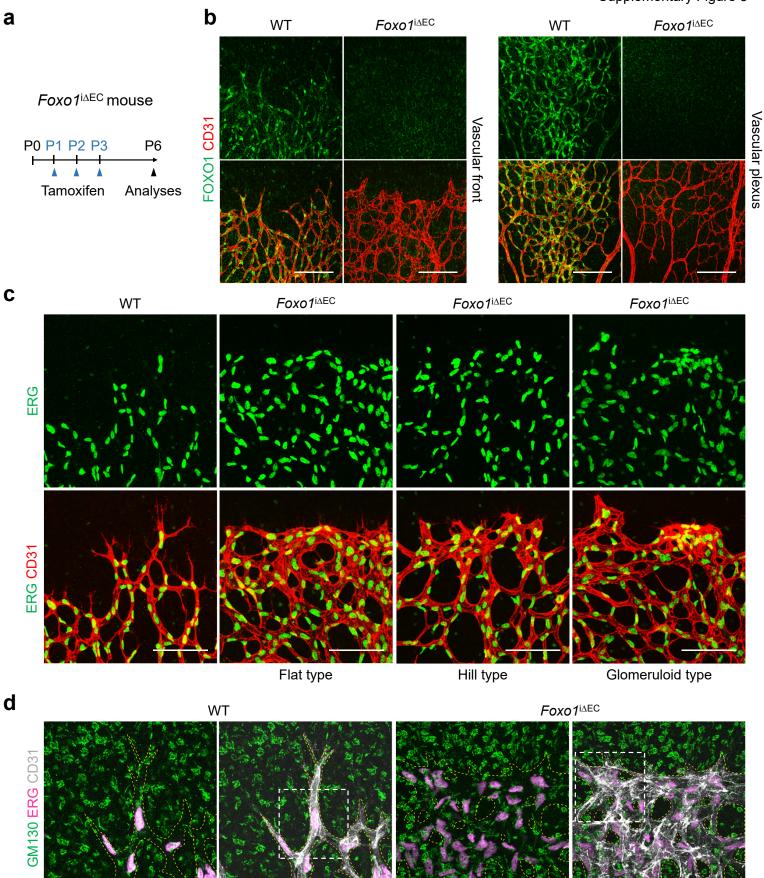
- 1. Supplementary Figures 1-11 and their legends
- 2. Supplementary Table 1.


Supplementary Figure 1. Inducible EC-specific MST1 deletion in Mst1iAEC mice.

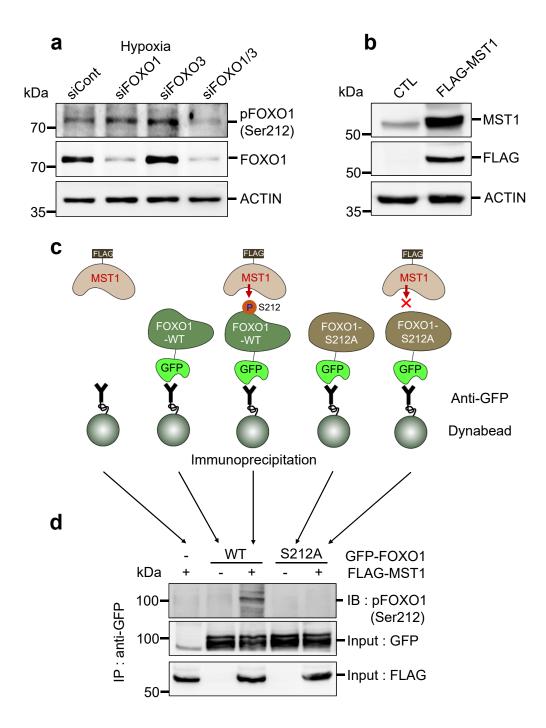
(a) Diagram depicting the experimental schedule for monitoring EC-specific cre recombination using reporter mice with *VE-cadherin* Cre-ER^{T2} mice. (b) Images of tdTomato, ERG⁺ nuclei of EC and CD31⁺ retinal vessels. Scale bars, 500 μm. (c) Diagram depicting the experimental schedule for EC-specific deletion of MST1 in mouse lung ECs. (d) Gating strategy to sort CD45⁻ cells from WT and *Mst1*^{iΔEC} mice. (e) Gating strategy to sort Non-ECs (CD45⁻CD31⁻) and ECs (CD45⁻CD31⁺) from WT and *Mst1*^{iΔEC} mice. Numbers above and inside of bracketed lines indicate percentages of cells. (f) Immunoblot analyses of indicated proteins in sorted ECs and Non-ECs of WT and *Mst1*^{iΔEC} mice. Source data are provided as a Source Data file.


