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Supplementary Methods 

Patient cohort 

A cohort of 66 treatment-naïve children at diagnosis of their IBD (CD=43, UC=23), along with 

30 age- and sex-matched non-inflammatory control children, were recruited by the Paediatric 

Gastroenterology team at Addenbrooke’s Hospital during 2013-16. This study was conducted 

with informed patient and/or carer consent and with ethical approval (REC-12/EE/0482). 

Children with macroscopically and histologically normal mucosa served as the non-disease 

control group (n=30). Each patient’s final clinical diagnosis was based on the revised Porto 

criteria1–3. At diagnostic colonoscopy, mucosal biopsies were taken from the small bowel (i.e. 

Terminal Ileum = TI) and two large bowel sections (i.e. Ascending Colon=AC and Sigmoid Colon 

= SC). The inflammation status of a sample (inflamed vs. non-inflamed) was based on the 

histology of a paired sample taken within 2 cm of samples at the time of the initial endoscopy. 

Longitudinal samples were taken from the terminal ileum and sigmoid colon of a subset of 

patients that underwent repeat endoscopy (CD n=14, UC n=9). 

A blood sample was taken for patient genotyping. Clinical phenotype and outcome data was 

prospectively recorded over a minimum of 18 months post-diagnosis. Supplementary Table S1 

provides clinical details and sample availability for each patient.  

These samples were used for several omics analyses including DNA methylation arrays 

(Illumina HumanMethylation450 and Illumina EPIC beadchips), RNAseq, 16S sequencing and 

genotyping (Illumina OmniExpressExome-8 beadchip), the methods of which are described 

below. Table 1 outlines the samples analysed by each method.  

Purification of intestinal epithelium 

Biopsy samples were processed immediately and IECs purified using enzyme digestion and 

magnetic bead sorting for the epithelial cell adhesion molecule (EpCAM) as described 

previously4,5. Briefly, samples were washed with Hank’s balanced salt solution and incubated 

with an enzyme mix of liberase (Roche) and hyaluronidase (Merck) at 37°C on a horizontal 

shaker. The resulting cell suspension was passed through a 40 μm sieve, spun down, 

resuspended and stained with anti- Epithelial Cell Adhesion Molecule (EpCAM) magnetic 

microbeads with added Fc-receptor block (both Miltenyi Biotec). After washing and 

resuspension, a magnetic automated cell separation system (autoMACS, Miltenyi Biotec) was 

used to positively select for EpCAM(+) cells. Sorted EpCAM(+) cells were resuspended in RLT 

Plus lysis buffer (Qiagen) supplemented with 1% β-Mercaptoethanol (Sigma), then passed 

through a homogenizing column (Qiagen) and stored at -80°C until further processing. Mucus 

for the isolation of adjacent microbiota was collected during tissue processing from the  sieve 
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and centrifugation supernatants, then pooled, pelleted and stored at -80oC to extract DNA from 

the adjacent microbiota. Quality of epithelial separation was routinely assessed by flow 

cytometry confirming high purity as described previously4,5. 

DNA and RNA extraction 

DNA and RNA were extracted simultaneously from the same sample using the AllPrep 

DNA/RNA mini kit (Qiagen). DNA from the adjacent microbiota was extracted using QIAamp 

DNA Stool Mini Kit and from whole blood using the DNeasy Blood and Tissue Kit (both Qiagen). 

DNA was bisulfite- converted using Zymo DNA methylation Gold kit (Zymo Research).  

 

Arrays and sequencing 

Patient genotyping was performed using the Illumina OmniExpressExome-8 BeadChip Kit. 

Genome-wide DNA methylation was profiled using two available array platforms; the Illumina 

Infinium HumanMethylation450 BeadChip or Illumina EPIC platform (Illumina, Cambridge, UK). 

An initial cohort was processed on the Illumina Infinium HumanMethylation450 BeadChip 

including purified epithelium from three gut segment samples and a subset of longitudinal 

samples. Additional samples were processed on the Illumina EPIC BeadChip including 

additional purified epithelial samples from the ileum and colon, longitudinal samples and 

organoid samples. Accession Numbers: E-MTAB-5463. An overview of sample numbers can 

be found in Table 1 and supplementary Table S3.  

Expression profiling was performed using RNA-sequencing (RNA-seq). RNA integrity was 

checked using an Agilent Bioanalyzer and mRNA was sequenced at the University of Kiel, 

Germany using an established pipeline as described previously6. Project accession number: E-

MTAB-5464.  

