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SUMMARY
Blood-based liquid biopsies, including tumor-educated blood platelets (TEPs), have emerged as promising
biomarker sources for non-invasive detection of cancer. Here we demonstrate that particle-swarm optimi-
zation (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels from platelet RNA-
sequencing libraries (n = 779). This resulted in accurate TEP-based detection of early- and late-stage
non-small-cell lung cancer (n = 518 late-stage validation cohort, accuracy, 88%; AUC, 0.94; 95% CI,
0.92–0.96; p < 0.001; n = 106 early-stage validation cohort, accuracy, 81%; AUC, 0.89; 95% CI, 0.83–0.95;
p < 0.001), independent of age of the individuals, smoking habits, whole-blood storage time, and various
inflammatory conditions. PSO enabled selection of gene panels to diagnose cancer from TEPs, suggesting
that swarm intelligence may also benefit the optimization of diagnostics readout of other liquid biopsy
biosources.
INTRODUCTION

Non-invasive collection of cancer-associated circulating bio-

markers enables efficient, rapid, and detailed molecular char-

acterization of tumors. Recent advancements in isolation

and characterization of cell-free DNA, plasma RNA, circulating

proteins, circulating tumor cells, extracellular vesicles, and

tumor-educated platelet (TEP) RNA facilitated detection of can-

cer-specific genomic and transcriptomic aberrations in blood

(Alix-Panabières and Pantel, 2016; Best et al., 2015; Bettegowda
Significance

Detection of cancer in aminimally invasive manner is considere
is the identification of optimal biomarker panels from such liqu
classification the use of ‘‘swarm intelligence’’ was proposed,
algorithms are inspired by the concomitant swarm of birds an
to their environment. Here, PSO algorithms are exploited for
in a tumor-educated platelet RNA biomarker panel that discr
patients with various non-cancerous inflammatory conditions.
is warranted.
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et al., 2014; Chan et al., 2013; Newman et al., 2016; Nilsson et al.,

2011, 2015; Skog et al., 2008; Wan et al., 2017). Blood platelets

act as local and systemic responders during tumorigenesis and

cancer metastasis (McAllister and Weinberg, 2014), thereby

being exposed to tumor-mediated platelet education, and result-

ing in altered platelet behavior (Kerr et al., 2013; Labelle et al.,

2011; Schumacher et al., 2013). We have previously demon-

strated that TEP RNA can function as a biomarker trove to

detect and classify cancer from blood via self-learning support

vector machine (SVM)-based algorithms (Best et al., 2015). We
d the holy grail for cancer diagnostics. A notorious challenge
id biosources. To select robust biomarker panels for disease
especially particle-swarm optimization (PSO). PSO-driven
d schools of fish that by self-organization efficiently adapt
the identification of optimal biomarker gene lists, resulting
iminates patients with NSCLC from healthy individuals and
Follow-up analysis of additional early-stage cancer patients

ublished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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termed this highly multiplexed biomarker signature detection

platform thromboSeq. In this study, we investigated the poten-

tial and origin of spliced RNA profiles from TEPs for the non-

invasive detection of early- and late-stage non-small-cell lung

cancer (NSCLC).

RESULTS

Platelet Collection for the Detection of NSCLC
Blood platelets were collected of a cohort of NSCLC patients

(n = 402; n = 57 early locally advanced and n = 344 metastasized

late-stage [n = 1 unknown]) and individuals with no known

cancer, but not excluding individuals with inflammatory diseases

(n = 377), for analysis by thromboSeq (Figure S1A; Table S1).

Importantly, extrinsic factors can be of influence in the selection

process of the platelet RNA biomarker panels (Diamandis, 2016;

Feller and Lewitzky, 2016; Joosse and Pantel, 2015). By statisti-

cal modeling of a previous thromboSeq dataset, which is pub-

licly available (Best et al., 2015), we were able to confirm that
the age of the individual and blood storage time can influence

the platelet classification score (p value 0.002 and 0.09, respec-

tively, Table 1). Although the contribution of blood storage is not

statistically significant, we do not exclude that the observed

trend could result in a statistically significant contribution in a

larger dataset. Hence, we first assembled a subcohort of blood

platelet samples from patients with NSCLC (n = 159; n = 6 early

locally advanced, n = 153 metastasized late-stage) and individ-

uals with no known cancer (n = 104), matched for age (median

age, interquartile range [IQR] of 61 [14.5] and 58 [12.25] years,

respectively), smoking status, and blood storage time (platelet

isolation within 12 hr of blood collection) (Table 2). This matched

NSCLC/non-cancer cohort allowed us to assess the contribution

of potential technical and biological variables, and to investigate

the platelet RNA profiles and RNA-processing pathways.

Absence of platelet activation during blood collection and stor-

age was confirmed by stable levels of the platelet activation-

dependent surface markers P-selectin and CD63, as measured

by flow cytometry (n = 6) and similarly as observed for the
Cancer Cell 32, 238–252, August 14, 2017 239
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Table 1. Comprehensive Overview of the Study Cohort and Statistical Contribution to the Classifiers

Cohort Group n

Acc.

(%) AUC (95% CI)

No. with

Inflammatory

Disease

Median

Age (IQR)

Blood Storage

(% <12 hr)

Statistical Predictive Contribution

Likelihood Ratio Chi-Square Value (p Value)

Patient Age

Blood

Storage Gender Smoking

thromboSeq

Classification

Unmatched Cohort (Best et al., 2015)

Training

(unmatched)

healthy 39 92 0.99

(0.97–1.00)

0 40 (22.25) 100 9.8

(p = 0.002)

2.9

(p = 0.09)

0.8

(p = 0.38)

NA 29.5

(p < 0.0001)NSCLC 36 NA 59 (13.25) 61

Validation

(unmatched)

healthy 16 98 0.98

(0.93–1.00)

0 32.5 (26.25) 100 0.004

(p = 0.95)

0.01

(p = 0.90)

3.5

(p = 0.06)

NA 21.6

(p < 0.0001)NSCLC 24 NA 62 (14.25) 58

Matched Cohort (This Study) Genes: n = 830

Training (matched) non-

cancer

44 77 0.84

(0.75–0.92)

36 62 (18.5) 100 2.4

(p = 0.12)

NA 0.03

(p = 0.87)

5.7

(p = 0.12)

30.7

(p < 0.0001)

NSCLC 49 NA 59 (9) 100

Evaluation

(matched)

non-

cancer

20 85 0.91

(0.82–1.00)

4 61 (10.25) 100 4.1

(p = 0.04)

NA 0.05

(p = 0.80)

6.0

(p = 0.11)

32.0

(p < 0.0001)

NSCLC 20 NA 58 (24) 100

Validation (matched) non-

cancer

40 91 0.95

(0.91–0.99)

9 56 (9.25) 100 3.7

(p = 0.06)

NA 0.1

(p = 0.95)

14.7

(p = 0.002)

76.2

(p < 0.0001)

NSCLC 90 NA 63 (14) 100

Full Cohort (This Study) Genes: n = 1,000

Training (matched) non-

cancer

60 84 0.90

(0.84–0.95)

30 59 (9.25) 100 <0.0001

(p = 0.99)

NA 3.4

(p = 0.18)

2.7

(p = 0.43)

58.7

(p < 0.0001)

NSCLC 60 NA 61 (13.25) 100

Evaluation

(matched)

non-

cancer

44 91 0.93

(0.87–0.99)

19 58 (15.5) 100 0.62

(p = 0.43)

NA 1.1

(p = 0.30)

9.9

(p = 0.02)

55.0

(p < 0.0001)

NSCLC 44 NA 62 (13) 100

Late-stage

validation

(unmatched)

non-

cancer

273 88 0.94

(0.92–0.96)

94 40 (20) 97 39.6

(p < 0.0001)

0.07

(p = 0.80)

0.19

(p = 0.67)

33.5

(p < 0.0001)

91.5

(p < 0.0001)

NSCLC 245 NA 64 (14) 75

Loc.-adv. validation

(unmatched)

non-

cancer

53 81 0.89

(0.83–0.95)

8 53 (12) 98 23.4

(p < 0.0001)

4.5

(p = 0.03)

3.6

(p = 0.06)

25.6

(p < 0.0001)

26.7

(p < 0.0001)

NSCLC 53 NA 62 (11) 83

NA, not applicable. See also Table S1.
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Table 2. Demographics of Patient Age, Smoking, and Blood

Storage Time-Matched Cohort

Characteristics

non-cancer

(n = 104)

NSCLC

(n = 159)

Gender (male, %) 45 (43) 83 (53)

Median age

(IQR, min-max)

58 (12.25, 46–86) 61 (14.5, 27–88)

Smoking (current, %) 13 (13) 32 (20)

Smoking (former, %) 16 (15) 39 (24)

Smoking (never, %) 65 (62) 66 (42)

Smoking (unknown, %) 10 (10) 22 (14)

Distant metastasis NA 152 (unknown: 1)

IQR, interquartile range; NA, not applicable. See also Table S1.
negative control, but in contrast to platelets artificially activated

with 20 mM TRAP (Figure S1B).

Technical Performance Parameters of thromboSeq
We isolated platelet samples from whole blood by a standard-

ized differential centrifugation protocol and extracted total

RNA. We previously observed only minor contamination of

nucleated white blood cells (Best et al., 2015). We observed

that 80% (111 out of 138) of the NSCLC patients assigned to

the matched cohort, of which platelet counts were available at

day of blood collection for thromboSeq, had platelet counts

within the reference range (150–450 3 109/L), and 16% of the

NSCLCpatients had thrombocytosis (>4503 109/L; Figure S1C).

We evaluated the platelet RNA quality using the Bioanalyzer. We

compared the total platelet RNA yield from 6 mL of whole blood

of non-cancer individuals (n = 86) and NSCLC patients (n = 151)

from the matched cohort. The average total RNA obtained

from the blood samples is 146 ng (SD, 130 ng, n = 237 samples),

and we observed a minor but significant increase in total RNA

in platelets of NSCLC patients (median value non-cancer,

4.7 ng/mL [n = 86]; NSCLC, 6.5 ng/mL [n = 151], p = 0.0014, Stu-

dent’s t test; Figure 1A). The platelet RNA yield appeared to be

moderately correlated to the platelet counts from a subset of

the matched cohort (r = 0.24, p = 0.001, n = 171; Figure S1D).

The increase in platelet RNA in NSCLC patients may be attrib-

uted to a potential difference in platelet turnover in NSCLC pa-

tients, resulting in more young RNA-rich platelets (Stone et al.,

2012), although contribution of an increased quantity of platelets

could not be excluded.

The platelet RNA samples were diluted to �500 pg/mL total

RNA and subjected to SMARTer cDNA synthesis and amplifica-

tion. Amplification of cDNA was confirmed by the Bioanalyzer,

and followed by Truseq labeling. We observed a moderate cor-

relation among total RNA input for SMARTer amplification and

SMARTer cDNA yield (r = 0.23, p = 0.003, n = 177, Pearson’s cor-

relation; Figure 1B). SMARTer cDNA yield and Truseq cDNA yield

correlated even stronger (r = 0.44, p < 0.0001, n = 167, Pearson’s

correlation; Figure 1C). The relatively moderate conversion effi-

ciency of total RNA into amplified cDNA may be explained by

the relatively high contribution of non-poly(A)-tailed RNAs,

such as small non-coding RNAs, ribosomal RNAs, and circular

RNAs, to the platelet RNA content (Alhasan et al., 2016; Bray

et al., 2013; Landry et al., 2009). We confirmed that the platelet
count and RNA yield did not correlate to the thromboSeq RNA

input concentration (r = �0.01, p = 0.87, and r = �0.04, p =

0.57, respectively, n = 171, both Pearson’s correlation), thus

ensuring that the resulting RNA-sequencing (RNA-seq) signa-

tures are independent of platelet counts (Figures S1E and

S1F).We observed subtle differences in the SMARTer cDNABio-

analyzer trace profiles (Figure 1D). The slopes of the SMARTer

cDNA products could be subdivided in spiked, smooth, and in-

termediate spiked/smooth trace profiles, and do not tend to

be patient specific (Figure 1E). Whereas the Bioanalyzer RNA

profiles and Truseq cDNA profiles are similar among these three

SMARTer groups (Figure 1D), the samples with a more smooth-

like pattern resulted in a 38% reduction in total counts of intron-

spanning spliced RNA reads, and a concomitant 6.2-fold in-

crease in reads mapping to intergenic regions (Figures 1E and

1F). We measured the average length of concatenated reads

mapped to intergenic regions for spiked and smooth samples

separately using Bedtools, and observed that the majority of

reads (>10.9% for spiked samples and >13.5% for smooth sam-

ples, n = 50 samples each) had an average fragment length

(concatenated reads) of <250 nt, with a peak at 100–200 nt (Fig-

ure S1G). We attribute the differences in these cDNA profiles at

least partly to ‘‘contaminating’’ plasma DNA retained during the

platelet isolation procedure (Jiang and Lo, 2016).

