Supplementary Material S1

This supplementary material is hosted by Eurosurveillance as supporting information alongside the article [Multidisciplinary,evidence-based consensus guidelines for human papilloma virus (HPV) vaccination in high-risk populations, Spain, 2016] on behalf of the authors who remain responsible for the accuracy and appropriateness of the content. The same standards for ethics, copyright, attributions and permissions as for the article apply. Eurosurveillance is not responsible for the maintenance of any links or email addresses provided therein.

General considerations to HPV vaccination in high-risk groups

• No preferences between any of the licensed vaccines available have been established, except when indicated.

• No current evidence supports vaccination schedules with fewer than 3 doses in high-risk populations.

• Long-term studies evaluating the duration of vaccine protection are lacking.

• No minimum threshold of antibody Geometric Mean Titres (GMT) has been internationally established for protection against HPV, even though some studies have used their own standards.

• Data was consistently limited to people under 26 years, especially in women, which may be related to two factors: vaccine licensing criteria (first authorised in women aged less than 26 years), and cervical cancer as the main reason for vaccination; in people living with HIV there was no limitation regarding age for reviewing published data. However, considering other high-risk populations, the high impact of HPV and developing HPV-related diseases, improvements in efficacy may represent a significant individual benefit, despite characteristics, such as sex, age and type of related lesions. Moreover, even though there is a paucity of robust data on safety in most groups, data in women from the general population aged \geq 30 years confirm safety and tolerability of available HPV vaccines [1-3]. The European Medicines Agency (EMA) approved increasing the indicated age for HPV vaccination in women, with no age limits for the prevention of certain cancers. Similarly, the US Food and Drug Administration (FDA) is currently considering increasing the indicated age for HPV vaccination for women from 27 to 45 years old.

• The data on immunogenicity, efficacy and safety of HPV vaccines in patients aged 26 years or above in subgroups of high-risk populations are scarce. Specific recommendations for these individuals could not be established, despite the likelihood of benefit from HPV vaccination

- 1. GlaxoSmithKline. Cervarix suspension for injection: summary of product characteristics. GlaxoSmithKline; 2012. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000721/WC500024632.pdf</eref>
- 2. Merck Sharp & Dohme BV. Gardasil suspension for injection: summary of product characteristics. Merck Sharp & Dohme BV; 2011. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000703/WC500021142.pdf</eref>
- 3. Merck Sharp & Dohme BV. Gardasil 9 suspension for injection: summary of product characteristics. Merck Sharp & Dohme BV; 2015. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/003852/WC500189111.pdf

Citation	Study design	Population (n) ^a	Vaccine type	Seroconversion (%)	Safety	Comments
Levin et al., 2010 [1]	Randomised, multicentre, placebo controlled	Children aged 7–12 years (126)	Quadrivalent	97–100	Any AE: 36% vaccine and 50% placebo; 8 subjects G3 and 2 subjects G4 AE, all not vaccine-related. AE not differ depending on CD4.	GMT was lower than age-matched historical cohorts of HIV-negative patients (30–50% less for HPV 6 and 18).
Wilkin et al., 2010 [2]	Prospective, multicentre, single- arm, cohort	Males aged 22–61 years (112)	Quadrivalent	95–100	No ≥ G3 AE. G2 local reaction: 8%. Other G2 vaccine-related: 5%. 1 death unrelated to vaccine.	GMT 40% lower than in historic cohorts of young men and women without HIV but similar to HPV MSM titres [36]; ART at the time of vaccination associated with higher antibody titres.
Kahn et al., 2013 [3]	Prospective, multicentre, single- arm cohort study	Women aged 16– 23 years (99; 30 not receiving ART)	Quadrivalent	92–100% (-ART) 100% (+ ART)	48.5% ≥ 1 local/systemic AE. Local reaction 26.3% (all G1 except 1 G2). Systemic AE 24.2% (headache 15.2%, fever 12.1%). 1 severe AE (G3 fatigue).	Compared with historic cohort of HIV- negative patients, GMT was similar in patients receiving ART but lower in patients not receiving ART.
Denny et al., 2013 [4]	HIV + : Randomised, placebo-controlled HIV-: Prospective single-centre, single-arm cohort	Women aged 18– 25 years, HIV + (120) and HIV- (30)	Bivalent	100% in vaccinated patients (all HIV- cohort and the treatment arm in HIV + study)	G3 local pain in 1.9% doses in HIV + and 1.2% doses in HIV G3 systemic AE in no more than 0.6% doses in all groups. Any AE 30-day FU 86.9% in HIV + and 86.7% in HIV No D/C due to AE. No deaths.	Baseline seropositivity for HPV 16 and 18: 85% and 64% in HIV + ; 64% and 50% in HIV Lower GMT titres in HIV + (ca 50–70%). No impact on CD4 titres or baseline viral load in post-vaccine response.
Giacomet et al., 2014 [5]	Non-randomised, single-centre	Adolescents and young adults (age 13–27 years), of both sexes, HIV + (46) and HIV- (46)	Quadrivalent	85% HIV + 91% HIV-	Local AE: 64.5% HIV + , 41.9% HIV Systemic AE: 23.4% HIV + , 3.6% HIV	No statistically significant differences in antibody titres.