16S rRNA gene profiling of the adjacent microbiota was performed at the Wellcome Trust 

Sanger Centre (Hinxton, Cambridge). Samples were PCR-amplified using barcoded fusion 

primers targeting the V1-V2 region of the gene (27f_Miseq and 338R_MiSeq) and sequenced 

on the Illumina MiSeq platform using 2×250 bp cycles. The 16S microbiota data can be found 

under EBI study ID PRJEB6663. 

Supplementary Table S2 lists patients and array identifiers for all data layers.  
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DNA methylation analysis 

Both K450 and EPIC methylation arrays provide a quantitative measure for DNA methylation at 

single CpG sites (>450,000 and >850,000 sites respectively) across the genome. DNA 

methylation (DNAm) analyses were performed using minfi71, sva8, DMRcate9 and limma10 R 

packages. First, functional normalisation5 was applied using a strict detection threshold (P < 

1E-5). For each CpG site, beta values were calculated from the ratio of methylated (M) and 

unmethylated (U) probes from the array, B=M/(M+U+100), which range from 0 to 1 (0=non 

methylated, 1=fully methylated). Additionally, M-values were calculated as log(M/U). M-values 

were used for statistical analysis as they are normally distributed, beta values were used for 

visualisation of the data only. We applied ComBat, (sva package8) to the beta and M-values at 

the individual chip level, also including covariates (gender and inflammation) from the 

phenotypic data when stated. DNAm probes with known SNP co-localization or presence on 

the sex chromosomes were excluded using DMRcate (rmSNPandCH: settings maf=0.05, 

distance=2, rmXY=True)9. This protocol was the same for both DNAm datasets (i.e. samples 

profiled on the K450 and EPIC platform). A total of 423,394 CpG sites were retained in 450K 

array and 748,362 In EPIC array. Combining K450 and EPIC datasets was performed before 

normalisation and batch correction. A total of 374,213 CpGs were retained which are present 

on both arrays. DMRs were identified from the M-values using DMRcate (default parameters) 

and plotted using beta values and the Gviz11 R package. DNAm results were annotated using 

the IlluminaHumanMethylation450kmanifest12 R package for 450K array data and 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19 R package for EPIC array data. Figure 1-4, 

5D, 6A-B and the DMPs used for Figure 5A-C are based on analysis of purified IEC at diagnosis 

using 450K array (n=41 patients). Figure 5A and 6C-F include further samples both at diagnosis 

and repeat endoscopy (measured on 450K or EPIC platform). All organoids were profiled using 

EPIC arrays.  

 

RNAseq analysis 

RNAseq data was processed by filtering out low quality residues (fastq_illumina_filter -

,http://cancan.cshl.edu/labmembers/gordon/fastq_illumina_filter/) and adapters were trimmed 

(cutadapt13); the filtered reads were mapped to the human genome (Grch37) with tophat2 

(parameters “ --library-type fr-firststrand --b2-very-sensitive”) (tophat214, bowtie15 and 

samtools16). The GTF file (GRCh37, release 19 GENCODE) for the alignment was downloaded 

from GENCODE. The raw read-counts per gene were generated using htseq-count17. R-log 

normalised counts for gene expression levels were calculated using DESeq218. 
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Microbiota composition 

The 16S rDNA profiling and analysis was performed using the QIIME protocol19–23 and 

phyloseq24 R package. Operational taxonomic units (OTUs) were picked using the Greengenes 

database (updated November 2015). OTUs identified in the negative control samples were 

removed from all samples as likely contaminants. 

Differential analysis and variance analysis 

Only autosomes were considered for variance analysis and the identification of differential 

features. Multidimensional scaling analysis (MDS) was applied to examine sample relationships 

in different assays (normalised data DNAm: batch corrected M-values; RNAseq: r-log 

normalised read counts; 16S: normalised OTU counts). These analyses were based on an 

Euclidean sample distance matrix calculated from the individual omics datasets (cmdscale, dist 

R function), which was then used to generate coordinates per sample for low dimensional 

representation of the samples. This was then combined with phenotypic data to label the 

samples based on key phenotypic information. Differential analysis was performed using limma 

for the DNAm data on both the batch-corrected M-values and the batch+covariate corrected M-

values, thereby assessing differences between the disease groups tested e.g. IBD vs. Control. 

All tests were carried out for individual CpG sites, following the Benjamini- Hochberg stepdown 

procedure to adjust for multiple testing (significant effects at adjusted P < .01 were reported). 