To prevent potential ‘‘contaminating’’ DNA from contributing

to our downstream computational platelet RNA analyses

we selected only spliced intron-spanning RNA reads after

sequencing. Raw RNA-seq data of platelets were subjected to

a standardized RNA-seq alignment pipeline to determine the

number of intron-spanning platelet RNA reads (Best et al.,

2015). Of samples that yielded less than 0.2 3 106 intron-span-

ning reads in total after sequencing, we again sequenced

the original Truseq preparation of the sample and merged

the read counts (in 52 samples). We excluded the genes that

yielded <30 intron-spanning reads in >90% of the cohort for all

platelet samples that were subjected to thromboSeq (n = 784).

This resulted in a platelet RNA-seq library of 4,722 different

spliced genes detected with sufficient coverage. For each sam-

ple, we quantified the number of genes for which at least one

intron-spanning read was mapped, and excluded two samples

with <750 detected spliced genes (Figure 1G). We performed a

leave-one-sample-out cross-correlation analysis to exclude

another three platelet samples that showed a low intersample

correlation of <0.5 compared with all other samples (Figure 1H),

resulting in the full cohort of 779 samples (Figures S1A and S1H).

We observed in the platelet RNA a rich repertoire of spliced

RNAs, including 4,000–5,000 different messenger and non-

coding RNAs (Figure 1I). The spliced platelet RNA diversity is in

agreement with previous observations of platelet RNA profiles

(Best et al., 2015; Bray et al., 2013; Rowley et al., 2011).

We investigated if collection of more Single-Read 100 base

pair (bp) RNA-seq reads (�53 deeper, deep thromboSeq) of

the platelet cDNA libraries (n = 12 healthy donors) could result

in detection of more low-abundant spliced RNAs (Figure 1J).

We selected from the deep thromboSeq dataset genes with

the highest read count numbers, and filtered matching read

counts from the shallow thromboSeq dataset accordingly.

Increasing the average coverage of shallow thromboSeq �53

did not result in significantly enriched detection of low-abundant
Cancer Cell 32, 238–252, August 14, 2017 241



A

D

F

G H I J

E

B C

(legend on next page)

242 Cancer Cell 32, 238–252, August 14, 2017



platelet genes. Hence, we continued with the ‘‘shallow’’ throm-

boSeq sequencing protocol.

Analysis of the Spliced RNA Repertoire of TEPs from
NSCLC Patients
Distribution of the mapped platelet RNA-seq reads was investi-

gated in samples assigned to the patient age, smoking, and

blood storage time-matched NSCLC/non-cancer cohort (n =

263; Table 2). The mitochondrial genome and human genome,

of which the latter includes exonic, intronic, and intergenic

regions were quantified separately (Figures 2A and 2B). We

observed an on average 1.2-fold increase in the number of

reads mapping to the mitochondrial genome in NSCLC patients

compared with cancer-free individuals (Figure 2B). In addi-

tion, we observed a 1.2-fold increase in the number of normal-

ized reads (the reads per one million total genomic reads)

mapping to exonic fractions in NSCLC patients, whereas for

intronic and intergenic fractions the opposite was observed

(Figure 2B). For samples with a larger proportion of reads map-

ping as intron-spanning spliced RNA reads, the contribution of

reads mapping to the mitochondrial genome increased (r =

0.54, p < 0.0001, n = 263, Pearson’s correlation), whereas the

opposite was observed for reads mapping to intergenic regions

(r = �0.54, p < 0.0001, n = 263, Pearson’s correlation; Figures

1F and 2B). Despite the read distribution being partially

confounded by Bioanalyzer cDNA trace profiles (data not

shown), the prevalence of ‘‘smooth’’ and ‘‘spiked’’ samples is

comparable among the matched non-cancer and NSCLC

cohort (Figure 1E).

We selected the intron-spanning reads of 263 patient age,

smoking, and blood storage time-matched individuals. Based

on the intron-spanning read count analysis, we identified 1,625

spliced platelet genes with significantly differentially spliced

levels (false discovery rate [FDR] < 0.01, 698 genes with

enhanced splicing in platelets of NSCLC patients and 927 genes

with decreased splicing in platelets of NSCLC patients) (Fig-

ure 2C; Table S2). Since we solely measured intron-spanning

spliced sequences of a certain gene, we define enhanced or

decreased splicing in genes in platelets as an increase or

decrease of such reads compared with the control cohort,

respectively. Of note, as platelets are devoid of a nucleus (Denis
Figure 1. Technical Performance of thromboSeq

(A) Platelet total RNA yield in ng/mL isolated from 6 mL whole blood in EDTA-coa

(B) Correlation plot (Pearson’s correlation) of estimated RNA input to the outpu

ical group.

(C) Correlation plot (Pearson’s correlation) of SMARTer cDNA yield to the Truseq c

(D) Bioanalyzer profiles of samples with spiked, smooth, and intermediate spiked

SMARTer amplified cDNA as measured by DNA High Sensitivity chip (middle colu

(E) Shown are for spiked, smooth, and intermediate spiked/smooth SMARTer cDN

nmol following SMARTer amplification (top), average cDNA length per 1,000 bp

spliced RNA reads (bottom).

(F) Selection of intron-spanning spliced RNA reads for thromboSeq analysis. Sta

intron-spanning (orange), exonic (yellow), intronic (green), intergenic (blue), and m

(G) Selection of samples with >750 genes detected for thromboSeq analysis.

(H) Leave-one-sample-out cross-correlation filtering step for which counts of ea

(I) Number of genes detected with confidence in the platelet RNA samples using

(J) Deep thromboSeq versus shallow thromboSeq for matched platelet sample

thromboSeq and 12.9 (11.6–20.0) for shallow thromboSeq. The three genes wi

boxplots indicate the interquartile range (IQR), the horizontal black line indicates th

Table S1.
et al., 2005), the term differential expression does not seem

appropriate for platelet RNA-seq analysis. The most significantly

enriched spliced RNAs in TEPs included CFL1, ACOT7, and

ARPC1B, whereas DDX5, RPS5, and EEF1B2 were decreased

(Table S2). Unsupervised hierarchical clustering of intron-span-

ning reads separated the non-cancer and NSCLC samples into

two distinct groups (p < 0.0001, Fisher’s exact test; Figure 2C).

These results indicate that a significant proportion of platelet

RNA is differentially spliced in patients with NSCLC, independent

of age, smoking status, and blood storage, as well as various

inflammatory conditions.

PAGODA gene ontology (GO) analysis (Fan et al., 2016) was

employed to functionally annotate the differentially spliced

platelet RNAs in patients with NSCLC (Figure 2D). The most sig-

nificant biological group (maximum adjusted Z score of 13.9)

includes gene ontologies related to translation, RNA-binding

proteins (RBPs), and intraplatelet signaling, with a low splicing

score in NSCLC samples compared with non-cancer samples

(Figure 2D). The most significantly enriched gene cluster in

NSCLCpatients comparedwith non-cancer individuals is related

to interplatelet signaling and immune response (maximum

adjusted Z score of 5.3). The clustering analysis identified corre-

lations between platelet homeostasis in platelets of non-cancer

individuals and specific immune signaling pathways in TEPs of

NSCLC patients.

Alternative Splicing and Exon Skipping in TEPs of
Patients with NSCLC
For characterization of transcriptome-wide alternative isoforms

and splicing events, we implemented the previously published

MISO algorithm (Katz et al., 2010). We performed differential

analysis between the RNA isoforms, and selected differential

RNA isoforms between non-cancer individuals (n = 104) and

NSCLC patients (n = 159) of the matched cohort (Figure 3A,

left). Differential RNA isoform analysis revealed 743 RNA iso-

forms to be significantly enriched (n = 359) or depleted (n =

384) in TEPs of NSCLC patients. In 20% (113/571) of the genes,

we identified multiple isoforms associated with the same gene

locus (Figure 3A, left pie chart). However, in only 13/571 (2.3%)

of the genes we observed potential alternative splicing of the iso-

forms (Figure 3A, right pie chart).
ted Vacutainers tubes. p Value calculated by independent Student’s t test.

t SMARTer cDNA yield. Each dot represents a sample, color-coded by clin-

DNA library yield. Each dot represents a sample, color-coded by clinical group.

/smooth traces for total RNA as measured by RNA 6000 Picochip (left column),

mn), and Truseq cDNA libraries as measured by DNA 7500 chip (right column).

A trace profiles for both non-cancer and NSCLC are the relative cDNA yield in

following SMARTer amplification (middle), and the number of intron-spanning

ckplot indicates the distribution of reads for each sample, subspecified from

itochondrial (purple) regions.

ch sample were correlated to the median counts of all other samples.

shallow thromboSeq.

s. Median total read counts (min-max) in millions: 59.7 (43.2–96.2) for deep

th highest expression in deep thromboSeq are highlighted. The boxes of the

emedian values, and the whiskers range 1.53 the IQR. See also Figure S1 and
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Figure 2. Analysis of the Spliced RNA Repertoire of TEPs from NSCLC Patients

(A) Schematic figure represents the read distribution analyses procedure. A total of 100 bp reads were mapped to the human genome and reads mapping to four

distinct regions were quantified. mtDNA, mitochondrial genome.

(B) Boxplots indicate for non-cancer (green, n = 104) and NSCLC (blue, n = 159) the median and spread of reads mapping to mitochondrial (mtDNA), exonic,

intronic, or intergenic regions, and themedian and spread of intron-spanning and exon boundary reads (normalized to onemillion total genomic reads). The boxes

of the boxplots indicate the IQR, the horizontal black line indicates the median values, and the whiskers range 1.53 the IQR.

(C) Unsupervised hierarchical clustering of differentially spliced RNAs between non-cancer (n = 104) and NSCLC (n = 159) individuals, with FDR < 0.01. Columns

indicate samples, rows indicate genes, and color intensity represents the Z score-transformed RNA expression values. Clustering of samples showed non-

random partitioning (p < 0.0001, n = 263, Fisher’s exact test).

(D) PAGODAGOanalysis. Most significant results by adjusted Z score, indicating high statistical significance, were clustered and visualized. Color code indicates

a green-to-orange (low-to-high) score per sample per gene cluster.

See also Table S2.
Next, we investigated alternative splicing events within genes,

i.e., exon skipping. Here, we again applied theMISO algorithm to

profile 38,327 annotated exons, and to infer the fraction of reads

supporting either inclusion or exclusion of the particular exon

compared with neighboring exons (schematic representation in

Figure 3B). In addition, the MISO algorithm provides for each

event a percent spliced in (PSI) value, quantifying the estimated

fraction of reads supporting either inclusion or exclusion of a

particular exon. For exon-skipping analysis, 230 exons remained

eligible for analysis after filtering for exons with low coverage. By

applying a threshold (ANOVA FDR< 0.01), we identified 27 (12%)

exon-skipping events that were statistically significantly different

in PSI value between non-cancer and NSCLC samples (n = 16

skipped in non-cancer, n = 11 skipped in NSCLC), and we

observed a general trend toward exon inclusion in platelets of

patients with NSCLC (Figure 3B). The putative exon-skipping
244 Cancer Cell 32, 238–252, August 14, 2017
events include the non-coding RNA SNHG6 (Chang et al.,

2016), and the coding genes CD74 and SRP9 (Figure 3B). Previ-

ously, exon array analysis has revealed other exon inclusion

events in NSCLC tumor tissue (Langer et al., 2010), possibly ex-

plaining this surrogate phenomenon and tendency toward exon

inclusion in the TEPs of NSCLC patients.