Supplementary Figure 2. Endothelial MST1 deletion impairs EC proliferation and polarization.

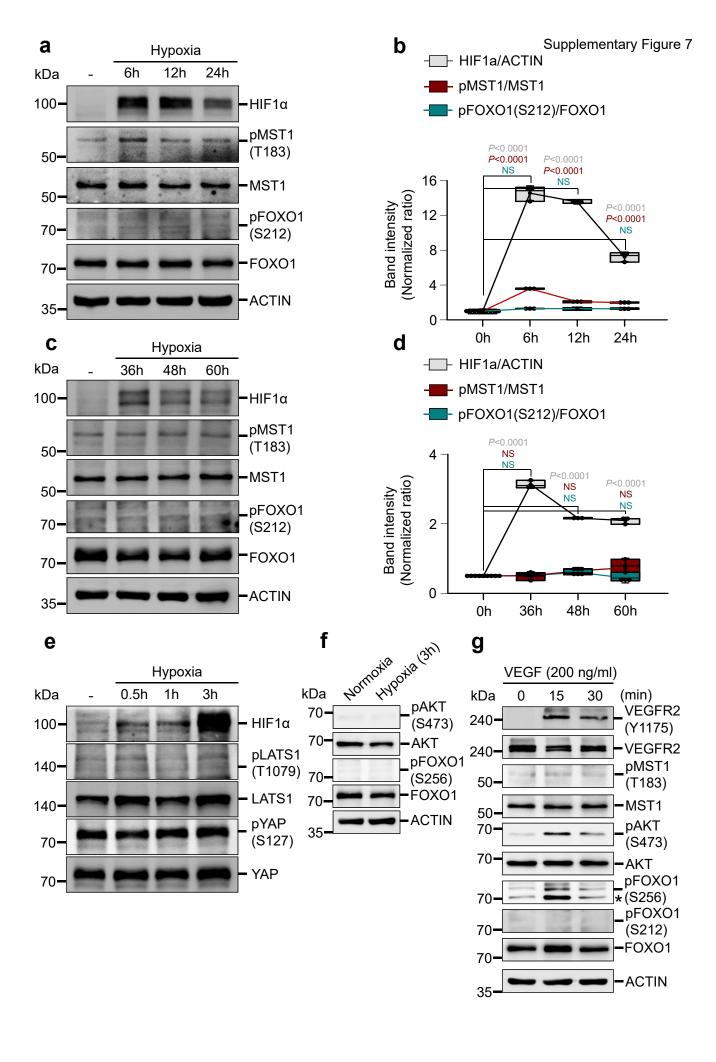
(a) Representative images of retinal vessels in the vascular front and plexus of WT and $Mst1^{i\Delta EC}$ mice. Note that $Mst1^{i\Delta EC}$ mice exhibit shortened sprouts (yellow arrowheads) with reduced vascular density and branching. Scale bars, 100 µm. (b, c) Images and comparisons of Cl-CASP3⁺ apoptotic ECs and EdU incorporated proliferating ECs in CD31⁺ vessels of WT (n=5) and $Mst1^{i\Delta EC}$ (n=5) mice. Scale bars, 100 µm. Data represent mean (bar) \pm s.d. (error bars). P values, versus WT by two-tailed unpaired t-test. NS, not significant. (d) Images of CD31⁺ vessels, ERG⁺ nuclei of ECs and GM130⁺ Golgi apparatus at tip ECs of WT and $Mst1^{i\Delta EC}$ mice. The images of the insets (white dashed-line boxed) are magnified in Figure 1h. The yellow dashed line outlines CD31⁺ vessels. Scale bars, 50 µm. Source data are provided as a Source Data file.


Supplementary Figure 3. Endothelial MST1 but not MST2 is critical in sprouting angiogenesis.