TABLE S1.Published studies investigating human papillomavirus vaccination in populations with HIV, January 2006 to June 2016 (n = 9)

Kojic et al., 2014 [6]	Prospective, multicentre, single- arm cohort	Women aged 13– 45 years (319)	Quadrivalent	> 75% for all types	17% G ≥ 3 AE. 16 G ≥ 1 fever (1 G3). 3 G2 local reactions. 2 deaths not vaccine-related.	Lower seroconversion rate in patients with HIV viral load > 10,000 copies/mL and/or CD4 < 200 cells/mm ³ . GMT HPV 16/18 ca 50%, lower when compared with a historic cohort of HIV- women. Only study including patients with CD4 < 200 cells/mm ³ .
Toft et al., 2014 [7]	Randomised, single-centre, double-blind, active-controlled	Men and women aged 22–72 years (92)	Bivalent vs quadrivalent	Not reported	Local reactions: bivalent 91.1%, quadrivalent 69.6%, without gender differences. No serious AE.	Bivalent: 30 men/15 women. Quadrivalent: 31 men/15 women. Higher anti-HPV-18 titres with the bivalent vs quadrivalent vaccine both in men and women. No significant differences in anti-HPV-16 titres among vaccine groups. Higher GMT (HPV 16 and 18) in women vs men with bivalent but not with quadrivalent vaccine.
Money et al., 2016 [8]	Prospective, multicentre, single- arm, open-label cohort	Women aged > 15 years, age range 15–66 years (372)	Quadrivalent	94–99%	36% ≥ 1 AE. Local reactions 31%. Systemic AE 20%. 1 serious AE possibly related to vaccine (encephalopathy). 2 deaths, not vaccine-related.	Significantly higher (1.74–3.05 fold) peak antibody response in patients with undetectable HIV RNA.
Fontes et al., 2016 [9]	Prospective, single- centre, single-arm cohort	Men aged 18–45 years (19)	Quadrivalent	17 out of 19 patients	No serious AE reported.	Similar increase of circulating antibodies in people with serum CD4 levels < 500 cells/mm ³ (8/9) and ≥ 500 cells/mm ³ (9/10).

AE: adverse events; ART: antiretroviral treatment; D/C: discontinuations; FU: follow-up; G: grade (1–4); GMT: geometric mean concentrations of antibodies; HIV: human immunodeficiency virus; HIV-: HIV negative; HIV + : HIV positive; HPV: human papillomavirus.

^aPopulation was all HIV positive unless otherwise stated.

References:

1. Levin MJ, Moscicki AB, Song LY, Fenton T, Meyer WA 3rd, Read JS, et al.; IMPAACT P1047 Protocol Team. Safety and immunogenicity of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine in HIV-infected children 7 to 12 years old .J Acquir Immune Defic Syndr. 2010;55(2):197-204. http://dx.doi.org/10.1097/QAI.0b013e3181de8d26 PMID:20574412</jrn>

- 2. Wilkin T, Lee JY, Lensing SY, Stier EA, Goldstone SE, Berry JM, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1-infected men. J Infect Dis. 2010;202(8):1246-53. http://dx.doi.org/10.1086/656320 PMID:20812850
- 3. Kahn JA, Xu J, Kapogiannis BG, Rudy B, Gonin R, Liu N, et al. Immunogenicity and safety of the human papillomavirus 6, 11, 16, 18 vaccine in HIV-infected young women. Clin Infect Dis. 2013;57(5):735-44. http://dx.doi.org/10.1093/cid/cit319 PMID:23667266
- Denny L, Hendricks B, Gordon C, Thomas F, Hezareh M, Dobbelaere K, et al. Safety and immunogenicity of the HPV-16/18 AS04-adjuvanted vaccine in HIV-positive women in South Africa: a partially-blind randomised placebo-controlled study. Vaccine. 2013;31(48):5745-53. http://dx.doi.org/10.1016/j.vaccine.2013.09.032
 PMID:24091311
- 5. Giacomet V, Penagini F, Trabattoni D, Viganò A, Rainone V, Bernazzani G, et al. Safety and immunogenicity of a quadrivalent human papillomavirus vaccine in HIVinfected and HIV-negative adolescents and young adults. Vaccine. 2014;32(43):5657-61. http://dx.doi.org/10.1016/j.vaccine.2014.08.011 PMID:25149430
- 6. Kojic EM, Kang M, Cespedes MS, Umbleja T, Godfrey C, Allen RT, et al. Immunogenicity and safety of the quadrivalent human papillomavirus vaccine in HIV-1infected women. Clin Infect Dis. 2014;59(1):127-35. http://dx.doi.org/10.1093/cid/ciu238 PMID:24723284
- 7. Toft L, Storgaard M, Müller M, Sehr P, Bonde J, Tolstrup M, et al. Comparison of the immunogenicity and reactogenicity of Cervarix and Gardasil human papillomavirus vaccines in HIV-infected adults: a randomized, double-blind clinical trial. J Infect Dis. 2014;209(8):1165-73. http://dx.doi.org/10.1093/infdis/jit657 PMID:24273179
- Money DM, Moses E, Blitz S, Vandriel SM, Lipsky N, Walmsley SL, et al.; HPV in HIV Study Group. HIV viral suppression results in higher antibody responses in HIVpositive women vaccinated with the quadrivalent human papillomavirus vaccine. Vaccine. 2016;34(40):4799-806. http://dx.doi.org/10.1016/j.vaccine.2016.08.016
 PMID:27544584
- 9. Fontes A, Andreoli MA, Villa LL, Assone T, Gaester K, Fonseca LAM, et al. High specific immune response to a bivalent anti-HPV vaccine in HIV-1-infected men in São Paulo, Brazil. Papillomavirus Res. 2016;2:17-20. http://dx.doi.org/10.1016/j.pvr.2016.01.001 PMID:29074177