Correlation of Spliced Platelet RNA to P-Selectin
Expression
The enrichment of total RNA yield from platelets of NSCLC pa-

tients (Figure 1A) suggests that these platelets contain more

RNA molecules. Reticulated platelets were estimated to have

an enriched RNA content of 20- to 40-fold (Angénieux et al.,

2016; Hoffmann, 2014; Ingram and Coopersmith, 1969). Thus,

we hypothesized that the platelet RNA of NSCLC patients is en-

riched with RNAs associated with younger platelets, including
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Figure 3. Alternative Splicing and Exon Skipping in TEPs of Patients with NSCLC

(A) Schematic figure represents the development of an isoform count matrix that contains, per sample for each expressed RNA isoform, the number of reads

supporting that particular isoform. RNA isoforms were inferred from the RNA-seq data using MISO. The isoform count matrix is employed for non-cancer versus

NSCLC differential splicing analysis. The left pie chart indicates the gene loci (in total n = 571) with one or more differentially spliced isoforms (encoded in the color

bars). Two gene loci with 10 isoforms eachwere not indicated. The right pie chart indicates the number of gene loci withmultiple differentially spliced isoforms that

show concordant up (blue box), concordant down (red box), or both directions (alternative isoforms; green box).

(B) Schematic figure represents the MISO algorithmmapping exon-skipping events, thereby calculating the percent spliced in (PSI) value. Subsequently, ANOVA

statistics were applied to individual exons with sufficient coverage in the dataset (n = 230) comparing read levels in non-cancer and NSCLC individuals, and

assessed for overall in- or exclusion by calculation of the DPSI value. Histogram shows the direction of the PSI value for 27 exons with FDR < 0.01 (positive PSI

values favors inclusion in NSCLC, whereas negative PSI values favors exclusion in NSCLC). Individuals gene names associated with the 27 exons are listed in

the box.
the membrane marker P-selectin (CD62), previously correlated

to younger reticulated platelets (Bernlochner et al., 2016; Clancy

et al., 2017). To determine the correlation between P-selectin

levels and exonic read counts (surrogate for the unspliced RNA

content in platelets), we compared the P-selectin counts-per-

million values of 263 patient age, smoking, and blood storage

time-matched individuals to the number of reads mapping to

exons (r = 0.51, p < 0.0001, n = 263, Pearson’s correlation; Fig-

ure 4A). We observed a moderate correlation between the

platelet counts and the P-selectin levels (r = 0.19, p = 0.01, n =

171, Pearson’s correlation; Figure S2), suggesting that thrombo-

cytosis in patients with NSCLC is accompanied by an increase in

younger reticulated platelets. We calculated Pearson’s correla-

tions of all individual genes (n = 4,722 in total) to the P-selectin

expression levels, and compiled a P-selectin signature by

selecting positively (r > 0) and most significantly (FDR < 0.01)

correlated genes (n = 1,820 genes, Figure 4B). The P-selectin

signature was enriched for markers such as CASP3, implicated

in megakaryocyte-mediated pro-platelet formation (Morishima

and Nakanishi, 2016), MMP1 and TIMP1, shown to be sorted

into platelets (Cecchetti et al., 2011), and ACTB, previously de-

tected in reticulated platelets (Angénieux et al., 2016; Clancy
et al., 2017). Next, the P-selectin signature was compared with

all differentially and increasingly spliced genes between non-

cancer and NSCLC samples (Figure 4C). We observed that

77% (536/698) of genes in the P-selectin signature was also

identified as significantly enriched in the TEPs of NSCLC patients

(Figures 2C and 4C).

Identification of RBP Signatures in TEP RNA Profiles
Platelets contain a functional spliceosome and several splice

factor proteins (Denis et al., 2005), and are able to splice pre-

mRNA upon environmental queues (Denis et al., 2005; Rondina

et al., 2011; Schwertz et al., 2006), resulting in protein translation

(Weyrich et al., 1998). The inability of platelets to transcribe chro-

mosomal DNA, as opposed to nucleated cells, prevents the

platelets from transcription factor-mediated gene regulation,

hinting at post-transcriptional regulation of the RNA pool,

possibly by RBPs (Zimmerman and Weyrich, 2008). Indeed,

the SF2/ASF- (SRSF1-) RBP has been implicated in splicing

initiation of tissue factor mRNA in the platelets of healthy individ-

uals (Schwertz et al., 2006). In general, RBPs are implicated in

multiple co- and post-transcriptional processes associated

with gene expression, such as RNA splicing, poly-adenylation,
Cancer Cell 32, 238–252, August 14, 2017 245
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Figure 4. P-Selectin Signature

(A) Correlation plot (Pearson’s correlation) of proportion of readsmapping to exonic coordinates (x axis) versus the log2-transformed, RUV-corrected, and counts-

per-million (logCPM) of P-selectin. Each dot represents a sample, colored by clinical group.

(B) Distribution of Pearson’s correlation coefficients of the correlation between logCPM levels of 4,722 genes and the logCPM of P-selectin. A subset of the genes

show a strong positive correlation with P-selectin (r approximates 1), whereas others do not (r approximates 0).

(C) Venn diagram overlay of genes upregulated in the NSCLC TEP signature and genes with a significant positive Pearson’s correlation (FDR < 0.01) toward

P-selectin. Number of overlapping genes is indicated in the Venn diagram.
stabilization, and localization (Glisovic et al., 2008). The 50 and 30

UTR are considered to be the most prominent regulatory regions

for pre-mRNAs (Ray et al., 2013), whereas intronic regions pri-

marily mediate alternative splicing events such as exon skipping.

SAGE analyses of platelet RNA lysates have shown that the

platelets contain genes with an on average longer 30 UTR length

(Dittrich et al., 2006). Since our PAGODA GO analysis revealed

RBP function as a key biological process affected in platelets

of NSCLC patients (Figure 2D), we hypothesized that differential

binding of RBPs to the UTR regions of platelet RNAsmay at least

partly explain the differential splicing patterns observed in TEPs

(Figure 5A).

We developed an RBP-thromboSearch algorithm that scans

for RBP binding motifs in UTR regions, and which identifies cor-

relations between the number of binding sites and the log fold-

change (logFC) of the particular gene (Figure 5B). We included

102 RBPs of which the binding motifs were previously identified

(Ray et al., 2013). We only included UTR regions with sufficient

read coverage in the RNA-seq data (Figure 5C), and identified

43 out of 102 RBPs with sufficient read coverage in the RNA

profiles of the patient age, smoking, and blood storage time-

matched dataset (Figure 5D). Visualization and clustering of

these 43 RBPs resulted in non-random segregation between

non-cancer (n = 104) and NSCLC (n = 159) (p < 0.001, Fisher’s

exact test), confirming the results of the PAGODA GO analyses,

and possibly indicating that platelet mRNAs encoding for RBPs

are differentially spliced in the presence of cancer (Figure 5E).

We first identified RBPs with enriched tropism for either the 50

or 30 UTR, and observed that RBM4, PPRC1, and RBM8A

were primarily targeted toward the 50 UTR, whereas IGF2BP2,

ZC3H14, and RALY showed an enriched binding repertoire for

the 30 UTR (Figure 5F). These enrichments were reported previ-

ously (Ray et al., 2013), supporting the specificity of ourmatching
246 Cancer Cell 32, 238–252, August 14, 2017
approach. All UTRs had at least one binding site for one of

the RBPs. By analysis of the 3,210 50 UTR regions and 3,720

30 UTR regions, we observed that the number of RBP binding

sites per UTR region showed a bimodal distribution, indicating

controlled regulation of specific RBPs for specific UTR regions

(Figures 5G and 5H). To assess whether the RNAs in the NSCLC

TEP RNA signature are co-regulated by specific RBP binding

sites, we correlated the logFC values of either the 50 or 30 UTR
of the genes to the number of matching binding sides on either

of these regions for each RBP. This resulted in five significant

correlations for the 50 UTR (FDR < 0.01, RBM4, RBM8A,

PPRC1, FUS, and SAMD4A) and 69 for the 30 UTR (FDR <

0.01, top five are PCBP1/2, SRSF1, RBM28 LIN28A, and

CPEB2; Figure 5I).

Particle-Swarm Optimization-Enhanced thromboSeq
for NSCLC Diagnostics
To develop an NSCLC diagnostics classification algorithm

based on the differentially spliced platelet RNAs (Table S2), we

employed the matched NSCLC/non-cancer platelet cohort

(Table 2). We first improved the robustness of the data normal-

ization procedure of our previously developed SVM-based

thromboSeq classification algorithm (Best et al., 2015), by intro-

duction of a remove unwanted variation (RUV)-based (Risso

et al., 2014) iterative correction module, thereby considerably

reducing the relative intersample variability (p < 0.0001, n =

263, Student’s t test; Figures S3A–S3D). Second, we imple-

mented a particle-swarm optimization (PSO)-driven meta-algo-

rithm for selection of the most contributive genes used for

classification (Figure S4A). The PSO-driven algorithm leverages

the use of many candidate solutions (i.e., particles), and by

adopting swarm intelligence and particle velocity the algorithm

continuously searches for more optimal solutions, ultimately



Figure 5. RNA-Binding Protein Analysis of TEP-Derived RNA Signatures

(A) Schematic biological model highlighting the difference between nucleated cells and anucleated platelets in the context of regulation of translation. Nucleated

cells (left) are able to regulate and maintain the transcriptome by transcription factor (TF)-mediated DNA transcription, in contrast to platelets.

(B) Schematic representation of the RNA-binding protein (RBP)-thromboSearch engine algorithm. Reference genome sequences from 4,722 platelet genes were

matched with 547 motif sequences deconvoluted from 102 RBPs.

(C) UTR-read coverage filter. Blue dots represent mean counts across all samples, and gray shading indicates the respective standard deviations.

(legend continued on next page)
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reaching the most optimal fit (Figure 6A) (Bonyadi and Michale-

wicz, 2017; Kennedy et al., 2001). Here, we favored PSO over

other optimization algorithms because of the ease of implemen-

tation, fast convergence to acceptable solutions, the wide

experience in the machine-learning field with this optimization

algorithm, and the multiple PSO subvariants that have been

developed (Bonyadi and Michalewicz, 2017). Finally, for testing

the PSO-driven thromboSeq algorithm, we employed a separate

training and evaluation cohort selected from the patient age,

smoking, and blood storage time-matched dataset (n = 263 in

total), and validated this in an independent matched validation

cohort (Figure S4B). We summarized the predictive measures

of the PSO-enhanced thromboSeq platform in a receiver oper-

ating characteristics (ROC) curve. We observed that this NSCLC

classification algorithm has significant predictive power in eval-

uation (accuracy, 85%; area under the curve [AUC], 0.91; 95%

confidence interval [CI], 0.82–1.00; n = 40; red line, Figure 6B)

and independent validation cohorts (accuracy, 91%; AUC,

0.95; 95% CI, 0.91–0.99; n = 130; blue line, Figure 6B). Post

hoc leave-one-out cross-validation (LOOCV) analysis of the

training cohort suggests reduced performance (accuracy,

77%; AUC, 0.84; 95% CI, 0.75–0.92; n = 93; dashed gray line,

Figure 6B), compared with the ‘‘matched’’ evaluation (85%

accuracy) and validation cohort (91% accuracy). This may be

explained by the different classification techniques used, and

optimization of the gene panel toward the evaluation cohort at

cost of classification power in the training cohort. Following

PSO-enhanced gene panel selection, the performance metrics

of the training, evaluation, and independent validation cohorts

suggests that the algorithm has not been overfitted, a common

pitfall of machine-learning tasks (Lever et al., 2016). The contri-

bution of patient age, smoking status, and blood storage time

to the cancer classification was negligible compared with the

predictive power attributed to platelet RNA (Table 1). Of note,

random selection and algorithm training using 1,000 other

unique training samples sets from the matched cohort (n = 93

each), while locking the gene panel and validation cohort,

showed similar classification strength (median AUC ‘‘validation

cohort’’, 0.85; IQR, 0.05), as opposed to random classification

(median AUC ‘‘validation cohort’’, 0.55; IQR, 0.01; p < 0.001).