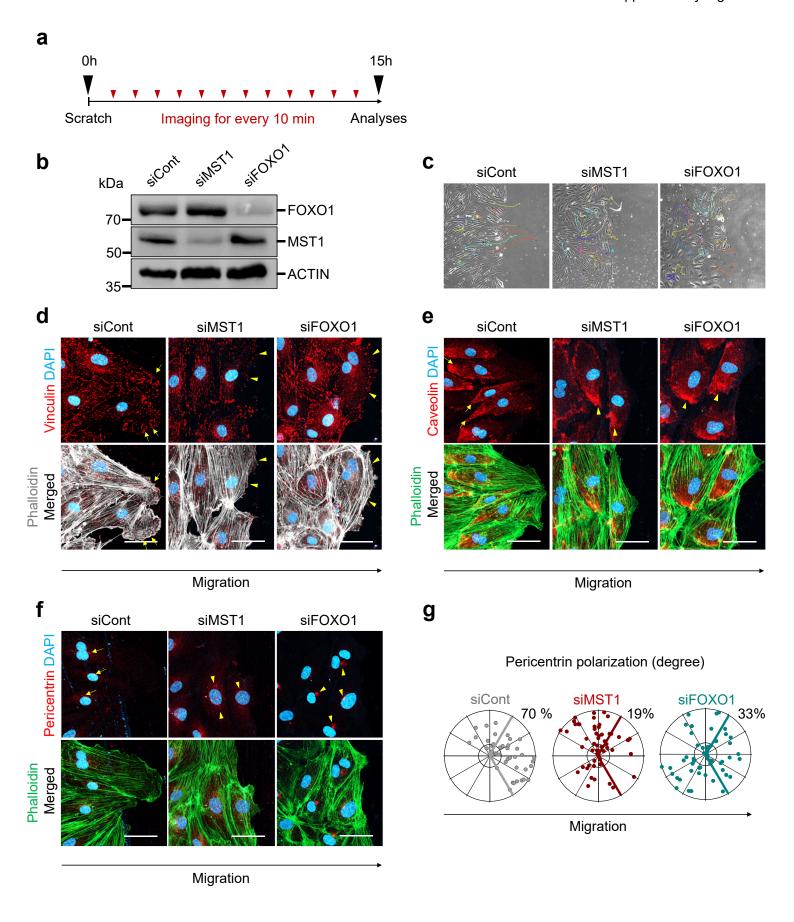
(a) Diagram depicting the experimental schedule for EC-specific deletion of MST1 in retinal vessels from P1 and/or constitutive knockout of MST2 and their analyses at P6. (**b, c**) Images of CD31⁺ vessels and comparisons of indicated parameters. Scale bars, 100 μ m (upper panels); 50 μ m (lower panels). Data represent mean (bar) \pm s.d. (error bars). P values, versus WT NS, not significant. Source data are provided as a Source Data file.


Supplementary Figure 4. Endothelial MST1 does not rely on the canonical Hippo pathway for sprouting angiogenesis.

(a) Diagram depicting the experimental schedule for EC-specific deletion of MST1 or LATS1/2 in retinal vessels from P3 and their analyses at P5. (b) Images of CD31⁺ vessels and ERG⁺ nuclei of ECs in WT, $Mst1^{i\Delta EC}$ and $Lats1/2^{i\Delta EC}$ mice. Scale bars, 100 µm. (c) Images of TAZ distribution in CD31⁺ vessels at vascular front and plexus in WT, $Mst1^{i\Delta EC}$ and $Lats1/2^{i\Delta EC}$ mice. (d) Comparisons of indicated parameters in two of each WT (n=5), $Mst1^{i\Delta EC}$ (n=5), and $Lats1/2^{i\Delta EC}$ (n=5) mice. Data represent mean (bar) \pm s.d. (error bars). P values, versus WT by two-tailed unpaired t-test. NS, not significant. Source data are provided as a Source Data file.


Supplementary Figure 5. Endothelial FOXO1 deletion impairs tip EC polarization.