Citation	Study design	Population (n)	Vaccine type	Seroconversion (%)	Safety	Comments
Palefsky et al., 2011 [1]	Randomised, multicentre, placebo controlled	MSM aged 16-26 (602)	Quadrivalent	Not reported	Any AE at injection site vaccine- related: 58% vaccine and 59% placebo; Any systemic AE vaccine-related: 18% vaccine and 19% placebo 2 Serious AE in vaccination group, none related to vaccine	 Vaccine Efficacy against HPV-6, 11, 16, or 18– related anal intraepithelial Neoplasia: ITT analysis: 50.3% (95% CI, 25.7 to 67.2); PP analysis: 77.5% (95% CI, 39.6 to 93.3) Vaccine efficacy against HPV-6, 11, 16, or 18 persistent anal Infection: ITT analysis: 59.4% (95% CI, 43.0 to 71.4) PP analysis: 94.9% (95% CI, 80.4 to 99.4)
Giuliano et al., 2011 [2]	Randomised, multicentre, placebo controlled	Men aged 16-26 (4065): - HM, aged 16-23 (3463) - MSM, aged 16-26 (602)	Quadrivalent	No stratified analysis was made according to sexual orientation At least 97.4% of vaccinated people seroconverted	No stratified analysis was made according to sexual orientation Any AE at injection site vaccine- related: 60% vaccine and 54% placebo; Any systemic AE vaccine-related: 14% vaccine and 15% placebo Serious AE: 8 cases in vaccine group; 11 cases in placebo group, none related to vaccine	Vaccine efficacy against external genital lesion: - ITT analysis: 70.2 (23.0 to 90.2) - PP analysis: 79.0 (−87.9 to 99.6) Vaccine efficacy against Persistent Infection with HPV Type 6, 11, 16, or 18 and against Detection of HPV DNA: - ITT analysis: 43.6 (19.5 to 60.8) - PP analysis: 94.4 (64.4, 99.9)
Hillman et al., 2012 [3]	Randomised, multicentre, placebo controlled	Men aged 16-26 (4065): - HM, aged 16-23 (3463) - MSM, aged 16-26 (602)	Quadrivalent	HM vs MSM (HPV genotype): Month 7: 99 vs 97 (6) 99 vs 97 (11) 99 vs 94 (16) 98 vs 89 (18) Month 36: 90 vs 80 (6) 94 vs 89 (11) 98 vs 94 (16) 57 vs 54 (18)	Not reported	Heterosexual subjects had higher GMT levels for all vaccine HPV types at their peak (month 7) and at the end of the study (month 36) compared to MSM

TABLE S2.Published studies investigating human papillomavirus vaccination in MSM populations, January 2006 to June 2016 (n = 6)

Swedish et al., 2012 [4]	Non-concurrent, single centre, cohort study	202 MSM, aged 20-79: - 88 vaccinated - 114 unvaccinated	Quadrivalent	Not reported	Not reported	Incidence rate of recurrent HGAIN: 10.2 per 100 person-years (95%CI: 5.3–17.8/100 person-years) in vaccinated; 15.7 per 100 person-years (95% CI: 10.9–21.9/100 person-years) in unvaccinated people. Kaplan–Meier survival analysis demonstrated improved recurrence-free survival of vaccinated persons compared with unvaccinated persons in each year through the 3 years-period.
Swedish et al., 2014 [5]	Post-hoc analysis of non-concurrent, single centre, cohort study	313 MSM, aged >=26 years-old - 116 vaccinated - 197 unvaccinated	Quadrivalent	Not reported	Not reported	Incidence rate of anal condyloma: 3.7 per 100 person-years (95%CI: 1.8–6.8/ 100 person-years) in vaccinated; 7.3 per 100 person-years (95% CI 5.2–10.1/100 person-years) in unvaccinated people. Kaplan-Meier survival analysis demonstrated improved condyloma-free survival of vaccinated persons compared with unvaccinated.
Castellsagué et al., 2015 [6]	Prospective, multicentre, open-label cohorts	Men aged 16-26 (1429): - HM (1106) - MSM (313) Women aged 16-26 (1101)	Nonavalent	> 99% for all types	No stratified analysis was made according to sexual orientation in men Any AE: 76% men and 89% women Any AE at injection site: 68% men and 84% women Any systemic AE vaccine-related: 16% men and 23% women Serious AE: 23 cases in men cohort; 26 cases in women cohort, none related to vaccine	For all vaccine HPV types, the month 7 GMTs in MSM was lower than those in HM and women. The point estimates of the GMT ratios between MSM and the other two groups ranged as follows: 0.7-0.9 in MSM/women; 0.6-0.8 in MSM/HM

AE: adverse events; GMT: geometric mean concentrations of antibodies; HM: Heterosexual males, ITT: Intention-to treat; MSM: Males who have sex with males; PP: Perprotocol; HPV: human papillomavirus

- 1. Palefsky JM, Giuliano AR, Goldstone S, Moreira ED Jr, Aranda C, Jessen H, et al. HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med. 2011;365(17):1576-85. http://dx.doi.org/10.1056/NEJMoa1010971 PMID:22029979
- 2. Giuliano AR, Palefsky JM, Goldstone S, Moreira ED Jr, Penny ME, Aranda C, et al. Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med. 2011;364(5):401-11. http://dx.doi.org/10.1056/NEJMoa0909537 PMID:21288094
- 3. Hillman RJ, Giuliano AR, Palefsky JM, Goldstone S, Moreira ED Jr, Vardas E, et al. Immunogenicity of the quadrivalent human papillomavirus (type 6/11/16/18) vaccine in males 16 to 26 years old. Clin Vaccine Immunol. 2012;19(2):261-7. http://dx.doi.org/10.1128/CVI.05208-11 PMID:22155768