Subsequently, we included all samples of the full non-matched

NSCLC/non-cancer cohort (n = 402/n = 377, respectively) and

developed a new classification algorithm. For development of

the algorithm training cohort, we summed all matched patient

age, smoking, and blood storage time-matched samples and as-

signed 120 samples for swarm-guided gene panel selection and

SVM training, and 88 samples for swarm-based optimization.
(D) Boxplots indicate the average RBP RNA expression levels (n = 43 RBPs id

normalized intron-spanning read level. The boxes of the boxplots indicate the IQR

1.53 the IQR.

(E) Heatmap with unsupervised clustering of RNA levels from 43 RBPs in the ag

n = 104 non-cancer, n = 159 NSCLC). The RBP RNA levels enable non-random

(F) Enrichment of identified RBP binding sites per UTR region. The x and y axes

Several RBPs are specifically enriched in the 30 UTR, whereas others are enriche

(G and H) Heatmap of all RBPs (rows) and all 50 UTR (G) and 30 UTR (H) regions de

indicated in the color coding.

(I) Spearman’s rank correlation analysis between n binding sites of an RBP and the

splicing analysis. Positive correlations indicate an enrichment in binding sites with

Plots indicate the relation between the Spearman’s correlation coefficient (x axis
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Again the training cohort of the NSCLC diagnostics classifier

was not confounded by patient age, smoking status, or blood

storage time (Table 1). A total of 571 samples (patient age, smok-

ing, and/or blood storage time-unmatched), collected in multiple

hospitals and from different clinical cohorts (Table S1), remained

for validation of the algorithm. This cohort was divided into early-

stage locally advanced NSCLC (n = 106; n = 53 NSCLC and n =

53 age-matched non-cancer) and late-stage metastatic NSCLC

(n = 518; n = 245 NSCLC and n = 273 non-cancer) validation co-

horts. These samples were predicted by the algorithm, while the

algorithms’ classification parameters were locked after training.

We again summarized the predictive measures of the PSO-

enhanced thromboSeq platform in ROC format, for evaluation

(accuracy, 91%; AUC, 0.93; 95% CI, 0.87–0.99; n = 88; red

line, Figure 6C), independent late-stage NSCLC validation (accu-

racy, 88%; AUC, 0.94; 95% CI, 0.92–0.96; p < 0.001; n = 518,

blue line, Figure 6C), and independent (age-matched) locally

advanced NSCLC validation cohorts (accuracy, 81%; AUC,

0.89; 95% CI, 0.83–0.95; p < 0.001; n = 106; green line, Fig-

ure 6C). Post hoc LOOCV analysis of the training cohort again re-

sulted in reduced performance (accuracy, 84%; AUC, 0.90; 95%

CI, 0.84–0.95; n = 120; dashed gray line, Figure 6C), compared

with the ‘‘full’’ evaluation (91% accuracy), late-stage validation

cohort (88% accuracy), and early-stage validation cohort (81%

accuracy). Random selection of other training cohorts (n = 120

each), while locking the gene panel, resulted in similar classifica-

tion strength (n = 1000, median AUC ‘‘validation cohort’’, 0.89;

IQR, 0.05), whereas for random classification the algorithm

performance diminished (median AUC ‘‘validation cohort’’,

0.67; IQR, 0.08; p < 0.001). From 49 NSCLC patients, two or

more follow-up samples collected weeks to months following

the first sample were included into the evaluation and/or inde-

pendent validation cohorts. The difference between the lowest

and highest classification score for a particular individual was

0.23 (SD, 0.15; n = 49 patients with a total of n = 123 samples).

This suggests that the TEP educational program might result in

slightly different platelet RNA profiles over time, possibly related

to tumor growth or immune response.

DISCUSSION

Platelets actively maintain their RNA content while in circulation,

including via the use of platelet RNA splicing (Denis et al., 2005;

Rondina et al., 2011; Schwertz et al., 2006), circularization (Alha-

san et al., 2016), and decay (Mills et al., 2016, 2017), possibly

in response to external queues. Interestingly, we observed an

enrichment of gene ontologies related to platelet activation in
entified) in log2-transformed counts-per-million (logCPM) sorted by median

, the horizontal black line indicates the median values, and the whiskers range

e, smoking status, and blood storage time-matched cohort (n = 263 samples;

clustering of the samples (p < 0.0001, n = 263, Fisher’s exact test).

represent the mean binding sites for the 50 and 30 UTR per RBP (dots, n = 80).

d in the 50 UTR.
tected with sufficient coverage in platelets (column). Number of binding sites is

logarithmic fold-change (logFC) of genes in the NSCLC/non-cancer differential

an increase of the logFC, whereas negative correlations indicate the opposite.

) and the concomitant differential splicing FDR value.
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Figure 6. PSO-Enhanced thromboSeq for NSCLC Diagnostics

(A) Schematic representation of the particle-swarm optimization (PSO)

approach. Yellow-to-red colored dots represent AUC values of a cohort

classified using a thromboSeq classification algorithm, with use of 100

randomly compiled biomarker gene panels (left) or 100 biomarker gene panels

proposed by swarm intelligence (right). Dots were mirrored twice for visuali-

zation purposes. Most optimal AUC value reached by PSO-enhanced

thromboSeq is indicated in both plots with an asterisk.

(B) ROC analysis of PSO-enhanced thromboSeq classifications using only the

matched non-cancer and NSCLC cohorts. Gray dashed line indicates ROC

evaluation of the training cohort assessed by LOOCV, red line indicates ROC

evaluation of the evaluation cohort (n = 40), blue line indicates ROC evaluation

of the validation cohort (n = 130). Indicated are cohort size, most optimal

accuracy, and AUC value.

(C) ROC analysis of PSO-enhanced thromboSeq classifications using

matched training and evaluation of non-cancer and NSCLC cohorts and vali-

dation in the remaining matched and unmatched samples. Gray dashed line

indicates ROC evaluation of the training cohort assessed by LOOCV, red line

indicates ROC evaluation of the evaluation cohort (n = 88). ROC evaluation of
platelets of non-cancer individuals, whereas the isolated platelet

pellets show no activation, as measured by classical activation

analysis. The TEPs can perhaps behave in a ‘‘semi-activational

state,’’ thereby also enhancing the risk for platelet-related events

such as thrombosis. Altogether, our data indicate that the diag-

nostic TEP RNA profiles may be caused by (1) altered megakar-

yocytic RNA expression, (2) enrichment of reticulated platelets in

patients with NSCLC (Dymicka-Piekarska and Kemona, 2008;

Stone et al., 2012), (3) induction of splicing, possibly partially

mediated by RBP activity and upstream regulatory kinases

such as Clk (Denis et al., 2005; Schwertz et al., 2006), (4) seques-

tration of RNAs (Nilsson et al., 2011, 2015), and (5) alternative

splicing events. Follow-up studies should address the biological

mechanisms responsible for the TEP RNA signatures. This can

possibly be achieved in vitro by ‘‘educating’’ cultured platelets

with cancer cells or cancer cell-conditioned media, patient-

derived platelet-depleted plasma, or studying platelet behavior

and TEP RNA profiles collected from tumor xenograft mouse

models. Also, the dynamic re-organization of the TEP signatures

during therapy courses and disease progression should be

investigated. Finally, follow-up studies should also investigate

the contribution of RNA regulatory proteins on platelet RNA

decay (Mills et al., 2016), intraplatelet RNA routing, and

alternative splicing. Deep-splicing analysis by long-read RNA

sequencing (Abdel-Ghany et al., 2016) might reveal distributions

among spliced and unspliced TEP RNAs, and possibly uncover

megakaryocyte-derived RNA expression programs. Since plate-

lets originate from megakaryocytes in the bone marrow and the

lung parenchyma (Lefrançais et al., 2017), these results are sug-

gestive of tumor-bone marrow/lung parenchyma crosstalk in

patients with NSCLC.

RNA-seq gene expression characterization, exploited by

thromboSeq, provides a thorough, unbiased overview on the

platelet RNA content. The strength of this platform is that, for

any thromboSeq-based diagnostics test, the same RNA-seq

wet-lab protocol can be applied resulting in unique spliced

RNA profiles. The large gene panel selection is not a limitation

for the application-specific software. Thus, targeted sequencing

approaches may actually even limit the potential broad applica-

bility of the platform. The algorithms use the RNA-seq input

data to directly classify individuals based on bioinformatically

selected gene panels specific for each diagnosis, an approach

that is previously exploited for several tissue- or liquid biopsy-

based classification algorithms (Moran et al., 2016; Newman

et al., 2016; Veer et al., 2002). We conclude that the PSO-

driven thromboSeq platform (Figure S4C) allows for robust

biomarker selection for blood-based cancer diagnostics, inde-

pendent of bias introduced by age of the individual, smoking

habits, blood storage time, and certain inflammatory diseases.

A further increase in the classification power of PSO-

enhanced thromboSeq may be achieved by (1) training of the

PSO-enhanced self-learning algorithms on significantly more

matched sample cohorts, especially in the case of early-stage
the late-stage NSCLC (Validation Late-st.; n = 518) and locally advanced

NSCLC (Validation Loc.-adv.; n = 106) is plotted in the blue and green lines,

respectively. Indicated are cohort size, most optimal accuracy, and AUC

value. Acc., accuracy.

See also Figures S3 and S4.
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NSCLC samples, (2) evaluation of the swarm intelligence

approach employing extended swarm intelligence algorithms

such as the binary quantum-behaved PSO or genetic bee

colony algorithms (Alshamlan et al., 2015; Xi et al., 2016),

(3) including analysis of platelet-derived small RNAs (e.g.,

miRNAs), (4) including platelet-derived non-humanRNAs, and/or

(5) combining multiple blood-based biosources, such as TEP

RNA, exosomal RNA, cell-free RNA, and cell-free DNA. The

PSO-driven thromboSeq algorithm might also be applicable to

other biosources and indications. At present, large scale valida-

tion of TEPs for the (early) detection of NSCLC and other tumor

types is warranted.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

APC anti-human CD41 antibody Biolegend Cat# 303710; RRID: AB_2249385

PE anti-human CD62P antibody Biolegend Cat# 304906; RRID: AB_314478

FITC anti-human CD63 antibody Biolegend Cat# 353005; RRID: AB_10933264

Biological Samples

779 blood platelet samples This study Table S1

Chemicals, Peptides, and Recombinant Proteins

OptiPrep Density Gradient Medium Sigma-Aldrich Cat# D1556

Multiplate TRAPtest Roche Cat# 06675883190

RNALater solution Thermo Scientific Cat# AM7020

Critical Commercial Assays

mirVana miRNA isolation kit Ambion, Thermo Scientific Cat# AM1560

SMARTer Ultra Low RNA Kit for Illumina

Sequencing version 3

Clontech Cat# 634853

Truseq Nano DNA Sample Prep Kit Illumina Cat# FC-121-4001

RNA picochip and reagents, Bioanalyzer 2100 Agilent Cat# 5067-1513

DNA 7500 chip and reagents, Bioanalyzer 2100 Agilent Cat# 5067-1506

DNA High Sensitivity chip and reagents,

Bioanalyzer 2100

Agilent Cat# 5067-4626

Deposited Data

Raw and processed RNA-seq data This study GEO: GSE89843

MISO reference files (Katz et al., 2010) https://miso.readthedocs.io/en/fastmiso/

annotation.html

RBP reference table (Ray et al., 2013) Supplementary Data 2 in Ray et al. (2013)

Software and Algorithms

SAS statistical software module (version 13.0.0) JMP https://www.jmp.com/en_us/home.html