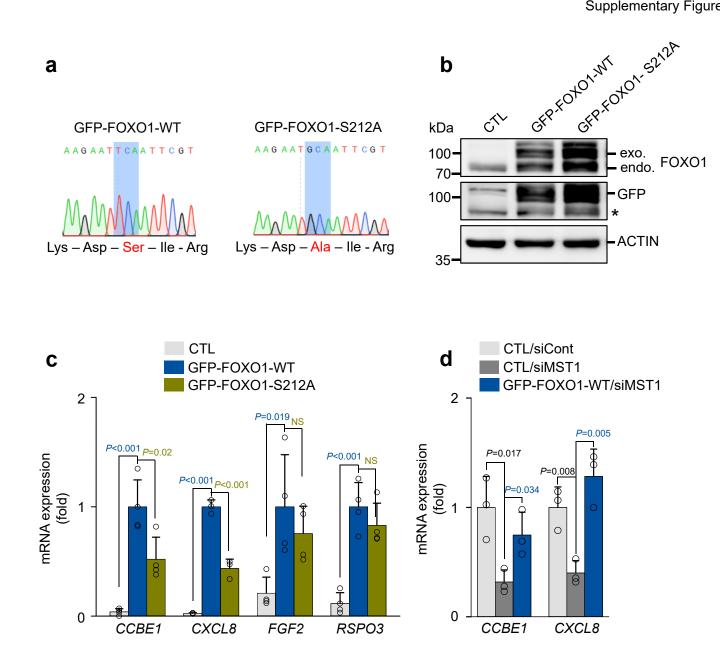
(a) Diagram depicting the experimental schedule for EC-specific deletion of FOXO1 in retinal vessels from P1 and their analyses at P6. (b) Images of FOXO1 distribution in CD31⁺ vessels at P5 in WT and $Foxo1^{i\Delta EC}$ mice. Scale bars, 100 μ m. (c) Images of CD31⁺ vessels and ERG⁺ nuclei of ECs showing variable sprouts morphology in $Foxo1^{i\Delta EC}$ mice. Scale bars, 50 μ m. (d) Images of CD31⁺ vessels, ERG⁺ nuclei of ECs and GM130⁺ Golgi apparatus at tip ECs of WT and $Foxo1^{i\Delta EC}$ mice. The images of the inset (white dashed-line boxed) are magnified in Figure 4g. The yellow dashed line outlines CD31⁺ vessels. Scale bars, 50 μ m.


Supplementary Figure 6. The anti-phospho-FOXO1 polyclonal antibody recognizes FOXO1 phosphorylation at Serine 212.

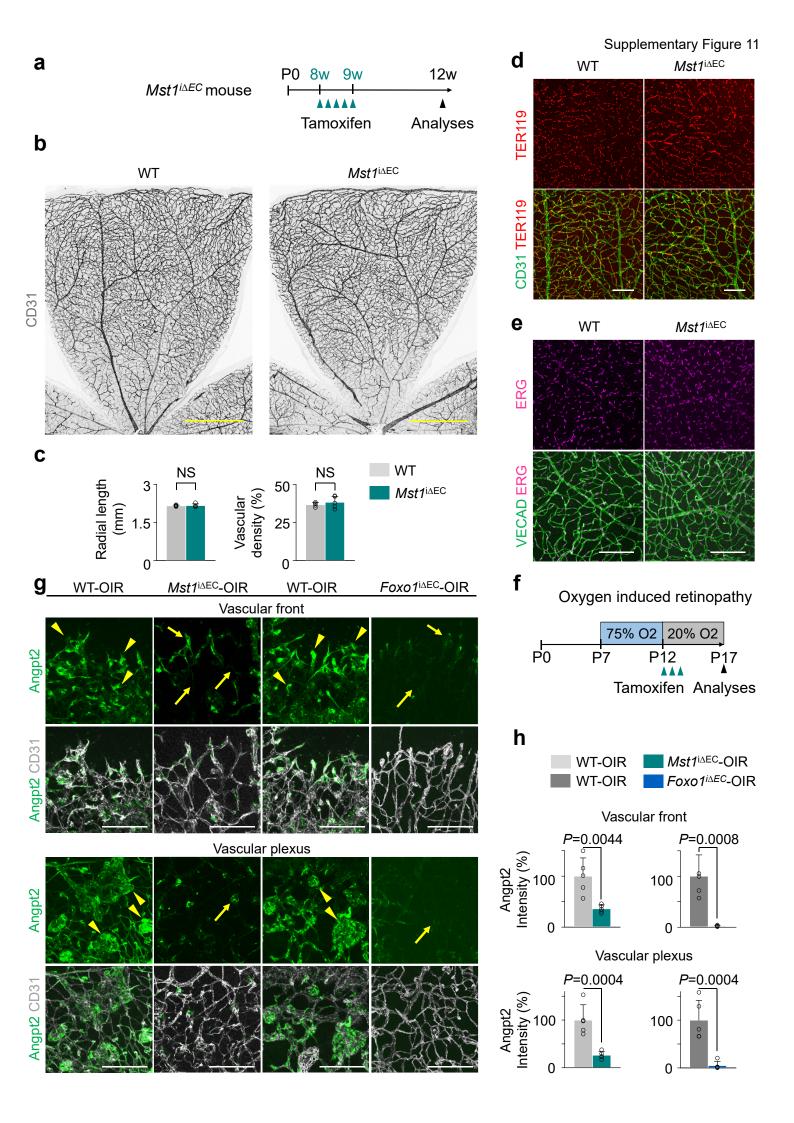
(a) Immunoblot analysis of indicated proteins in siCont-ECs, siFOXO1-ECs, siFOXO3-ECs (HUVECs transfected with siRNA targeting *FOXO3* gene) and siFOXO1/3-ECs for the validation of anti-phospho-FOXO1 (Ser212) antibody. (b) Immunoblot analysis of indicated proteins in HEK293T cells transfected with either control vector (CTL) or gene construct encoding MST1 (FLAG-MST1). (c) Schematic picture depicting our approach to validate anti-phospho-FOXO1 (Ser212) antibody. (d) Immunoprecipitation analysis in HEK293T cells with anti-GFP antibody followed by immunoblotting with anti-phospho-FOXO1 (Ser212) antibody. HEK293T cells were transfected with gene constructs encoding either GFP-tagged FOXO1 (GFP-FOXO1-WT) or non-phosphorylatable FOXO1 (GFP-FOXO1-S212A) together with either CTL or FLAG-MST1 prior to immunoprecipitation. Source data are provided as a Source Data file.