- 4. Swedish KA, Factor SH, Goldstone SE. Prevention of recurrent high-grade anal neoplasia with quadrivalent human papillomavirus vaccination of men who have sex with men: a nonconcurrent cohort study. Clin Infect Dis. 2012;54(7):891-8. http://dx.doi.org/10.1093/cid/cir1036 PMID:22291111
- 5. Swedish KA, Goldstone SE. Prevention of anal condyloma with quadrivalent human papillomavirus vaccination of older men who have sex with men. PLoS One. 2014;9(4):e93393. http://dx.doi.org/10.1371/journal.pone.0093393 PMID:24714693
- 6. Castellsagué X, Giuliano AR, Goldstone S, Guevara A, Mogensen O, Palefsky JM, et al. Immunogenicity and safety of the 9-valent HPV vaccine in men. Vaccine. 2015;33(48):6892-901. http://dx.doi.org/10.1016/j.vaccine.2015.06.088 PMID:26144901

Citation	Study design	Population (n)	Vaccine type	Seroconversion (%)	Safety	Comments
Jacobson et	Prospective,	Two cohorts:	Quadrivalent	- Prospective	AEs: number of patients	Both cohorts had a 100% seroconversion
al., 2013 [1]	multicentre, single-	- Prospective		cohort: 92-100%	affected/number of	to HPV 6, HPV 11 and HPV 16. HPV18
	arm, open-label	cohort, of children,		- Previously	patients with available	had lower seroconversion rates in both
	cohort	adolescents and		immunized	data	groups (95% in prospective cohort, age
		young adults (age		cohort: 40-100%	 Soreness at injection site: 17/35 	9-15; 92% in prospective cohort age 16-
		9–26 years) (n=37)			after dose 1; 15/32 after dose	26; 40% in previously immunized cohort,
		- Previously			2; 17/33 after dose 3	age 14-26)
		immunized cohort,			 Itchiness: no cases after dose 1 	Postvaccination GMT in the prospective
		of adolescents and			and 2; 2/33 after dose 3	cohort was as high or higher to all 4 HPV
		young adults (age			 Nausea: 1/35 after dose 1; no 	types compared with a healthy
		14–26 years) (n=15)			cases after dose 2; 3/33 after	comparison group within each age
					dose 3	group
					 Headache: 3/35 after doses 1, 	
					3/32 after dose 2; 2/33 after	
					dose 3	
					• Fatigue: 1/35 after dose 1; 3/35	
					after dose 2; 1/33 after dose 3	
					 5 serious adverse events: Two 	
					patients were hospitalized for IBD	
					exacerbations, 1 for pneumonia	
					and 1 for an ovarian torsion	
					secondary to	
					endometriosis.	

TABLE S3.Published studies investigating human papillomavirus vaccination in patients with IBD, January 2006 to June 2016 (n = 1)

GMT: geometric mean concentrations of antibodies; HPV: human papillomavirus.

Reference:

1. Jacobson DL, Bousvaros A, Ashworth L, Carey R, Shrier LA, Burchett SK, et al. Immunogenicity and tolerability to human papillomavirus-like particle vaccine in girls and young women with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(7):1441-9 **TABLE S4.**Published studies investigating human papillomavirus vaccination in women with HPV infection and precancerous cervical lesions,January 2006 to June 2016 (n = 3)

Citation	Study design	Population (n)	Vaccine type	Precancerous cervical lesions	Vaccine efficacy	Safety	Comments
Joura et al., 2012 [1]	Randomised, double-blind, placebo controlled trial	Women aged 15–26 years Vaccine (n=587) Placebo (n=763)	Quadrivalent	CIN 1 or worse	Reduction of subsequent HPV related disease after cervical surgery: 48.3% (95%CI: 19.1 to 67.6)	Not reported	Follow-up = 30 months
	(post-hoc analysis)			CIN 2 or worse	Reduction of subsequent HPV related disease after cervical surgery: 64.9% (95%CI: 20.1 to 86.3)	Not reported	Follow-up = 30 months
Kang et al., 2013 [2]	Prospective, single centre, cohort study	Women aged 20–45 years Vaccine (n=360) Control (n=377)	Quadrivalent	CIN 2-3	Recurrence of CIN 2-3 Vaccine group: 2.5% Control group: 7.2%	Not reported	Median follow-up time: 3.5 years
Garland et al., 2016 [3]	Randomized, double-blind, placebo controlled trial	Women aged 15–25 years Vaccine (n=190) Placebo (n=264)	Bivalent	CIN 1 or worse	Reduction of subsequent HPV related disease after cervical surgery: 42.6% (95%CI: -21.1 to 74.1)	Not reported	Median follow-up: 47 months
	(post-hoc analysis)			CIN 2 or worse	Reduction of subsequent HPV related disease after cervical surgery: 88.2% (95%CI: 14.8 to 99.7)	Not reported	Median follow-up: 47 months

CIN: Cervical Intraepithelial Neoplasia, HPV: human papillomavirus.