DESeq218 was used to test for differential gene expression using read counts, comparing 

disease group (using ± age and inflammation as covariates). As before Benjamini-Hochberg 

was used to adjust for multiple testing and reported significant differentially expressed genes at 

adjusted P< .01 for a minimum log fold change of ±0.5. Alpha and Beta diversity calculations 

were performed on the 16S OTU counts using phyloseq24. 

 

Variance decomposition was performed using a linear mixed model, considering each dataset 

(normalised data DNAm: batch corrected M-values; RNAseq: r-log normalised read counts; 

16S: normalised OTU counts) and each gut segment (autosomes only) separately. For each 

data point (e.g. CpG sites, genes), we fit random effects to estimate the variance attributable to 

age, gender, disease and inflammation as four key phenotypic variables in these datasets. 

Parameters were estimated using (restricted) maximum likelihood, thereby estimating the 

proportion of variance explained by each of these factors (Figure 2A). The lead phenotype was 

chosen as the phenotype contributing the greatest proportion of the variance (Figure S3). The 

average explained variance for each phenotype was calculated based on the lead phenotype 

for each data point. 
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Pathway enrichment analysis 

InnateDB25 was used to perform pathway over-representation analysis for the disease 

signatures identified from our omics layers including rDMRs, using the Reactome pathways as 

the null set. For each data layer the annotated gene name and adjusted P < .01 from the 

differential analysis were used. Pathway analysis was performed using a hyper-geometric test 

and the Benjamini- Hochberg correction.  

 

Human intestinal epithelial organoid culture  

Intestinal organoids were generated from mucosal biopsies by isolation and culturing of 

Intestinal crypts in a protocol adjusted from Sato et al26. Freshly obtained TI and SC biopsies 

were washed with PBS and incubated in 2.5.mM EDTA at 4°C for 30 min. Crypts were released 

by pipetting with a P1000 pipette, spun down, seeded in Matrigel extracellular matrix (Corning) 

and covered in culture medium as detailed in Table 4. Conditioned media were kindly provided 

by the tissue culture facility at the Wellcome Trust-MRC Stem Cell Institute, University of 

Cambridge, UK. The Wnt-producing L-cell line was kindly provided by Hans Clevers (Hubrecht 

Institute, NL). The Rspo I producing cell line was kindly provided by Calvin Kuo (Stanford 

University, CA, USA). Organoids were maintained by medium change every 2 days and by 

splitting every 7-10 days via mechanical disruption.  

 

Human intestinal epithelial organoid analysis  

Differential analysis was analogous to that of data from the primary cohort; see above. This 

analysis was restricted to the set of N=374,213 probes present on both array formats, to enable 

cross-array platform comparisons. P-values from differential analysis of the organoids (n=12) 

were used to compare the DMPs from the purified epithelium disease comparisons (e.g. SC: 

CD vs. Control and TI: CD vs. Control) to five random selections of CpG sites from across the 

genome. QQ plots were used to show the observed vs. expected p-values from the random 

CpG selections and the disease associated DMPs derived from purified, primary epithelium. 

Locus-specific validation of DNA methylation profiles was performed on bisulfite-converted DNA 

after PCR amplification using Pyromark Q24 (Qiagen) pyrosequencing system as described 

previously5.  

 

Genetic Enrichment 

Significant disease signatures from each gut segment and omics layer were compared to IBD 

risk loci and additional disorders (Alzheimers; Multiple Sclerosis (MS) and Type 1 Diabetes 

Mellitus (T1D)). A set of n=225 IBD risk loci were obtained from27–29 while disease loci for other 

diseases were taken from DisGeNET (v4.0 (http://www.disgenet.org/, Nov 2016) all SNP-

https://paperpile.com/c/MVfthm/HT1w
https://paperpile.com/c/MVfthm/VoTm
https://paperpile.com/c/MVfthm/ZoZak
https://paperpile.com/c/MVfthm/Ivpr+HpbS+YrJv
http://www.disgenet.org/
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disease associations list30,31. SNPs were chosen based on the above disease selection, 

presence in GWASCAT and publication after 2005.  

We assessed the number of disease variants that were in proximity to at least one rDMR or 

DEG (distance window 10kb and 1mb for rDMRs and DEGs respectively). To assess the 

chance expectation of this overlap we used SNPsnap32 to generate n=1000 sets of  random 

non-risk loci elsewhere in the genome, where each variant was matched for allele frequency 

(±5%), gene density (±50%), distance to nearest gene (±50%) and a distance cut-off of r2=0.5 

for linkage disequilibrium (default SNPsnap settings) and excluding the HLA locus. The number 

of SNPs tested for each disease was: IBD n=225, Alzheimers n=99, MS n=71, T1D n=40. 