Supplementary Figure 7. Hypoxia activates the MST1-FOXO1 cascade in primary cultured HUVECs

(a-d) Immunoblot analyses and comparisons of indicated proteins in HUVECs exposed to hypoxia (1% O_2) for indicated times (n = 3, each group). Center line, median; Box limits, upper and lower quartiles; Whiskers, s.d. P values versus 0 h by one-way ANOVA with Tukey`s post hoc test. NS, not significant. (e-g) Immunoblot analyses of indicated proteins in HUVECs exposed to hypoxia (1% O_2) or VEGF (200 ng/ml) for indicated times. *, nonspecific band.


Supplementary Figure 8. MST1-FOXO1 cascade regulates cell polarity during directional EC migration

(a) Diagram depicting the experimental schedule for a wound scratch assay with time lapse imaging every 10 min for 15 h. (b) Immunoblot analyses in siCont-ECs, siMST1-ECs and siFOXO1-ECs to confirm depletion of the corresponding proteins. (c) Images of cell tracked line every 30 min in indicated ECs. n=19(siCont), 20(siMST1), 17(siFOXO1). Similar findings were observed in three independent experiments. (d) Representative images showing phalloidin+ actin cytoskeleton, vinculin and DAPI in the leading edge of indicated ECs at 9 h after initiating cell migration. Note that vinculin incorporated focal adhesion (yellow arrowheads) and lamellipodia (yellow arrowheads) are rarely developed in siMST1-ECs and siFOXO1-ECs compared to siCont-ECs (yellow arrows). Scale bars, 50 μm. (e) Representative images showing phalloidin⁺ actin cytoskeleton, caveolin and DAPI in the leading edge of indicated ECs at 9 h after initiating cell migration. Note that caveolin (yellow arrows) in siCont-ECs are localized in the opposite direction of cell migration, while caveolin (yellow arrowheads) in siMST1-ECs and siFOXO1-ECs are localized randomly. Scale bars, 50 μm. (f) Representative images showing phalloidin⁺ actin cytoskeleton, pericentrin⁺ centrosome and DAPI in the leading edge of indicated ECs at 9 h after initiating cell migration. Note that pericentrin+ centrosome (yellow arrows) in siCont-ECs are localized in the direction of cell migration, while pericentrin⁺ centrosome (yellow arrowheads) in siMST1-ECs and siFOXO1-ECs are localized randomly. Scale bars, 50 μm. (g) Polar plots showing pericentrin polarization. n=45(siCont), 57(siMST1), 54(siFOXO1). The bold lines indicate 120° region centered on the vector which is vertical to the scratch direction. The numbers indicate the frequency of dots within the 120° region of the bold line. Source data are provided as a Source Data file.



Supplementary Figure 9. MST1-FOXO1 cascade regulates gene expression related to cell polarity.

(a) Gene Ontology (GO) term analysis using IPA on the RNA sequencing data in comparison of siCont-ECs versus siMST1-ECs or siFOXO1-ECs (b) Venn-diagram depicting commonly regulated genes identified by differentially expressed gene analysis in siCont-ECs versus siMST1-ECs or siFOXO1-ECs. Numbers inside the Venn-diagram indicates the number of genes. (c) Clustered heat map of commonly regulated genes by MST1 and FOXO1. 286 of 369 genes are commonly up- or down regulated by MST1 and FOXO1. (d) GO term enrichment analysis for the commonly up- or down regulated genes by MST1 and FOXO1. False discovery rate ≤ 0.05. (e) Representative clustered heat map of 'Cell migration', 'Cell adhesion' and 'Angiogenesis'. Genes marked in red are those with high fold change compared with siCont-ECs.