References:

1. Joura EA, Garland SM, Paavonen J, Ferris DG, Perez G, Ault KA, et al.; FUTURE I and II Study Group. Effect of the human papillomavirus (HPV) quadrivalent vaccine in

a subgroup of women with cervical and vulvar disease: retrospective pooled analysis of trial data. BMJ. 2012;344(mar27 3):e1401.

http://dx.doi.org/10.1136/bmj.e1401 PMID:22454089

- 2. Kang WD, Choi HS, Kim SM. Is vaccination with quadrivalent HPV vaccine after loop electrosurgical excision procedure effective in preventing recurrence in patients with high-grade cervical intraepithelial neoplasia (CIN2-3)? Gynecol Oncol. 2013;130(2):264-8. http://dx.doi.org/10.1016/j.ygyno.2013.04.050 PMID:23623831
- 3. Garland SM, Paavonen J, Jaisamrarn U, Naud P, Salmerón J, Chow SN, et al.; HPV PATRICIA Study Group. Prior human papillomavirus-16/18 AS04-adjuvanted vaccination prevents recurrent high grade cervical intraepithelial neoplasia after definitive surgical therapy: Post-hoc analysis from a randomized controlled trial. Int J Cancer. 2016;139(12):2812-26. http://dx.doi.org/10.1002/ijc.30391 PMID:27541373

TABLE S5.
Published studies investigating human papillomavirus vaccination in patients with Congenital bone marrow failure syndrome,
primary immunodeficiency or survivors of childhood neoplasia, January 2006 to June 2016 (n = 2)

Citation	Study design	Population (n)	Vaccine type	Seroconversion % (HPV genotype)	Safety	Comments
Handisurya et al., 2010 [1]	Case report	12-year-old female patient diagnosed of WHIM-syndrome	Quadrivalent	HPV-specific antibody titers were measured by ELISA using VLP of HPV 6, 11, 16 or 18 as the antigen. Response was compared with three healthy volunteers. - WHIM-syndrome patient: a titer of 400 for HPV 6, HPV 11, HPV 16, and a titer of 100 for HPV 18 - Controls: antibody titers from 6400 to 102,400 against each type of HPV.	No adverse effects observed during the vaccination period and the follow-up period of 16 months	Cellular immune response was also determined, concluding that the proliferative response to mitogens was conserved in the WHIM-syndrome patient
Katzenellenbogen et al., 2015 [2]	Cross-sectional study	Men and Women aged 3-42 years at the time of serum collection, affected of Fanconi's ananemia (59). Includes both vaccinated and unvaccinated patients	Not reported	Unvaccinated (n=29) vs vaccinated (n=24): 38 vs 92 (6) 24 vs 92 (11) 34 vs 96 (16) 7 vs 75 (18)	Not reported	Positive serology against nonvaccine HPV types were also analyzed between unvaccinated and vaccinated patients, with the following percentage of seroconversion according to HPV genotype: 21 vs 71 (1) 7 vs 54 (2) 14 vs 38 (4) 10 vs 50 (52) 14 vs 67 (58)

WHIM: Warts-hypogammaglobulinaemia, infections and myelokathesis; HPV: human papillomavirus; Elisa: Enzyme Linked Immunosorbent Assay; VLP: Virus-Like Particles.

- 1. Handisurya A, Schellenbacher C, Reininger B, Koszik F, Vyhnanek P, Heitger A, et al. A quadrivalent HPV vaccine induces humoral and cellular immune responses in WHIM immunodeficiency syndrome. Vaccine. 2010;28(30):4837-41. http://dx.doi.org/10.1016/j.vaccine.2010.04.057 PMID:20472031
- 2. Katzenellenbogen RA, Carter JJ, Stern JE, Butsch Kovacic MS, Mehta PA, Sauter SL, et al. Skin and mucosal human papillomavirus seroprevalence in persons with Fanconi Anemia. Clin Vaccine Immunol. 2015;22(4):413-20. http://dx.doi.org/10.1128/CVI.00665-14 PMID:25651924

TABLE S6.Published studies investigating human papillomavirus vaccination in recipients of solid organ transplantation, January 2006 to June2016 (n = 3)

Citation	Study design	Population	Vaccine	Seroconversion	Safety	Comments
Kumar et al. 2013 [1]	Prospective, non- randomised cohort	Young adults between 18 and 35 years (n = 47; 31 women) Type of transplant: • Kidney: 30 patients • Lung: 11 patients • Heart: 3 patients • Liver: 1 patient • Other: 2 patients	Quadrivalent Number of vaccine doses received: 1. 47 patients 2. 45 patients 3. 43 patients	 38 patients had a serologic test performed 1 month after the third dose of vaccine: 18 patients responded to all four genotypes of the vaccine 26 patients responded to genotype 11 20 patients responded to genotype 18 	AEs: number of patients affected/number of patients with available data • Local tenderness: 10/45 after dose 1; 1/45 after dose 2; no cases after dose 3 • Fatigue: 4/45 after dose 1; no cases after dose 2 and and dose 3 • Fever: 1/45 after doses 1 and 2; no cases after dose 3 • Dizziness: 1/45 after dose 1; no cases after dose 2 and dose 3 • Death of chronic allograft rejection: 2/43 after dose 3 • Anal intraepithelial neoplasia: 1/41 after dose 2 LSIL on cervical smears: 3 female patients after dose 3	Lung transplant recipients had a lower response rate to the vaccine than kidney transplant recipients; median time from transplant to vaccination was 3.24 years in responders vs 0.74 years in non- responders

