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Figure S1, related to Figure 1. ThromboSeq pre-analytical evaluation. 
(A) Overview of Non-cancer and NSCLC platelet samples (total of 779) included in this 

study for thromboSeq. (B) Overview of platelet activation markers as measured by flow 

cytometric analysis of n=3 (8 hour time point) or n=6 (other time points) platelet 

samples collected from healthy donors and isolated using the thromboSeq platelet 

isolation protocol. Gray and red boxes represent average percentage of platelets 

expressing respectively P-selectin or CD63 on the surface. The box indicates the 

interquartile range (IQR), black line represents the median, and the whiskers indicate 

1.5 x IQR. Dots represent expression of these surface markers after platelet activation 

with TRAP. Platelet samples are only minimally activated using the thromboSeq 

platelet isolation protocol. Neg Ctrl = negative control; platelet samples isolated 
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according to an isolation protocol validated for minimal platelet activation. (C) Boxplot 

indicating the platelet counts of Non-cancer (n=33) and NSCLC (n=138) individuals of 

whom data was available. Platelet counting was performed on the day of blood 

collection or up to three days before blood collection. The box indicates the interquartile 

range (IQR), black line represents the median, and the whiskers indicate 1.5 x IQR. 

(D) Correlation plot of platelet count (x-axis) and the matching platelet RNA yield (y-

axis). A moderate correlation was observed (r=0.24, p=0.001, n=171, Pearson’s 

correlation). (E) Correlation plot of platelet count (x-axis) and the estimated RNA input 

for thromboSeq (y-axis). No significant correlation was observed (r=-0.01, p=0.87, 

n=171, Pearson’s correlation). (F) Correlation plot of platelet RNA yield (x-axis) and 

the estimated RNA input for thromboSeq (y-axis). No significant correlation was 

observed (r=-0.04, p=0.57, n=171, Pearson’s correlation). (G) Histogram of the 

average fragment length of reads mapped to intergenic regions for both spiked (left) 

and smooth (right) samples (n=50 samples each, randomly sampled from age, 

smoking, and blood storage time-matched cohort). The percentage of reads with 

specific concatenated fragment size are indicated in the individual plots. (H) Flowchart 

demonstrating sample filtering steps during pre-analytical bioinformatic quality control 

steps. Values in the boxes indicate sample numbers per group (green = ‘Non-cancer’, 

blue = ‘NSCLC’).  



	

 

 

Figure S2, related to Figure 4. Correlation plot platelet count to P-selectin.  

Correlation plot of platelet count (x-axis) to log2-transformed counts-per-million 

(logCPM) of P-selectin in the patient age, smoking and blood storage time-matched 

cohort. A moderate correlation was observed (r=0.19, p=0.01, n=171, Pearson’s 

correlation). 
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Figure S3, related to Figure 6. Schematic overview of RUV factor correction 
module for the PSO-enhanced thromboSeq classification algorithm. 
(A) Schematic overview of the iterative correction module as implemented in 

thromboSeq. The RNA-seq data correction procedure includes multiple steps, i.e. 1) 

filtering of low abundant genes, 2) determination of stable genes among confounding 

variables, 3) raw-read counts Remove Unwanted Variation (RUV)-based factor 

Figure S3
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analysis and correction, and 4) reference group-mediated counts-per-million (CPM) 

and TMM-normalization. In detail, in step 1 genes with low confidence of detection, i.e. 

less than 30 intron-spanning spliced RNA reads in more than 90% of the sample 

cohort, are excluded. In the schematic example, the two upper genes (rows) contain 

in >90% of the samples (in this schematic example n=10 in total) sufficient numbers of 

reads, as indicated by the green boxes. Thus, these genes will be included for analysis. 

The lower two boxes indicate insufficient numbers of samples with sufficient numbers 

of genes, thus prompting the algorithm to remove these particular genes from the 

downstream analyses. Secondly, the algorithm searches for genes that show a stable 

expression pattern among all other samples. For this, the algorithm performs multiple 

Pearson’s correlation analyses among a (potential confounding) variable and raw read 

counts, resulting in a distribution of the correlation coefficients. In the schematic figure, 

this is shown for intron-spanning reads library size (left) and patient age (right). The 

correlation distribution is shown below, and the putative thresholds (also subjected to 

PSO selection) are indicated by black lines. Of note, as the raw intron-spanning read 

counts are normalized by CPM normalization afterwards, stable genes have to 

approximate a correlation coefficient of one. During the third step, the algorithm first 

identifies factors contributing to the data in an unbiased way, using the RUVSeq-

correction module (RUVg-function). The RUVSeq correction approach estimates and 

corrects based on a generalized linear model of a subset of genes and by singular 

value decomposition the contribution of covariates of interest and unwanted variation. 