Trimmomatic (version 0.22) (Bolger et al., 2014) http://www.usadellab.org/cms/?page=

trimmomatic

STAR (version 2.3.0) (Dobin et al., 2013) https://github.com/alexdobin/STAR

HTSeq (version 0.6.1) (Anders et al., 2014) http://www-huber.embl.de/HTSeq/doc/

overview.html

Picardtools (version 1.115) Broad Institute, USA https://broadinstitute.github.io/picard/

Samtools (version 1.115) (Li et al., 2009) http://samtools.sourceforge.net

Bedtools (version 2.17.0) (Quinlan and Hall, 2010) http://bedtools.readthedocs.io/en/latest/

MISO (version 0.5.3) (Katz et al., 2010) https://miso.readthedocs.io/en/fastmiso/

MATLAB (version R2015b) The MathWorks Inc., USA https://nl.mathworks.com/products/

matlab.html

R (version 3.3.0) (R Core Team, 2016) https://www.r-project.org

R-studio (version 0.99.902) (RStudio, 2016) https://www.rstudio.com

Bioconductor package edgeR (version 3.12.1) (Robinson and Oshlack, 2010) https://bioconductor.org/packages/release/

bioc/html/edgeR.html

Bioconductor package EDASeq (version 2.4.1) (Risso et al., 2011) http://bioconductor.org/packages/release/

bioc/html/EDASeq.html

Bioconductor package PPSO (version 0.9-9991) (Tolson and Shoemaker, 2007) https://www.rforge.net/ppso/

Bioconductor package RUVSeq (version 1.4.0) (Risso et al., 2014) http://bioconductor.org/packages/release/

bioc/html/RUVSeq.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

R-package e1071 (version 1.6-7) CRAN https://cran.r-project.org/web/packages/

e1071/index.html

R-package Caret (version 6.0-71) CRAN https://cran.r-project.org/web/packages/

caret/index.html

R-package Optunity (version 1.0) STADIUS lab http://optunity.readthedocs.io/en/latest/

R-package pROC (version 1.8) CRAN https://cran.r-project.org/web/packages/

pROC/index.html

R-package ROCR (version 1.0-7) CRAN https://cran.r-project.org/web/packages/

ROCR/index.html

R-package PAGODA (version 1.99.1) (Fan et al., 2016) http://hms-dbmi.github.io/scde/index.html

R-package Seqinr (version 3.3-3) CRAN https://cran.r-project.org/web/packages/

seqinr/index.html

R-package VennDiagram (version 1.6.17) CRAN https://cran.r-project.org/web/packages/

VennDiagram/index.html
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Thomas

Wurdinger (t.wurdinger@vumc.nl).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical Sample Collection
Peripheral whole blood was drawn by venipuncture from cancer patients, patients with inflammatory and other non-cancerous con-

ditions, and asymptomatic individuals at the VU University Medical Center, Amsterdam, The Netherlands, the Netherlands Cancer

Institute (NKI/AvL), Amsterdam, The Netherlands, the Academic Medical Center, Amsterdam, The Netherlands, the Utrecht Medical

Center, Utrecht, The Netherlands, the University Hospital of Umeå, Umeå, Sweden, the Hospital Germans Trias i Pujol, Barcelona,

Spain, The University Hospital of Pisa, Pisa, Italy, and Massachusetts General Hospital, Boston, USA (see also Table S1). Whole

blood was collected in 4-, 6-, or 10-mL EDTA-coated purple-capped BD Vacutainers containing the anti-coagulant EDTA. Samples

for both training, evaluation, and independent validation cohorts were collected and processed similarly and simultaneously.

Clinical Data Annotation and Cohort Selection
Cancer patients were diagnosed by clinical, radiological and pathological examination, and were confirmed to have at moment of

blood collection detectable tumor load. The NSCLC cohort includes 1 stage I, 2 stage II, 54 stage III, and 344 stage IV NSCLC sam-

ples (n=1 unknown stage, included in the metastasized late-stage cohort). For collection and annotation of clinical data, patient

records were manually queried for demographic variables, i.e. patient age, gender, smoking, type of tumor, metastases, details of

current and prior treatments, and co-morbidities. In case of transgender individuals, the new gender was stated (n=1). Platelet sam-

ples were collected before start of (a new) treatment or during treatment. A total of 106 NSCLC samples included were follow-up

samples of the same patient (n=77 unique patients), of which 49 had two or more samples randomly assigned to the evaluation

and/or validation cohort of the full cohort analysis, collected weeks to months after the first blood collection. Age-matching was per-

formed retrospectively using a custom script in MATLAB, iteratively matching samples by excluding and including non-cancer and

NSCLC samples aiming at a similar median age and age-range between both groups. Asymptomatic individuals were at the moment

of blood collection, or previously, not diagnosed with cancer, but were not subjected to additional tests confirming the absence of

cancer. The patients with inflammatory or other non-cancerous conditions did not have a diagnosed malignant tumor at the moment

of blood collection. This study was conducted in accordance with the principles of the Declaration of Helsinki. Approval for this study

was obtained from the institutional review board and the ethics committee at each participating hospital. Participants signed

informed consent for blood collection and blood platelet analysis. Clinical follow-up of asymptomatic individuals is not available

due to anonymization of these samples according to the ethical rules of the hospitals.

METHOD DETAILS

Blood Processing and Platelet Isolation
Whole blood samples in 4-, 6-, or 10-mL EDTA-coated Vacutainer tubes were processed using standardized protocols within 48

hours (Best et al., 2015; Nilsson et al., 2011). Whole blood collected in the VU University Medical Center, the Netherlands Cancer

Institute, the Utrecht Medical Center, the University Hospital of Umeå, the Hospital Germans Trias i Pujol, and the University Hospital
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of Pisa was subjected to platelet isolation within 12 hours after blood collection. Whole blood samples collected at Massachusetts

General Hospital Boston and the Academical Medical Center Amsterdam were stored overnight and processed after 24 hours.

Platelet counts were obtained from the clinical records and quantified using the Sysmex XN9000 (Etten-Leur, NL) platelet quantifi-

cationmethod. To isolate platelets, platelet rich plasma (PRP) was separated from nucleated blood cells by a 20-minute 120xg centri-

fugation step, after which the platelets were pelleted by a 20-minute 360xg centrifugation step. Removal of 9/10th of the PRP has to

be performed carefully to reduce the risk of contamination of the platelet preparation with nucleated cells, pelleted in the buffy coat.

Centrifugations were performed at room temperature. Platelet pellets were carefully resuspended in RNAlater (Thermo Scientific) and

after overnight incubation at 4�C frozen at -80�C.

Flow Cytometric Platelet Activation Analysis
To assess the relative platelet activation during our platelet isolations, we measured the surface protein expression levels of the

constitutively expressed platelet marker CD41 (APC anti-human, clone: HIP8, Biolegend, cat nr. 303710) and platelet activation-

dependent markers P-selectin (CD62P, PE anti-human, clone: AK4, Biolegend, cat nr. 304906) and CD63 (FITC anti-human, clone:

H5C6, Biolegend, cat nr. 353006), using a BD FACSCalibur flow cytometer. We collected five 6-mL EDTA-coated Vacutainers tubes

from each of six healthy donors, and determined the platelet activation state at baseline (0 hours), 8 hours, 24 hours, 48 hours, and

72 hours. As a negative control, we isolated at time point zero platelets from whole blood using a standardized platelet isolation pro-

tocol from citrate-anticoagulated whole blood that has been validated for inducing minimal platelet activation. This protocol con-

sisted of a step of OptiPrep (Sigma-Aldrich, cat nr. D1556) density gradient centrifugation (350xg for 15 minutes) after collection

of platelet rich plasma. This was followed by two washing steps first with Hepes, followed by a washing step in SSP+ buffer (Maco-

pharma). We used 400 nM prostaglandin I2 (Sigma-Aldrich) before every centrifugation step to prevent platelet activation during the

isolation procedure. As a positive control, we included platelets activated by 20 mM TRAP (TRAPtest, Roche, cat nr. 06675883190).

Platelet pellets were after isolation prefixed in 0.5% formaldehyde (Roth), stained, and stored in 1% formaldehyde for flow cytometric

analysis. Relative activation and mean fluorescent intensity (MFI) values were analyzed with FlowJo. Hence, absence of platelet

activation during blood collection and storage was confirmed by stable levels of P-selectin and CD63 platelet surface markers.

RNA-seq Library Preparation
Preparation of samples for sequencing was performed in batches, and included per batch amixture of clinical conditions. All samples

have been subjected to the identical standardized thromboSeq protocol, including SMARTer cDNA amplification. For platelet RNA

isolation, frozen platelets were thawed on ice and total RNA was isolated using the mirVana miRNA isolation kit (Ambion, Thermo

Scientific, cat nr. AM1560). Platelet RNA was eluated in 30 mL elution buffer. We evaluated the platelet RNA quality using the RNA

6000 Picochip (Bioanalyzer 2100, Agilent), and included as a quality standard for subsequent experiments only platelet RNA samples

with a RIN-value >7 and/or distinctive rRNA curves. All Bioanalyzer 2100 quality and quantity measures were collected from the auto-

matically generated Bioanalyzer result reports using default settings, and after critical assessment of the reference ladder (quantity,

appearance, and slope). The Truseq cDNA labeling protocol for Illumina sequencing (see below) requires�1 mg of input cDNA. Since

a single mature platelet contains an estimated �2 femtogram of RNA (Teruel-Montoya et al., 2014), assuming an average platelet

count of 300x106 permL of whole blood and highly efficient platelet isolation andRNA extraction, the estimated optimal yield of plate-

lets from clinically relevant blood volumes (6 mL) is�3.6 mg. The average total RNA obtained from our blood samples is 146 ng (stan-

dard deviation: 130 ng, n=237 samples). To have sufficient platelet cDNA for robust RNA-seq library preparation, the samples were

subjected to cDNA synthesis and amplification using the SMARTer Ultra Low RNA Kit for Illumina Sequencing v3 (Clontech, cat. nr.

634853). Prior to amplification, all samples were diluted to�500 pg/mL total RNA and again the quality was determined and quantified

using the Bioanalyzer Picochip. For samples with a stock yield below 400 pg/mL, a volume of two or more microliters of total RNA (up

to �500 pg total RNA) was used as input for the SMARTer amplification. Quality control of amplified cDNA was measured using the

Bioanalyzer 2100 with DNA High Sensitivity chip (Agilent). All SMARTer cDNA synthesis and amplifications were performed together

with a negative control, which was required to be negative by Bioanalyzer analysis. Samples with detectable fragments in the 300-

7500 base pair (bp) region were selected for further processing. Tomeasure the average cDNA length, we selected in the Bioanalyzer

software the region from 200-9000 base pairs and recorded the average length. For labeling of platelet cDNA for sequencing, all

amplified platelet cDNA was first subjected to nucleic acid shearing by sonication (Covaris Inc) and subsequently labeled with single

index barcodes for Illumina sequencing using the Truseq Nano DNA Sample Prep Kit (Illumina, cat nr. FC-121-4001). To account for

the low platelet cDNA input concentration, all bead clean-up steps were performed using a 15-minute bead-cDNA binding step and a

10-cycle enrichment PCR. All other steps were according to manufacturers protocol. Labeled platelet DNA library quality and quan-

tity was measured using the DNA 7500 chip or DNA High Sensitivity chip (Agilent). To correlate total RNA input for SMARTer

amplification, SMARTer cDNA yield, and Truseq cDNA yield, all samples with matched data available were subjected to a Pearson’s

correlation test (cor.test-function in R). High-quality samples with product sizes between 300-500 bp were pooled (12-19 samples

per pool) in equimolar concentrations for shallow thromboSeq and submitted for 100 bp Single-Read sequencing on the Illumina

Hiseq 2500 platform using version 4 sequencing reagents. Precise and accurate quantification of the barcoded sample libraries

and careful equimolar pooling is required to obtain equal total sequencing reads counts for all samples. For the deep thromboSeq

experiment, we pooled 12 identically prepared platelet samples, and sequenced the same pool on four lanes of a Hiseq 2500 flowcell.