Gómez-Lobo	Prospective,	Adolescents between	Quadrivalent	7 kidney + 1 liver	AEs: number of patients	Kidney transplant
et al. 2014	non-	the ages of 9 and 17 at	Number of vaccine	transplant recipients had	affected/number of patients	recipients had GMTs for
[2]	randomised	recruitment (n = 17)	doses received:	a serologic test	with available data	HPV antibodies similar
	cohort	Type of transplant:	1: Three patients	performed after dose 2:	• Fever: 4/17	to historic healthy
		• Kidney: 14	2: Five patients	 5 kidney + 1 liver 	 Swelling and pain at the injection 	controls, but liver
		• Liver: 3	3: Nine patients	transplant recipients	site: 3/17	transplant recipients
				responded to all	• Acne: 1/17	had substantially lower
				four genotypes of	• Cough: 1/17	GMTs for anti-HPV 6
				the vaccine	Pneumonia: 1/17	and anti-HPV 16
				7 kidney + 1 liver	• Diarrhoea: 1/17	
				transplant recipients had	 Headache: 1/17 	
				a serologic test	 Acute rejection in kidney 	
				performed after dose 3:	transplant recipients: 6/14; 3	
				 All responded to all 	cases after dose 1; 2 cases after	
				four genotypes of	dose 2; 1 case after dose 3	
				the vaccine		
Nelson et al.	Prospective,	Girls with chronic	Quadrivalent	22 transplant recipients	Adverse event: number of	IgG antibody titres were
2016 [3]	non-	kidney disease (n = 25),	All 23 patients	had a serologic test	patients affected/number of	significantly lower in
	randomised	dialysis dependence	received 3 doses of	performed at a median	patients with available data	patients with
	cohort	(n = 9) or a history of	the vaccine	of 3.6 months after dose	 Acute rejection: 2/23; one case 	transplants compared
		kidney transplantation		3:	between dose 2 and 3 and the	to patients with chronic
		(n = 23)		 14 responded to 	other case after dose 3	kidney disease, for all
				genotype 6		four genotypes
				 14 responded to 		
				genotype 11		
				 22 responded to 		
				genotype 16		
				 15 responded to 		
				genotype 18		

AE: adverse events; GMT: geometric mean titres of antibodies; HPV: human papillomavirus; IgG: Immunoglobulin G; LSIL: low-grade squamous intraepithelial lesion.

References:

1. Kumar D, Unger ER, Panicker G, Medvedev P, Wilson L, Humar A. Immunogenicity of quadrivalent human papillomavirus vaccine in organ transplant recipients. Am J

Transplant. 2013;13(9):2411-7. http://dx.doi.org/10.1111/ajt.12329 PMID:23837399

- 2. Gomez-Lobo V, Whyte T, Kaufman S, Torres C, Moudgil A. Immunogenicity of a prophylactic quadrivalent human papillomavirus L1 virus-like particle vaccine in male and female adolescent transplant recipients. Pediatr Transplant. 2014;18(3):310-5. http://dx.doi.org/10.1111/petr.12226 PMID:24484551
- 3. Nelson DR, Neu AM, Abraham A, Amara IS, Batisky D, Fadrowski JJ. Immunogenicity of Human Papillomavirus Recombinant Vaccine in Children with CKD. Clin J Am Soc Nephrol. 2016;11(5):776-84. http://dx.doi.org/10.2215/CJN.09690915 PMID:27055465

Table S7. Published studies investigating human papillomavirus vaccination in patients with immunosupressive or biological treatment, January2006 to June 2016 (n = 5)

Citation	Study design	Population (n)	Vaccine	Seroconversion % (HPV genotype)	Safety	Comments
Mok et al. 2013 [1]	Case-control	Women aged 18–35 years (50 patients with SLE and 50 healthy controls)	Quadrivalent	82 vs 98 (6) 89 vs 98 (11) 95 vs 98 (16) 76 vs 80 (18)	Incidence of AEs was comparable between patients with SLE and controls. No increase in lupus activity or flares.	None.
Heijstek et al. 2013 [2]	Case-control	Women aged 12–18 years (6 patients with SLE and 49 healthy controls)	Bivalent	All SLE patients were seropositive for HPV16/18 after the third vaccine dose.	Not reported	HPV 16/18-specific antibody concentrations were lower in SLE patients vs controls at month 7 post- vaccination but similar at month 12.
Soybilgic et al. 2013 [3]	Prospective, single-arm cohort	Women aged 12–26 years with SLE (27)	Quadrivalent	94.4 (6) 100 (11) 100 (16) 94.4 (18)	9 patients had mild-moderate flare during the study period, with symptoms similar to those experienced in flares before vaccine administration.	Two patients became pregnant after the second dose of HPV vaccine. Both pregnancies resulted in healthy newborns.
Heijstek et al., 2014 [4]	Prospective controlled observational cohort	Women aged 12-18 years (68 patients with JIA and 55 healthy)	Bivalent	All participants were seropositive for HPV16/18 one month after the third vaccine dose	Incidence of AEs was comparable between patients and healthy controls. HPV vaccination did not aggravate JIA disease	HPV 16/18-specific antibody concentrations were lower in JIA patients. No effect of methotrexate on HPV16/18 antibodies was detected.

Esposito et al.,	Case-control	Women aged 12-	Bivalent	All participants	Incidence of AEs was	HPV16 neutralising antibody titres
2014 [5]		25 years (21		were seropositive	comparable between patients	were significantly lower in JIA
		patients with JIA		for HPV16/18	and healthy controls. No	patients vs controls. No differences
		and 21 healthy		after the third	significant changes in JIA	were observed in HPV18 antibody
		controls)		vaccine dose	disease activity score.	titres.

AE: adverse events; HPV: human papillomavirus; SLE: systemic lupus erythematosus; JIA: Juvenile Idiopathic Arthritis.