Secondly, the algorithm iteratively correlates the variable of interest (group) and 

potentially confounding variables (patient age and blood storage time) to the factors 

identified by RUVSeq. If a factor is determined to be correlated to a confounding factor 

(e.g. intron-spanning reads library size in ‘Factor 1’), the factor will be marked for 

removal (‘Remove’). Alternatively, if a factor is determined to be correlated to the factor 

of interest (e.g. group in ‘Factor 2’) or to none of the factors identified as involved 

factors (e.g. ‘Factor 3’), the factor will not be removed (‘Keep’). Finally, in the fourth 

step, CPM normalization and Trimmed Mean of M-values (TMM)-correction is 

performed using only the samples from the training cohort as eligible samples to 

calculate the TMM-correction factor. (B) Same example for correlation intron-spanning 

library size as shown in A.2 (left), but here y-axis indicates CPM normalized counts. 

This graph emphasizes that, for this particular variable, a correlation coefficient up to 

1 has to be selected, resulting in selection of genes stable after CPM normalization. 



	

(C) Interquartile range distribution of all genes after CPM normalization ordered by 

correlation with library size. Highly correlated genes (right of black line, example 

threshold r>0.8) show a minimal interquartile range after CPM normalization as 

compared to the samples with a diminished correlation coefficient (left of the black 

line). (D) Relative log expression (RLE) plots of 263 samples normalized using our 

previous approach ((Best et al., 2015), upper plot) and the novel approach (current 

study, lower plot). The RLE plot indicates the log-ratio of a read count to the median 

count across samples, and should show for a well-normalized datasets a similar 

distribution centered around zero. The correction module reduces the intersample 

variability significantly (p<0.0001, n=263, two-sided Student’s t-test). 



	

 

Figure S4, related to Figure 6. Swarm intelligence and thromboSeq. 
(A) Schematic overview of the PSO-enhanced thromboSeq classification module. 

Multiple steps and filters of the algorithm are particle swarm-optimized, as indicated by 

the ‘bird’-sign. First, the dataset is subjected to the iterative correction module (see 

also Figure S3). Second, most differentially spliced (DS) genes are calculated and 

selected. Third, highly correlated genes among genes selected in the second step are 

removed. Fourth, a support vector machine (SVM) model is built using the training 

cohort, optimizing the gamma (g) and cost (c) parameters by a grid search. Fifth, all 

genes selected for classification are recursively ranked according to the contribution 

to the SVM model, resulting in a ranked classification gene list. This list is subjected to 

swarm-based filtering. Sixth, using the reduced gene list an updated SVM model, again 

with gamma (g) and cost (c) optimization by grid search, is built. Seventh, the gamma 

(g) and cost (c) values are further optimized by a second particle swarm optimization 

algorithm. Finally, using the reduced gene list and optimized gamma (g) and cost (c) 

parameters the final SVM model is built. (B) Schematic representation and sample 

cohort details of the training, evaluation, and validation cohorts. Cohorts are used for 

Figure S4

Iterative
correction module

Likelihood-ratio
ANOVA DS test

Remove highly
correlated genes

Grid SVM
Find g and c by grid search

Rank SVM genes
Recursive feature elimination

Grid SVM selected genes
Find g and c by grid search

Optimize gamma and cost Train final SVM with
optimized parameters

Module subjected to
particle swarm optimization

Training
Age-, smoking and blood storage time-matched

n = 44 Non-cancer
n = 49 NSCLC

Validation
Age-, smoking and blood storage time-matched

n = 40 Non-cancer
n = 90 NSCLC

Evaluation
Age-, smoking and blood storage time-matched

n = 20 Non-cancer
n = 20 NSCLC

Algorithm development
and validation

Disease classification
Therapy monitoring

Library of platelet
RNA-Seq data

Asymptomatic individuals
Inflammatory conditions

Cancer patients

Individual case

B C

A



	

assessing the analytical performance of PSO-enhanced thromboSeq and to 

investigate the diagnostic classification power in a patient age, smoking and blood 

storage time-matched cohort. The training cohort included 44 Non-cancer individuals 

and 49 patients with NSCLC. The algorithm was optimized using a 40-samples 

evaluation cohort and validated on a 130-samples validation cohort. (C) Schematic 

representation of thromboSeq machine learning-based liquid biopsies for cancer 

diagnostics. A library of RNA-seq data generated from blood platelets from individuals 

with different (malignant) diseases and healthy individuals served as input for 

thromboSeq algorithm development. Following algorithm optimization using the 

particle swarm optimization-module and model validation, the platform enables RNA 

signature-based disease classification for individual cases. By nature, swarm 

intelligence allows for self-reorganization and re-evaluation, enabling continuous 

algorithm optimization. 