Subsequently, four separate FASTQ-files per sample were merged in silico.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Confounding Variable Analysis
To estimate the contribution of the variables 1) patient age (in years) at moment of blood collection, 2) whole blood storage time, 3)

gender, and 4) smoking (current, former, never), we summarized the available data from Tables S1A–S1C and Figure S2C of our pre-

vious study (Best et al., 2015), and performed logistic regression analyses in the statistical software module SAS (v.13.0.0). Blood

storage time was defined as the time between blood collection and the start of platelet isolation by differential centrifugation, strat-

ified into a <12 hours group and a >12 hours group. For variables of samples of which data was missing, that particular value of the

particular samples was excluded from the calculation. The joint predictive power of patient age, blood storage time, and the predic-

tive strength of the diagnostics classifier for NSCLC, was assessed using a measure of logistic regression with nominal response, by

selecting disease state as the Role Variable Y, and adding patient age, blood storage time, gender, smoking, and predictive strength

for NSCLC as the model effects. All additional settings were set at default.

Processing of Raw RNA-Sequencing Data
Raw RNA-seq data of platelets encoded in FASTQ-files were subjected to a standardized RNA-seq alignment pipeline, as described

previously (Best et al., 2015). Here, RNA-seq reads were subjected to 5’-end quality trimming and clipping of sequence adapters by

Trimmomatic (version 0.22) (Bolger et al., 2014), mapped to the human reference genome (hg19) using STAR (version 2.3.0) (Dobin

et al., 2013). Read summarization of only reads spanning introns (intron-spanning reads) was performed with HTSeq (version 0.6.1),

using union intersection of uniquely aligned reads, whichwas guided by the Ensembl gene annotation version 75 (Anders et al., 2014).

All subsequent statistical and analytical analyses were performed in R (version 3.3.0) and R-studio (version 0.99.902). Of samples that

yielded less than 0.2x106 intron-spanning reads in total after sequencing, we again sequenced the original Truseq preparation of the

sample and merged the read counts generated from the two individual FASTQ-files after HTSeq count summarization (performed for

n=52 samples). As expected, after sequencing of polyadenylated RNA we measured a significant enrichment of platelet sequence

reads mapping to exonic regions. Sample filtering was performed by assessing the library complexity, which is partially associated

with the intron-spanning reads library size. First, we excluded the genes that yielded <30 intron-spanning reads in >90%of the cohort

for all platelet samples that were sequenced (n=784 Total, n=379 non-cancer and n=405 NSCLC, Figure S1G). This resulted in this

platelet RNA-seq library in 4,722 different genes detected with sufficient coverage. For each sample, we quantified the number of

genes for which at least one intron-spanning read was mapped, and excluded samples with <750 detected genes. Hereby we

excluded two samples (n=0 (0% of total) non-cancer, n=2 (0.5% of total) NSCLC). Next, to exclude platelet samples that show

low intersample correlation, we performed a leave-one-sample-out cross-correlation analysis. Following data normalization (see

section ‘Data Normalization and RUV Factor Correction’), for each sample in the cohort, all samples except the ‘test sample’

were used to calculate the median counts-per-million expression for each gene (reference profile). Following, the comparability of

the test sample to the reference set was determined by Pearson’s correlation. Samples with a correlation <0.5 were excluded

(n=3), and the remaining 779 samples were included in this study. Of note, we observed delicate differences in the Bioanalyzer

cDNA profiles (spiked/smooth patterns), irrespective of patient group, but with a significant correlation to average cDNA length.

We measured the average length of concatenated reads mapped to intergenic regions for spiked and smooth samples separately

using Bedtools (version 2.17.0, Bedtools merge following Bedtools intersection), and observed that the majority of reads (>10.9%

for spiked samples and >13.5% for smooth samples, n=50 samples each) had an average fragment length (concatenated reads)

of <250 nt, with a peak at 100-200 nt. We attribute the differences in cDNA profiles at least partly to ‘contaminating’ plasma DNA

retained during the platelet isolation procedure. To prevent potential plasma DNA from contributing to our computational platelet

RNA analyses, we only selected spliced intron-spanning RNA reads. Practically, sequestration of sequencing reads by ‘contami-

nating’ plasma DNA reduces the number of reads available for RNA-sequencing analysis. A detailed overview of algorithm settings

is provided in Table S3.

Assessment Technical Performance thromboSeq
We observed in the platelet RNA a rich repertoire of spliced RNAs, including 4,000-5,000 different messenger and non-coding RNAs.

To estimate the efficiency of detecting the repertoire of 4,000-5,000 platelet RNAs from�500 pg of total platelet RNA input, we sum-

marized all gene tags with at least 30 non-normalized intron-spanning read counts. We investigated whether collection of more Sin-

gle-Read 100 bp RNA-seq reads (�5x deeper: deep thromboSeq) of the platelet cDNA libraries (n=12 healthy donors) yielded in

detection of more low-abundant RNAs. For this, we selected the gene tags that had more than 10 raw intron-spanning reads in at

least one sample. This was performed separately for shallow and deep thromboSeq. For visualization purposes, we calculated

the median raw intron-spanning read counts, log2-transformed the counts (after adding one count to all tags), and plotted the

20,000 gene tags with highest count numbers. Again, this was performed separately for shallow and deep thromboSeq data.

Increasing the average coverage of shallow thromboSeq �5x does not yield in significantly enriched detection of low-abundant

platelet genes. For all boxplots presented in the manuscript, the box indicates the interquartile range (IQR), the horizontal black

line indicates the median values, and the whiskers range 1.5 x the IQR.
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Differential Splicing Analysis
Prior to differential splicing analyses the data was subjected to the iterative correction-module as described in the section ‘Data

Normalization and RUV Factor Correction’ (age correlation threshold 0.2, library size correlation threshold 0.8). Corrected read

counts were converted to counts-per-million, log2-transformed, and multiplied by the TMM-normalization factor calculated by the

calcNormFactors-function of the R-package edgeR (Robinson et al., 2010). For generation of differential spliced gene sets, the after

fitting of negative binominal models and both common, tag-wise and trended dispersion estimates were obtained, differentially

spliced transcripts were determined using a generalized linear model (GLM) likelihood ratio test, as implemented in the edgeR-pack-

age. For data signal purposes, we performed differential splicing analyses with post-hoc gene ontology interpretation using the cor-

rected read counts as input for differential splicing analyses, whereas for reproducibility of the data during classification tasks we

used the non-corrected raw read counts as input. Genes with less than three logarithmic counts per million (logCPM) were removed

from the spliced RNA gene lists. RNAs with a p value corrected for multiple hypothesis testing (FDR) below 0.01 were considered as

statistically significant. Unsupervised hierarchical clustering of heatmap row and column dendrogramswas performed byWard clus-

tering and Pearson distances. Non-random partitioning and the corresponding p value of unsupervised hierarchical clustering was

determined using a Fisher’s exact test (fisher.test-function in R). To determine differentially splicing levels between platelets of non-

cancer individuals and NSCLC patients, we included only samples assigned to the patient age, smoking status and blood storage

time-matched cohort (training, evaluation and independent validation, n=263 in total).

Analysis of RNA-seq Read Distribution
Distribution of mapped RNA-seq reads of platelet cDNA, and thus the origin of the RNA fragments, was investigated in samples as-

signed to the patient age, smoking status and blood storage time-matched NSCLC/non-cancer cohort (training, evaluation, and

independent validation, totaling 263 samples). The mitochondrial genome and human genome, of which the latter includes exonic,

intronic, and intergenic regions were quantified separately. Read quantification was performed using the Samtools View algorithm

(version 1.2, options -q 30, -c enabled). For quantification of exonic reads, we only selected reads that mapped fully to an exon

by performing a Bedtools Intersect filter step (-abam, -wa, -f 1, version 2.17.0) prior to Samtools View quantification. We used

bed-files of exonic, intronic, and intergenic regions annotated in Ensembl gene annotation version 37 and hg19 as a reference.

Spliced RNAs were filtered from the aligned reads by selection of a cigar-tag in the bam-file, and reads mapping to the mitochondrial

genome were selected by only quantifying reads mapping to ‘chrM’. We determined the ratios of reads mapping to the specific

genomic regions by calculating the proportion of reads as compared to the total number of quantified reads per sample. Independent

two-sided Student’s t-test was performed using the t.test-function in R.

Alternative Isoforms and Exon Skipping
We employed theMISO algorithm (Katz et al., 2010) for alternative splicing analysis in our 100 bp Single-Read RNA-seq data. Briefly,

the MISO algorithm quantifies the number of reads favouring inclusion or exclusion of a particular annotated event, such as exon

skipping, or RNA isoforms. By scoring reads supporting either one variant or the other (on/off) and scoring reads supporting both

isoforms, the algorithm infers the ratio of inclusion, and thereby the percent spliced in (PSI).

Processing of RNA-seq Data for MISO Splicing Analysis

For the MISO RNA splicing analyses, FASTQ-files of the patient age, smoking status and blood storage time-matched NSCLC/non-

cancer cohort were again subjected to Trimmomatic trimming and clipping, and STAR readmapping (see also section ‘Processing of

Raw RNA-Sequencing Data’). To create an uniform read length of all inputted reads, as required by the MISO algorithm, trimmed

reads were cropped to 92 nt and reads below a read length of 92 nt were excluded from analysis. After addition of read groups using

Picard tools (AddOrReplaceReadGroups-function, version 1.115), MISO sam-to-bam conversion was performed, and the indexed

bam files were subjected to the MISO algorithm (version 0.5.3) using hg19 and the indexed Ensembl gene annotation version 65

as reference. MISO output files were summarized using the summarize_miso-function. Summarized MISO files of isoforms and skip-

ped exons were subsequently converted into ‘psi’ count matrices and ‘assigned counts’ count matrices using a custom script in

MATLAB. A detailed overview of algorithm settings is provided in Table S3.

Identification of Alternatively Spliced Isoforms

For alternative isoform analysis, we narrowed the analysis to the 4,722 genes identified with confident intron-spanning expression

levels in platelets (see also section ‘Processing of RawRNA-SequencingData’). For each annotated Ensemble transcript ID, available

in the MISO summary output files, the assigned read counts (reads assigned to the particular RNA isoform) were summarized in a

count matrix. To ensure proper detection of the isoform, we excluded RNA isoforms with <10 reads in >90% of the sample cohort,

and applied TMM- and counts-per-million normalization. Next, differential expression analysis among annotated Ensembl transcripts

was performed, and the most significant hits (FDR<0.01, logCPM>1) were selected. For details regarding the differential expression

analysis, see section ‘Differential Splicing Analysis‘. For identification of multiple RNA isoforms per parent gene locus, we matched

the Ensembl transcript IDs (enst) with Ensembl gene IDs (ensg) and calculated the frequency metrics of the ensg-tags for the signif-

icant enst-tags (Figure 3A left pie chart). Distribution of alternatively spliced isoforms was assessed by including all enst-tags per

parent gene locus, and comparing the median expression values for both non-cancer and NSCLC samples. Isoforms that showed

in all cases increased or decreased levels were scored as non-alternatively spliced. Isoforms that exhibited enrichment in either

group but a decrease in the other, and the opposite for at least one other isoformwere scored as alternatively spliced RNAs (Figure 3A

right pie chart).
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Identification of Exon Skipping Events

For analysis of exon skipping events, we developed a custom analysis pipeline summarizing reads supporting inclusion or exclusion

of annotated exons and scoring the relative contribution in groups of interest, i.e. non-cancer versus NSCLC. The input for the algo-

rithm is a PSI-values count matrix and an ‘assigned counts’ count matrix, as generated from summary output files generated by

MISO. The former count matrix is required to calculate the relative PSI-values and distribution per group, the latter count matrix is

required to only include exons with sufficient coverage in the RNA-seq data (i.e. >10 reads in >60% of the samples, which support

both inclusion (1,0) and exclusion (0,1) of the variant, see also Katz et al.). The coverage selector downscaled the available exons

for analysis to 230 exons. To select differential levels of exon skipping events, PSI-values were compared among non-cancer and

NSCLC using an independent two-sided Student’s t-test including post-hoc false discovery rate (FDR) correction (t.test- and

p.adjust-function in R). Events with an FDR<0.01 were considered as potential skipped exon events. The DPSI-value was calculated

by subtracting per skipping event the median PSI-value of non-cancer from the median PSI-value NSCLC.