- 1. Mok CC, Ho LY, Fong LS, To CH. Immunogenicity and safety of a quadrivalent human papillomavirus vaccine in patients with systemic lupus erythematosus: a casecontrol study. Ann Rheum Dis. 2013;72(5):659-64. http://dx.doi.org/10.1136/annrheumdis-2012-201393 PMID:22589375
- 2. Heijstek MW, Scherpenisse M, Groot N, Wulffraat NM, Van Der Klis FR. Immunogenicity of the bivalent human papillomavirus vaccine in adolescents with juvenile systemic lupus erythematosus or juvenile dermatomyositis. J Rheumatol. 2013;40(9):1626-7. http://dx.doi.org/10.3899/jrheum.130246 PMID:23997002
- 3. Soybilgic A, Onel KB, Utset T, Alexander K, Wagner-Weiner L. Safety and immunogenicity of the quadrivalent HPV vaccine in female Systemic Lupus Erythematosus patients aged 12 to 26 years. Pediatr Rheumatol Online J. 2013;11(1):29. http://dx.doi.org/10.1186/1546-0096-11-29 PMID:23924237
- 4. Heijstek MW, Scherpenisse M, Groot N, Tacke C, Schepp RM, Buisman AM, et al. Immunogenicity and safety of the bivalent HPV vaccine in female patients with juvenile idiopathic arthritis: a prospective controlled observational cohort study. Ann Rheum Dis. 2014;73(8):1500-7. http://dx.doi.org/10.1136/annrheumdis-2013-203429 PMID:23723319
- 5. Esposito S, Corona F, Barzon L, Cuoco F, Squarzon L, Marcati G, et al. Immunogenicity, safety and tolerability of a bivalent human papillomavirus vaccine in adolescents with juvenile idiopathic arthritis. Expert Rev Vaccines. 2014;13(11):1387-93.

TABLE S8. Published studies investigating the efficacy of quadrivalent human papillomavirus vaccine in patients with recurrent respiratory papillomatosis, January 2006 to June 2016 (n = 9)

Citation	Study design	Population (n)	Vaccine	Seroconversion % (HPV genotype)	Safety	Comments					
Juvenile respiratory papillomatosis											
Förster et al., 2008 [1]	Case report	1 female Age at clinical onset: 15 months Age at vaccination: 2 years	Quadrivalent	NR	NR	Genotype of lesion: 6 and 11 Duration of follow-up: 10 months Outcomes: Complete remission (1)					
Mudry et al., 2011 [2]	Case report	1 female Age at clinical onset: 2 years Age at vaccination: 5 years	Quadrivalent	NR	NR	Genotype of lesion: 11 Duration of follow-up: 17 months Outcomes: Complete remission (1)					
Hočevar-Boltežar et al., 2014 [3]	Case series	4 patients: 3 females and 1 males Age at clinical onset: 1–8 years Age at vaccination: 13–25 years ^a	Quadrivalent	NR	No serious local and systemic adverse reactions	Genotype of lesion: 6 (3 female) and 11 (1 male) Duration of follow-up: 43-52months Outcomes: Partial remission (4)					

Chirilă et al., 2014		12 patients		NR	23%, 95% CI (8.28–	Genotype of lesions: 6
[4]	Case series	Age of clinical onset:	Quadrivalent		53.25) presented	(10 cases) and 11 (3
		2-16 years			side effects, namely:	cases) ^b
		Age at vaccination:			one patient had a	Duration of follow-up:
		NR			fever (38 °C), one	12 months
					patient had local	Outcomes:
					redness and one had	Reduction in the
					labial herpes ^b	number of recurrences
						with vaccination than
						with cidofovir
						[p < 0.001]
Yi et al., 2014 [5]		1 male patient		NR	NR	Genotype of lesions: 6
	Case report	Age at clinical onset:	Quadrivalent			Duration of follow-up:
		2 years				6 months
		Age at vaccination: 6				Outcomes:
		years				Complete remission
						(1)
Mészner et al., 2015		1 male patient		NR	NR	Genotype of lesions: 6
[6]	Case report	Age at clinical onset:	Quadrivalent			and 11
		3 months				Duration of follow-up:
		Age at vaccination: 2				24 months
		years ^a				Outcomes:
						Complete remission
						(1)
Young et al., 2015		2 male patients	Quadrivalent	NR	NR	Outcomes:
[7]	Case series	Age at clinical onset:				Complete remission
		9-16 years ^a				(1)
		Age at vaccination:				No response (1)
		not reported ^a				

Hermann et al., 2016 [8] TOTAL	Case series	9 patients: 3 females and 6 males Age at clinical onset:: 1-8 years Age of vaccination: 9-17 years	Quadrivalent	Not reported	None of the patients experienced adverse events	Genotype of lesions: 6 (3 female and 5 male) and 11 (1 male) Duration of follow-up: 12 months Outcomes: No differences pre- post vaccination with regard to clinical score [p = 0.083]; anatomical score [p = 0.257]; interval between surgeries [p = 0.357]; number of surgeries [p = 0.180] and recurrence intervals [p = 0.062] Complete remission 5/10 (50%) Partial remission 4/10 (40%) No response 1/10
Adult respiratory papill	lomatosis					(10%)
Pawlita et al., 2009 [9]	Case report	1 male patient Age at clinical onset: 66 years Age at vaccination: 68 year	Quadrivalent	NR	NR	Genotype of lesions: 6 Duration of follow-up: 7 months Outcomes: Complete remission