Enrichment fold changes were calculated as the log of the actual number of SNPs with 

significant disease signal (dependent on level) minus the log of the mean number of SNPs 

based on the permuted data. Enrichment P-values were calculated by counting the number of 

permutations with greater than or equal to the actual number of SNPs with significant disease 

signal plus one, divided by 1000 (number of permutations).  

Patient Genotypes 

The Sanger imputation service13-16 was used to impute the patient single nucleotide positions 

(SNPs) from the results of the genotyping array using the UK10K+1000 Genomes Phase 

3/Haplotype Reference Consortium (release 1.1) reference panel (Jan 2016). We discarded 

variants with an allele frequency of less than 5%, resulting in 5,323,884 SNPs. 202 of the 236 

IBD risk SNPs27,29 were imputed and PLINK33 was used to calculate genetic risk scores. The 

genetic risk scores were used to predict disease for this patient in diagnostic model analyses 

performed as part of Figure 6 A and B. 

Diagnostic Classification Models 

Random forest classification models were built for each dataset (RNAseq / DNAm /16S data 

per gut segment) using diagnosis levels (disease vs. control, CD vs. UC) as the outcome 

measure using only the omics data and no covariates from the clinical data (Figure 6A). The 

maximum number of cross-validations (CVs) was determined by the sample size of each 

dataset (DNAm: all n=41, IBD only n=24; RNAseq: all n=32, IBD only =20; 16S: all n=63; IBD 

only n=42). Only autosomes were included in the model input data. The variance of each omics 

dataset was calculated and data points with low variance (<10%) were removed from the 

datasets as a method of feature selection. The models were built using the number of samples 

and features present in each dataset, 1000 estimators, no maximum depth and a minimum split 

of two samples. Each model was trained on the data using shuffle split CV and feature selection, 

with 30% of samples used as the test set for each CV. Results from the cross validation were 

used to assess the area under the curve (AUC), accuracy, precision, sensitivity and specificity. 

https://paperpile.com/c/MVfthm/vM3d
https://paperpile.com/c/MVfthm/YrJv+Ivpr
https://paperpile.com/c/MVfthm/ZNYw
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Additionally, for the DNAm model, we tested the model performance using the independent 

follow-up data (Figure S8B). 

 

Weighted gene correlation network analysis (WGCNA)   

WGCNA was used to investigate the association between the omics data layers and disease 

outcome based several important clinical variables (Table S1). The general process of WGCNA 

is the clustering of the data points into modules to reduce the dimensions of the dataset. The 

use of modules (groups of genes/CpGs) greatly relieves the necessity of multiple testing as the 

number of tests performed is not based on the size of the omics dataset, rather the number of 

clinical parameters and modules. Each data point within the module has a 'gene significance 

score' which is the –log(p-value). A mean module gene significance is then calculated and this 

is correlated to the clinical parameter using Pearson's correlation method. WGCNA was 

performed for each diagnosis (CD and UC) by gut segment and dataset e.g CD samples from 

the SC using gene expression data. For the few missing values in this clinical data the median 

value was used for the patient group to complete the dataset. M-values were used for DNAm 

and r-log normalised gene counts were used for gene expression data. The WGCNA workflow 

as outlined in WGCNA tutorials:  

(https://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/)  

was implemented using the WGCNA R package34,35 The top 10% of varying data points (CpG 

sites or gene reads) for each dataset were used in this analysis (DNAm n=37,421, RNAseq 

n=5,488). The most suitable power setting was chosen for each dataset based on the Scale 

Independence and Mean Connectivity plots (based on model fit >0.8 and point of plateau on 

the graph). Module size was chosen to result in approximately 30/40 modules. Correlation 

analysis was performed between each module each clinical variable (Pearson) and p-values 

were calculated. Modules with a correlation (based on the eigengene) >±0.6 and p-value<0.05 

were analysed further. Intramodular scatter plots were created and modules were annotated for 

significantly correlated traits. Heatmaps were generated based on the top modules and used to 

categorise patients into two groups of IBD patients. These groups were then used to plot 

Kaplan-Meier curves (survival R module; survFit function) based on the top correlating clinical 

variables. Finally, the annotation of the top modules was compared between the DNAm and 

RNAseq data to look at the similarity between the data layers and clinical variable outcome 

association.  
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