Supplementary Figure 10. MST1-FOXO1 cascade transcriptionally regulates the expressions of CCBE1 and CXCL8. (a) Diagram depicting DNA and protein sequences of gene constructs encoding FOXO1 (GFP-FOXO1-WT) and nonphosphorylatable FOXO1 (GFP-FOXO1-S212A). (b) Immunoblot analysis of indicated proteins in HUVECs transfected with gene constructs of control (CTL), GFP-FOXO1-WT, or GFP-FOXO1-S212A. *, nonspecific band. (c) Quantitative PCR analyses of indicated gene expressions in HUVECs transfected with gene constructs of CTL, GFP-FOXO1-WT, or GFP-FOXO1-S212A. Data represent mean (bar) ± s.d. (error bars). P values (blue), CTL versus GFP-FOXO1-WT by one-way ANOVA with Tukey's post hoc test. P values (green), GFP-FOXO1-WT versus GFP-FOXO1-S212A by one-way ANOVA with Tukey's post hoc test. (d) Quantitative PCR analyses of CCBE1 and CXCL8 gene expression in siCont-ECs transfected with gene constructs of CTL or siMST1-ECs transfected with gene constructs of CTL or GFP-FOXO1-WT. Data represent mean (bar) ± s.d. (error bars). P values (black), CTL/siCont versus CTL/siMST1 by one-way ANOVA with Tukey's post hoc test. P values (blue), CTL/siMST1 versus GFP-FOXO1-WT/siMST1 by one-way ANOVA with Tukey's post hoc test. NS, not significant. Source data are provided as a Source Data file.

Supplementary Figure 11. Endothelial MST1 is dispensable for vessel maintenance, but MST1-FOXO1 cascade is required for pathological angiogenesis.

(a) Diagram depicting the experimental schedule for EC-specific deletion of MST1 in retinal vessels of 8-week-old mice and their analysis after 4 weeks in $Mst1^{i\Delta EC}$ mice. (**b**, **c**) Images of CD31⁺ retinal vessels and comparisons of indicated parameters in WT (n=5) and $Mst1^{i\Delta EC}$ (n=5) mice. Scale bars, 500 µm. (**d**) Images of TER119⁺ RBC and CD31⁺ vessels. No visible hemorrhage is detected in both mice. Scale bars, 100 µm. (**e**) Images of VECAD and ERG⁺ nuclei of ECs. No abnormal alignment of ECs nuclei is observed in both mice. Scale bars, 100 µm. (**f**) Diagram depicting the experimental schedule for generation of oxygen-induced retinopathy model (OIR) in WT, $Mst1^{i\Delta EC}$, and $Foxo1^{i\Delta EC}$ mice. (**g**, **h**) Images of CD31⁺ vessels and Angpt2 expression and comparisons of Angpt2 intensity in tip ECs and NVT ECs in WT-OIR (n=5), $Mst1^{i\Delta EC}$ -OIR (n=5), and $Foxo1^{i\Delta EC}$ -OIR (n=5) mice. Note that Angpt2 expression is reduced in tip ECs and NVT ECs in $Mst1^{i\Delta EC}$ -OIR and $Foxo1^{i\Delta EC}$ -OIR (yellow arrows) compared with that in WT-OIR mice (yellow arrowheads). Scale bars, 100 µm. Data represent mean (bar) \pm s.d. (error bars). P values, versus WT by two-tailed unpaired t-test. Source data are provided as a Source Data file.

Supplementary Table 1. List of Primer Sets for Quantitative Real-Time RT-PCR for human samples

Name	Sequence (5' - 3')	
CCBE1	Forward	CACATTAAGCAAGGCCGGAG
	Reverse	TCCTCTCCCCCTTAGAACC
CXCL8	Forward	CATACTCCAAACCTTTCCACC
	Reverse	AGCTTTACAATAATTTCTGTGTTGG
FGF2	Forward	TGGTATGTGGCACTGAAACG
	Reverse	TATAGCTTTCTGCCCAGGTCC
RSPO3	Forward	ACAATTGCCCAGAAGGGTTG
	Reverse	AGTCCCTCTTTTGAAGCCAC
GAPDH	Forward	CCACTCCTCCACCTTTGACG
	Reverse	TTCGTTGTCATACCAGGAAATGAG