P-selectin Signature
To determine the correlation between P-selectin levels and exonic read counts, we compared the P-selectin (SELP,

ENSG00000174175) counts-per-million values of 263 patient age, smoking status and blood storage time-matched individuals to

the number of exon-mapped reads. P-selectin expression levels were collected from log2-transformed, TMM-normalized, and

counts-per-million transformed read counts, subjected to RUV-mediated correction (see section ‘Data Normalization and RUV Fac-

tor Correction’, age correlation threshold 0.2, library size correlation threshold 0.9). Exonic read counts to P-selectin expression

levels correlation analysis was performed using Pearson’s correlation. To identify gene expression correlated to P-selectin enrich-

ment, we calculated Pearson’s correlations of all individual genes (n=4,722 in total) to the P-selectin expression levels. Data was sum-

marized in a histogram, and we compiled a P-selectin signature by selecting positively (r>0) and most significantly (FDR<0.01,

adjusted for multiple hypothesis testing) correlated genes. The P-selectin signature was compared with all differentially and increas-

ingly spliced genes between non-cancer and NSCLC, and summarized in a Venn diagram (VennDiagram-package in R).

RBP-thromboSearch Engine
To identify RNA-binding protein (RBP) profiles associated with the TEP signatures in NSCLC patients, we designed and developed

the RBP-thromboSearch engine. The rationale of this algorithm is that enriched binding sites for particular RBPs in the untranslated

regions (UTRs) of genes is correlated to stabilization or regulation of splicing of that specific RNA. The algorithm identifies the number

of matching RBP binding motifs in the genomic UTR sequences of genes confidently identified in platelets. Subsequently, it corre-

lates for each included RBP the n binding sites to the logarithmic fold-change (logFC) of each individual gene, and significant cor-

relations are ranked as potentially involved RBPs. For this analysis, we collected previously well-characterized RBP binding motifs

from literature (Ray et al., 2013). The algorithm exploits the following assumptions: 1) more binding sites for a particular RBP in a UTR

region predicts increased regulation of the gene either by stabilization or destabilization of the pre-mRNAmolecule (Oikonomou et al.,

2014), 2) the functions in 1) are primarily driven by a single RBP and not in combinations or synergy with multiple RBPs or miRNAs, or

other cis or trans regulatory elements, and 3) the included RBPs are present on protein level in platelets of non-cancer individuals

and/or NSCLC patients. In order to determine the n RBP binding sites-logFC correlations, the algorithm performs the following

calculations and quality measure steps:

(i) The algorithm selects from all inputted genes the annotated RNA isoforms and identifies genomic regions of the annotated RNA

isoforms that are associated with either the 5’-UTR or 3’-UTR. The genomic coding sequence is extracted from the human

hg19 reference genome using the getfasta-function in Bedtools (version 2.17.0). For this study, we used the Ensembl annota-

tion version 75.

(ii) All characterized motif sequences extracted from literature (102 in total, Table S3 of Ray et al. (Ray et al., 2013), filtered for

Homo Sapiens) are reduced to 547 non-redunant (‘A’, ‘G’, ‘C’, and ‘T’-sequence) annotations according to the IUPAC motif

annotation. These non-redundant motif sequences serve as the representative motif sequences for the initial search.

(iii) In an iterative manner, per RBP the associated non-redundant RBP motif sequences are matched with all identified and

included UTR sequences (using the str_count-function of the seqinr package in R).

(iv) The algorithm identifies the number of reads mapping to each UTR region per sample using Samtools View (q 30, -c enabled).

UTR sequenceswith no orminimal coveragewere considered to be non-confident for presence in platelets. To account for the

minimal bias introduced by oligo-dT-primed mRNA amplification (Ramsköld et al., 2012), we set the threshold of number of

reads for the 3’-UTR at five reads, and for the 5’-UTR at three reads.

(v) For all 5’- and 3’-UTRs with sufficient coverage associated with the same parent gene (ensg), all matched UTR-non-redundant

motif hits were summed, and summarized in a gene-motif matrix. Non-redundant motifs were converted to RBP-ids by over-

laying all possible RBP-motif matches. This matrix is used for downstream analyses, data interpretation, and visualization.

Correlations between logFC and n RBP binding sites were determined for all RBPs using Pearson’s correlation, and summarized in

a volcano plot.
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Data Normalization and RUV Factor Correction
To reduce the influence of confounding factors participating in the classification model, we applied the following approach for iter-

ative RNA-sequencing data correction. The correction module is based on the remove unwanted variation (RUV) method, proposed

by Risso et al. (Peixoto et al., 2015; Risso et al., 2014), supplemented by selection of ‘stable genes’ (independent of the confounding

variables), and an iterative and automated approach for removal and inclusion of respectively unwanted and wanted variation. The

RUV correction approach exploits a generalized linear model, and estimates the contribution of covariates of interest and unwanted

variation using singular value decomposition (Risso et al., 2014). In principle, this approach is applicable to any RNA-seq dataset and

allows for investigation of many potentially confounding variables in parallel. Of note, the iterative correction algorithm is agnostic for

the group to which a particular sample belongs, in this case NSCLC or non-cancer, and the necessary stable gene panels are only

calculated by samples included in the training cohort. The algorithm performs the following multiple filtering, selection, and normal-

ization steps, i.e.:

(i) Filtering of genes with low abundance, i.e. less than 30 intron-spanning spliced RNA reads in more than 90% of the sample

cohort (included in the main data processing pipeline, see section ‘Processing of Raw RNA-Sequencing Data’).

(ii) Determination of genes showing least variability among confounding variables (‘stable genes’). For this, the non-normalized

raw reads counts of each gene that passed the initial filter in (i) were correlated using Pearson’s correlation to either the total

intron-spanning library size (as calculated by the DGEList-function of the edgeR package in R) or the age of the individuals. In

case of correlations towards the intron-spanning library size, genes with a high Pearson correlation (towards 1) show the least

variability after counts-per-million normalization, and were thus designated as stable genes.

(iii) Raw read counts of the training cohort were subjected to the RUVg-function from the RUVSeq-package in R. The stable genes

identified among the confounding variables were used as ‘negative control genes’. Following, the individual estimated factors

for each sample identified by RUVg are correlated to potential confounding factors (in the current study: library size, age of the

individual) or the group of interest (for example non-cancer versus NSCLC). The continuous (confounding) variables are corre-

lated to the estimated variance of the samples. Dichotomous variables (e.g. group) are compared using a two-sided, indepen-

dent Student’s t-test. In both instances, the p value was used as a significance surrogate between the RUVg variable and the

(confounding) variable. Of note, to prevent removal of a variable likely correlated to group, we applied two rules prior tomatch-

ing a variable to a (confounding) factor, i.e. a) the p value betweenRUVg variable and group should be at least >1e-5, and b) the

p value between RUVg variable and the other variable should be at least <0.01. Raw non-normalized reads were corrected for

RUVg variable x in case this variable was correlated to a confounding factor. Finally, the total intron-spanning library size per

sample was adjusted by calculating the sum of the RUVg-corrected read counts per sample.

(iv) RUVg-normalized read counts are subjected to counts-per-million normalization, log2-transformation, and multiplication us-

ing a TMM-normalization factor. The latter normalization factor was calculated using a custom function, implemented from the

calcNormFactors-function in the edgeR package in R. Here, the eligible samples for TMM-reference sample selection can be

narrowed to a subset of the cohort, i.e. for this study the samples assigned to the training cohort, and the selected reference

sample was locked.

We applied this iterative correction module to all analyses in this work. The estimated RUVg number of factors of unwanted vari-

ation (k) was 3. We directly compared the performance of our previous normalization module and the iterative correction module pre-

sented in this study using relative log intensity (RLE) plots, and observed superior removal of variation within the expression data.

RLE-plots were generated using the plotRLE-function of the EDASeq package. Significance of the reduction of inter-sample vari-

ability was determined by calculating the absolute difference of the samples’ median RLE counts to the overall median RLE counts

for all samples for each sample with and without RUV-mediated factor correction.

PSO-Enhanced SVM Algorithm Development
The PSO-enhanced thromboSeq algorithm implements multiple improvements over the previously published thromboSeq algo-

rithm (Best et al., 2015). First, we improved algorithm optimization and training evaluation by implementing a training-evaluation

approach. A total of 93 samples for the matched cohort and 120 samples for the full cohort assigned for training-evaluation were

used as an internal training cohort. These samples served as reference samples for the iterative correction module (see ‘Data

Normalization and RUV Factor Correction’-section), initial gene panel selection by a likelihood ratio ANOVA test (see ‘Differential

Splicing Analysis’-section), SVM-parameter optimization, and final algorithm training and locking (selection of support vectors).

Second, after the likelihood ratio ANOVA analysis we removed genes with high internal correlation (findCorrelations-function in

the R-package caret), as these were previously suggested to contribute to unwanted noise in SVM-models. Third, we imple-

mented a recursive feature elimination (RFE) algorithm, previously proposed by Guyon et al. (Guyon et al., 2002), to enrich the

gene panels for genes most relevant and contributing to the SVM classifiers. Fourth, following the final SVM cost and gamma

parameter grid search, we performed additional refinement of the cost and gamma parameters, by enabling an internal, second

particle swarm optimization algorithm (cv.particle_swarm-function in the R-package Optunity). This internal particle swarm algo-

rithm was employed to investigate and pinpoint neighboring values of the optimal gamma and cost parameters determined by the
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SVM grid search for more optimal internal SVM performance. Fifth, the entire SVM classification algorithm was subjected to a par-

ticle swarm optimization algorithm (PSO), implemented by the ppso-package in R (optim_ppso_robust-function) (Tolson and

Shoemaker, 2007). Particle swarm intelligence is based on the position and velocity of particles in a search-space that are seeking

for the best solution to a problem. Upon iterative recalibration of the particles based on its local best solution and overall best

solution, a more refined estimate of the input parameters and algorithm settings can be achieved. The implemented algorithm

allows for real-time visualization of the particle swarms, optimization of multiple parameters in parallel, and deployment of the iter-

ative ‘function-calls’ using multiple computational cores, thereby advancing implementation of large classifiers on large-sized

computer clusters. The PSO-algorithm aims to minimize the ‘1-AUC’-score. We employed for our matched NSCLC/non-cancer

cohort classifier 100 particles with 10 iterations and for the full NSCLC/non-cancer cohort classifier 200 particles with 7 iterations.

We optimized four steps of the generic classification algorithms, i.e. (i) the iterative correction module threshold used for selection

of genes identified as stable genes among the library size, (ii) the FDR-threshold included in the differential splicing filter applied to

the results of the likelihood-ratio ANOVA test, (iii) the exclusion of highly correlated genes selected after the likelihood ANOVA test,

and (iv) number of genes passing the RFE-algorithm (see also Figure S4A). Predefined ranges were submitted to the PSO-algo-

rithm for every classification task presented in the this study. Training of SVM algorithms was performed using a two-times internal

cross validation, and an initial gamma and cost parameter range for the grid search of 2^(-20:0) and 2^(0:20) respectively. To ac-

count for undetected genes in the validation cohort, potentially hampering normalization of the data and reducing algorithm per-

formance, genes with counts between zero and 12 (matched cohort) and 2 (full cohort) were replaced by the median counts of the

training cohort for that particular gene.