Hočevar-Boltežar et al., 2014 [3]	Case series	7 patients: 3 females and 4 males Age at clinical onset: 23-44 years Age at vaccination: 26-46 years ^a	Quadrivalent	NR	No serious local or systemic adverse reactions	Genotype of lesions: 6 (4 cases) and 11 (3 cases) Duration of follow-up: 48-52 months Outcomes: Complete remission (1) Partial remission (3) No response (3)
Chirilă et al., 2014 [4]	Case series	18 patients Age at clinical onset: 18-43 years Age at vaccination: not reported	Quadrivalent	NR	23%, 95% CI [8.28– 53.25] presented side effects, namely: one patient had a fever (38 °C), one patient had local redness and another one had labial herpes ^b	Genotype of lesions: 6 (10 cases) and 11 (3 cases) ^b Duration of follow-up: 12 months Outcomes: Reduction in the number of recurrences of vaccination compared with cidofovir [p = 0.007]
Young et al., 2015 [7]	Case series	18 patients: 8 females and 10 males Age at clinical onset: 27–77 years ^a Age at vaccination: 27–77 ^a	Quadrivalent	NR	NR	Genotype of lesions: not reported Duration of follow-up: not reported Outcomes: Complete remission (6) Partial remission (6) No response (6)

Complete remission
8/26 (30%)
Partial remission 9/26
(35%)
No response 9/26
(35%)

CI: confidence interval; F: female; M: male; NR: not reported.

^aAge at study inclusion.

^bTotal (adult + juvenile).

References:

- 1. Förster G, Boltze C, Seidel J, Pawlita M, Müller A. Juvenile Larynxpapillomatose Impfung mit dem polyvalenten Spaltimpfstoff Gardasil.[Juvenile laryngeal papillomatosis--immunisation with the polyvalent vaccine gardasil]. Laryngorhinootologie. 2008;87(11):796-9. German. PMID:18759217
- 2. Mudry P, Vavrina M, Mazanek P, Machalova M, Litzman J, Sterba J. Recurrent laryngeal papillomatosis: successful treatment with human papillomavirus vaccination. Arch Dis Child. 2011;96(5):476-7. http://dx.doi.org/10.1136/adc.2010.198184 PMID:21220258
- 3. Hočevar-Boltežar I, Matičič M, Sereg-Bahar M, Gale N, Poljak M, Kocjan B, et al. Human papilloma virus vaccination in patients with an aggressive course of recurrent respiratory papillomatosis. Eur Arch Otorhinolaryngol. 2014;271(12):3255-62. http://dx.doi.org/10.1007/s00405-014-3143-y PMID:24964770
- 4. Chirilă M, Bolboacă SD. Clinical efficiency of quadrivalent HPV (types 6/11/16/18) vaccine in patients with recurrent respiratory papillomatosis. Eur Arch Otorhinolaryngol. 2014;271(5):1135-42. http://dx.doi.org/10.1007/s00405-013-2755-y PMID:24121781
- 5. Yi L, Vaudaux B, Sandu K, Nisa L. Prolonged remission of juvenile-onset respiratory papillomatosis: a post-expositional role of the tetravalent anti-HPV vaccine? Int J Pediatr Otorhinolaryngol. 2014;78(2):388-90. http://dx.doi.org/10.1016/j.ijporl.2013.12.013 PMID:24388316
- 6. Mészner Z, Jankovics I, Nagy A, Gerlinger I, Katona G. Recurrent laryngeal papillomatosis with oesophageal involvement in a 2 year old boy: successful treatment with the quadrivalent human papillomatosis vaccine. Int J Pediatr Otorhinolaryngol. 2015;79(2):262-6. http://dx.doi.org/10.1016/j.ijporl.2014.11.022 PMID:25496821
- 7. Young DL, Moore MM, Halstead LA. The use of the quadrivalent human papillomavirus vaccine (gardasil) as adjuvant therapy in the treatment of recurrent respiratory papilloma. J Voice. 2015;29(2):223-9. http://dx.doi.org/10.1016/j.jvoice.2014.08.003 PMID:25619468

TOTAL

- Hermann JS, Weckx LY, Monteiro Nürmberger J, Santos Junior GF, Campos Pignatari AC, Nagata Pignatari SS. Effectiveness of the human papillomavirus (types 6, 11, 16, and 18) vaccine in the treatment of children with recurrent respiratory papillomatosis. Int J Pediatr Otorhinolaryngol. 2016;83:94-8. http://dx.doi.org/10.1016/j.ijporl.2016.01.032 PMID:26968061
- 9. Pawlita M, Gissmann L. Rekurrierende respiratorische Papillomatose [Recurrent respiratory papillomatosis]. Dtsch med Wochenschr. 2009;134(Suppl 2):S100-2. German.

Annex. PubMed Search strategy

PubMed Search User Query - Final: (HIV OR "Men Who Have Sex With Men" OR MSM OR "Inflammatory Bowel Diseases" OR IBD OR Conization OR "Congenital Bone Marrow Failure Syndrome" OR CBMFS OR immunodeficien* OR "Hematopoietic Stem Cell Transplantation" OR HSCT OR "Bone Marrow Transplantation" OR BMT OR Transplant* OR "Transplant Recipients" OR autoimmun* OR biologic OR anti-TNF OR immunocompromi* OR immunosuppress* OR chemotherap* OR radiation OR steroid* OR "Recurrent respiratory papillomatosis" OR RRP) AND ("Papillomavirus Vaccines" OR Cervarix OR Gardasil OR (("Human papillomavirus" OR HPV) AND (vaccin* OR immunis* OR immuniz*))) AND (effective* OR efficac* OR immunogenic* OR safe*) AND (("2006/01/01"[PDat]: "2016/06/30"[PDat]) AND Humans[Mesh] AND (English[lang] OR Spanish[lang]))