
Supplementary notes 

Here we assess the performance of conventional linear dimensionality reduction in place of an 

autoencoder, and determine how varying the dimension of the input data and internal validation 

approach affects predictive performance. We also provide details of how the Kaplan-Meier plots 

were created and prediction models were compared. 

   

Dimensionality reduction method 

We designed a discriminative autoencoder network to learn non-linear representations of 

complex motion data that is robust to noise. Here we assess a conventional linear 

dimensionality reduction using a previously-published semi-supervised principal components 

method,1, 2 – taking the deep learning-derived segmentations as input data.  Internal validation 

was carried out using bootstrap-based optimism adjustment, with 100 bootstrap samples. Within 

each bootstrap sample, each of the input features was fitted to the survival outcome data using 

a univariate Cox proportional-hazards model, yielding 1 regression coefficient per feature. 

Salient features were selected based on whether their regression coefficient magnitude 

exceeded a certain threshold (defined via cross-validation). PCA was then applied to selected 

features and the first principal component was used as a continuous variable for survival 

prediction. The optimism-corrected C-index was 0.68 (95% CI: 0.62-0.74). Supervised 

dimensionality reduction through autoencoders has been shown to learn low-dimensional latent 

representations more effectively than PCA and also provides mappings in both directions 

between the data and code spaces.3 An autoenoder with linear activations and a single hidden 

layer would approximate to the same subspace as PCA.  

 

Down-sampling of the 3D mesh 

Our segmentation and mesh generation pipeline produced high-resolution mesh models of the 

heart at 20 frames of the cardiac cycle, with each mesh composed of 18,028 vertices. Before 

using these meshes for our deep learning analysis, we down-sampled them (by a factor of 

~99%) to 202 vertices using a mesh decimation algorithm. This was done to restrict the size of 

our DL network’s input vector to a manageable range. For deep learning models, the size of the 

input data directly influences the number of network parameters to be estimated. In determining 

an appropriate input size, our goal was to strike a balance between a sufficiently rich input and 

an adequately parametrized model. Through visual inspection, the decimated meshes were 

compared to the original meshes, to ensure that the former still sufficiently captured the salient 

fine-scale geometric features of the latter.  

We performed sensitivity analyses to assess the model performance for different numbers of 

vertices. We refitted our DL network on data consisting of meshes with 101 vertices, and 

meshes with 501 vertices. Internal validation was carried out via nested cross-validation. With 

100 vertices, the Harrell’s concordance index was 0.65 (95% CI: 0.57 - 0.7). For the 500-vertex 

case, the Harrell’s concordance index was 0.68 (95% CI: 0.63 - 0.74). This suggests that our 

model with 202 vertices provides an effective degree of down-sampling. 

 

 



Using coordinate data for prediction 

In our study, heart motion over the cardiac cycle was represented using coordinate-wise 

displacement distances of vertex meshes from their positions at end diastole. A possible 

alternative would be to use a concatenated list of vertex meshes across all frames, as the 

displacement distances can be inferred from this information. However, the advantage of 

casting the input data as displacement vectors is that our DL network is presented with an 

explicit representation of the 3D dynamics of heart contraction, rather than having to infer it from 

lower level features (vertex positions). As deep learning methods tend to be data hungry, 

presenting our network with adequately refined input features helps to reduce the amount of 

extra information it needs to compute. And given our limited sample size, using cruder input 

features might reduce network performance. 

To test this idea, we fitted our DL network using a concatenated list of vertex coordinates across 

all 20 frames, producing an input vector of length 12,120 (=3 coordinates/vertex * 202 

vertices/mesh * 20 meshes [over 20 time frames]). The network setup for this input was identical 

to the one used for the original displacement-based input. Internal validation was carried out 

using nested cross-validation, with hyperparameter tuning carried out in inner folds, and 

validation performed in outer folds. The cross-validated Harrell’s concordance index was 0.54 

(95% CI: 0.47-0.61) indicating inferior performance to the explicit motion model. 

 

Cross-validation vs Bootstrap internal validation 

For internal validation of the models presented in this study, we chose the bootstrap-based 

approach a priori as it gives stable estimates of the performance drop (optimism correction) one 

would expect moving from internal to external validation.4 Another common internal validation 

technique is cross-validation. To compare this method to our bootstrap-based approach, we 

performed internal validation of our DL model using nested cross-validation. Briefly, we 

randomly split the full data into 8 (roughly) equal parts (which we will refer to as outer folds). For 

each outer fold v, we carried out the following procedure: v was held out as a test set while its 

complement (the remaining sample not in v, which we will refer to as ~v) was used for 

hyperparameter tuning, via 8-fold cross-validation. The optimal hyperparameters derived from 

this 'inner' cross-validation were then used to train a final model on ~v. The trained model was 

then applied to fold v and model performance was assessed using Harrell’s Concordance Index. 

This process was repeated for the rest of the outer folds, and concordance index across all 

outer folds was averaged to yield a final value. We repeated our original DL analysis using this 

nested cross-validation approach and the cross-validated Harrell’s concordance index was 0.72 

(95% CI: 0.667 - 0.779). Confidence intervals for the concordance index were derived using 

standard errors computed via Noether’s method.5, 6 

These results indicate that the cross-validation approach yields a slightly lower concordance 

index than bootstrap validation but with overlapping confidence intervals. 

 

Generation of Kaplan-Meier plots and model comparison 

Kaplan-Meier plots presented in the paper were generated using ‘out-of-bag' predictions from 

the bootstrap-based internal validation procedure. During the internal validation procedure, each 

bootstrap sample was created by taking n random draws (with replacement) from the full 



sample (where n=302, the number of unique subjects in our study data). According to bootstrap 

resampling theory, for large n, each bootstrap sample will contain (on average) only ~63.2% (=1 

– e-1) of the subjects from the full sample. This means that each bootstrap sample will almost 

always exclude a fraction of subjects from the full sample. In machine learning literature, this 

excluded subsample is sometimes referred to as the ‘out-of-bag' subsample (and conversely, 

subjects included in the bootstrap sample are termed 'in-bag'). For a model trained on a 

particular bootstrap sample b, we can compute its predicted values for subjects in the out-of-bag 

subsample of b. After training a series of models over b = {1,...,B} bootstrap samples, we can, 

for each subject in the full sample, identify the bootstrap samples for which that subject was out-

of-bag, and average the subject's predictions across these bootstrap samples. Thus for each 

subject, this will yield a predicted risk computed by aggregating predictions from models trained 

with data excluding that subject. These are referred to as out-of-bag predictions. This technique 

is reminiscent of ‘bagging’ (bootstrap aggregating), an ensemble method used in machine 

learning algorithms such as random forests. We generated Kaplan-Meier plots for the full 

sample using the out-of-bag predictions.  Kaplan-Meier plot generation was implemented using 

the R packages survival and survminer.7 Confidence intervals for the Kaplan-Meier plots were 

computed using the method of Link.8 

To compare pairs of models fitted on our data, we computed for all subjects the out-of-bag 

predictions from each model. These out-of-bag predictions were derived from the bootstrap-

based internal validation procedure, as described in the previous paragraph. Then we applied 

the concordance.index function in the R package survcomp using the survival time, censoring 

status and out-of-bag predictions (from the 2 models) across all subjects. This function utilizes a 

paired t-test to compare competing prognostic survival models applied to the same sample. P-

values derived from this test were reported. 
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