Performance Measure PSO-Enhanced thromboSeq
We assessed the performance, stability, and reproducibility of the PSO-enhanced thromboSeq platform using multiple training,

evaluation, and independent validation cohorts. All classification experiments were performed with the PSO-enhanced

thromboSeq algorithm, using parameters optimized by particle swarm intelligence. We assigned for the matched cohort 133 sam-

ples for training-evaluation, of which 93 were used for RUV-correction, gene panel selection, and SVM training (training cohort),

and 40 were used for gene panel optimization (evaluation cohort). The full cohort contained 208 samples for training-evaluation, of

which 120 were used for RUV-correction, gene panel selection, and SMV training (training cohort), and 88 were used for gene

panel optimization (evaluation cohort). All random selection procedures were performed using the sample-function as imple-

mented in R. For assignment of samples per cohort to the training and evaluation cohorts, only the number of samples per clinical

group was balanced, whereas other potentially contributing variables were not stratified at this stage (assuming random distribu-

tion among the groups). Following, an SVM model was trained using the training samples, and the samples assigned to the inde-

pendent validation cohort were predicted. The late-stage NSCLC samples and early-stage locally advanced NSCLC samples were

validated separately resulting in two ROC curves. The 53 locally advanced NSCLC samples were age-matched with 53 non-can-

cer individuals selected from the non-cancer samples of the independent validation cohort. Performance of the training cohort was

assessed by a leave-one-out cross validation approach (LOOCV, see also (Best et al., 2015)). During a LOOCV procedure, all

samples minus one (‘left-out sample’) are used for training of the algorithm. Each sample is predicted once, resulting in the

same number of predictions as samples in the training cohort. The list of stable genes among the initial training cohort, determined

RUV-factors for removal, and final gene panel determined by swarm-optimization of the training-evaluation cohort were used as

input for the LOOCV procedure. As a control for internal reproducibility, we randomly sampled training and evaluation cohorts,

while maintaining the validation cohorts and the swarm-guided gene panel of the original classifier, and perform 1000 (matched

and full cohort NSCLC/non-cancer) training and classification procedures. As a control for random classification, class labels of

the samples used by the SVM-algorithm for training of the support vectors were randomly permutated, while maintaining the

swarm-guided gene list of the original classifier. This process was performed 1000 times for the matched and full NSCLC/non-

cancer cohort classifiers. P values were calculated accordingly, as described previously (Best et al., 2015). Results were

presented in receiver operating characteristics (ROC) curves, and summarized using area under the curve (AUC)-values, as deter-

mined by the ROCR-package in R. AUC 95% confidence intervals were calculated according to the method of Delonge using the

ci.auc-function of the pROC-package in R.

Gene Ontology Analysis
For the gene ontology analysis, we investigated co-associated gene clusters using the PAGODA functions implemented in version

1.99 of the scde R-package (http://pklab.med.harvard.edu/scde/). PAGODA allows for clustering of redundant heterogeneity pat-

terns and the identification of de novo gene clusters through pathway and gene set over-dispersion analysis (Fan et al., 2016). In

particular, the ability to identify de novo gene clusters is of interest for the analysis of platelet RNA-seq data, as platelet biological

functions are potentially unannotated and can only be inferred by unbiased cluster analysis. Gene IDs as selected by differential

splicing analysis (n=1,622) were used as input to generate gene ontology library files. We used a distance threshold of 0.9 for the

PAGODA redundancy reduction, and identification of de novo gene options was enabled. Remaining steps in the analysis were ac-

cording to instructions from the PAGODA authors. PAGODA analysis revealed four major clusters (one existing and three de novo

gene clusters) of co-regulated genes that were correlated to disease state. We selected clusters with a significantly enrichedmultiple
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hypothesis testing corrected z-score (adjusted z-score). The de novo clusters were further curated manually using the PANTHER

Classification System (http://pantherdb.org/) on the 26th of September 2016.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The raw sequencing data reported in this paper has been deposited into the NCBI GEO database under accession number

GSE89843.
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Figure S1, related to Figure 1. ThromboSeq pre-analytical evaluation. 
(A) Overview of Non-cancer and NSCLC platelet samples (total of 779) included in this 

study for thromboSeq. (B) Overview of platelet activation markers as measured by flow 

cytometric analysis of n=3 (8 hour time point) or n=6 (other time points) platelet 

samples collected from healthy donors and isolated using the thromboSeq platelet 

isolation protocol. Gray and red boxes represent average percentage of platelets 

expressing respectively P-selectin or CD63 on the surface. The box indicates the 

interquartile range (IQR), black line represents the median, and the whiskers indicate 

1.5 x IQR. Dots represent expression of these surface markers after platelet activation 

with TRAP. Platelet samples are only minimally activated using the thromboSeq 

platelet isolation protocol. Neg Ctrl = negative control; platelet samples isolated 
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according to an isolation protocol validated for minimal platelet activation. (C) Boxplot 

indicating the platelet counts of Non-cancer (n=33) and NSCLC (n=138) individuals of 

whom data was available. Platelet counting was performed on the day of blood 

collection or up to three days before blood collection. The box indicates the interquartile 

range (IQR), black line represents the median, and the whiskers indicate 1.5 x IQR. 

(D) Correlation plot of platelet count (x-axis) and the matching platelet RNA yield (y-

axis). A moderate correlation was observed (r=0.24, p=0.001, n=171, Pearson’s 

correlation). (E) Correlation plot of platelet count (x-axis) and the estimated RNA input 

for thromboSeq (y-axis). No significant correlation was observed (r=-0.01, p=0.87, 

n=171, Pearson’s correlation). (F) Correlation plot of platelet RNA yield (x-axis) and 

the estimated RNA input for thromboSeq (y-axis). No significant correlation was 

observed (r=-0.04, p=0.57, n=171, Pearson’s correlation). (G) Histogram of the 

average fragment length of reads mapped to intergenic regions for both spiked (left) 

and smooth (right) samples (n=50 samples each, randomly sampled from age, 

smoking, and blood storage time-matched cohort). The percentage of reads with 

specific concatenated fragment size are indicated in the individual plots. (H) Flowchart 

demonstrating sample filtering steps during pre-analytical bioinformatic quality control 

steps. Values in the boxes indicate sample numbers per group (green = ‘Non-cancer’, 

blue = ‘NSCLC’).  



	

 

 

Figure S2, related to Figure 4. Correlation plot platelet count to P-selectin.  

Correlation plot of platelet count (x-axis) to log2-transformed counts-per-million 

(logCPM) of P-selectin in the patient age, smoking and blood storage time-matched 

cohort. A moderate correlation was observed (r=0.19, p=0.01, n=171, Pearson’s 

correlation). 
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Figure S3, related to Figure 6. Schematic overview of RUV factor correction 
module for the PSO-enhanced thromboSeq classification algorithm. 
(A) Schematic overview of the iterative correction module as implemented in 

thromboSeq. The RNA-seq data correction procedure includes multiple steps, i.e. 1) 

filtering of low abundant genes, 2) determination of stable genes among confounding 

variables, 3) raw-read counts Remove Unwanted Variation (RUV)-based factor 

Figure S3
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analysis and correction, and 4) reference group-mediated counts-per-million (CPM) 

and TMM-normalization. In detail, in step 1 genes with low confidence of detection, i.e. 

less than 30 intron-spanning spliced RNA reads in more than 90% of the sample 

cohort, are excluded. In the schematic example, the two upper genes (rows) contain 

in >90% of the samples (in this schematic example n=10 in total) sufficient numbers of 

reads, as indicated by the green boxes. Thus, these genes will be included for analysis. 

The lower two boxes indicate insufficient numbers of samples with sufficient numbers 

of genes, thus prompting the algorithm to remove these particular genes from the 

downstream analyses. Secondly, the algorithm searches for genes that show a stable 

expression pattern among all other samples. For this, the algorithm performs multiple 

Pearson’s correlation analyses among a (potential confounding) variable and raw read 

counts, resulting in a distribution of the correlation coefficients. In the schematic figure, 

this is shown for intron-spanning reads library size (left) and patient age (right). The 

correlation distribution is shown below, and the putative thresholds (also subjected to 

PSO selection) are indicated by black lines. Of note, as the raw intron-spanning read 

counts are normalized by CPM normalization afterwards, stable genes have to 

approximate a correlation coefficient of one. During the third step, the algorithm first 

identifies factors contributing to the data in an unbiased way, using the RUVSeq-

correction module (RUVg-function). The RUVSeq correction approach estimates and 

corrects based on a generalized linear model of a subset of genes and by singular 

value decomposition the contribution of covariates of interest and unwanted variation. 

Secondly, the algorithm iteratively correlates the variable of interest (group) and 

potentially confounding variables (patient age and blood storage time) to the factors 

identified by RUVSeq. If a factor is determined to be correlated to a confounding factor 

(e.g. intron-spanning reads library size in ‘Factor 1’), the factor will be marked for 

removal (‘Remove’). Alternatively, if a factor is determined to be correlated to the factor 

of interest (e.g. group in ‘Factor 2’) or to none of the factors identified as involved 

factors (e.g. ‘Factor 3’), the factor will not be removed (‘Keep’). Finally, in the fourth 

step, CPM normalization and Trimmed Mean of M-values (TMM)-correction is 

performed using only the samples from the training cohort as eligible samples to 

calculate the TMM-correction factor. (B) Same example for correlation intron-spanning 

library size as shown in A.2 (left), but here y-axis indicates CPM normalized counts. 

This graph emphasizes that, for this particular variable, a correlation coefficient up to 

1 has to be selected, resulting in selection of genes stable after CPM normalization. 



	

(C) Interquartile range distribution of all genes after CPM normalization ordered by 

correlation with library size. Highly correlated genes (right of black line, example 

threshold r>0.8) show a minimal interquartile range after CPM normalization as 

compared to the samples with a diminished correlation coefficient (left of the black 

line). (D) Relative log expression (RLE) plots of 263 samples normalized using our 

previous approach ((Best et al., 2015), upper plot) and the novel approach (current 

study, lower plot). The RLE plot indicates the log-ratio of a read count to the median 

count across samples, and should show for a well-normalized datasets a similar 

distribution centered around zero. The correction module reduces the intersample 

variability significantly (p<0.0001, n=263, two-sided Student’s t-test). 



	

 

Figure S4, related to Figure 6. Swarm intelligence and thromboSeq. 
(A) Schematic overview of the PSO-enhanced thromboSeq classification module. 

Multiple steps and filters of the algorithm are particle swarm-optimized, as indicated by 

the ‘bird’-sign. First, the dataset is subjected to the iterative correction module (see 

also Figure S3). Second, most differentially spliced (DS) genes are calculated and 

selected. Third, highly correlated genes among genes selected in the second step are 

removed. Fourth, a support vector machine (SVM) model is built using the training 

cohort, optimizing the gamma (g) and cost (c) parameters by a grid search. Fifth, all 

genes selected for classification are recursively ranked according to the contribution 

to the SVM model, resulting in a ranked classification gene list. This list is subjected to 

swarm-based filtering. Sixth, using the reduced gene list an updated SVM model, again 

with gamma (g) and cost (c) optimization by grid search, is built. Seventh, the gamma 

(g) and cost (c) values are further optimized by a second particle swarm optimization 

algorithm. Finally, using the reduced gene list and optimized gamma (g) and cost (c) 

parameters the final SVM model is built. (B) Schematic representation and sample 

cohort details of the training, evaluation, and validation cohorts. Cohorts are used for 

Figure S4

Iterative
correction module
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assessing the analytical performance of PSO-enhanced thromboSeq and to 

investigate the diagnostic classification power in a patient age, smoking and blood 

storage time-matched cohort. The training cohort included 44 Non-cancer individuals 

and 49 patients with NSCLC. The algorithm was optimized using a 40-samples 

evaluation cohort and validated on a 130-samples validation cohort. (C) Schematic 

representation of thromboSeq machine learning-based liquid biopsies for cancer 

diagnostics. A library of RNA-seq data generated from blood platelets from individuals 

with different (malignant) diseases and healthy individuals served as input for 

thromboSeq algorithm development. Following algorithm optimization using the 

particle swarm optimization-module and model validation, the platform enables RNA 

signature-based disease classification for individual cases. By nature, swarm 

intelligence allows for self-reorganization and re-evaluation, enabling continuous 

algorithm optimization. 
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