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Appendix: From learning agents to a Fokker-Planck 1

equation 2

This appendix begins with the agent-based model presented in the main paper and 3

derives a continuous-variable description of the group dynamics, in the form of a 4

Fokker-Planck equation for the probability density P (z, t). The derivation proceeds as 5

follows: We begin by focusing on a single (generic) individual and computing the 6

probabilities that this individual receives different percepts, given the current value of 7

the global alignment parameter. Combining this information with the conditional 8

probabilities for turning or continuing in the same direction, which are derived from the 9

h-matrix of the PS model, one can then compute the probability that a given individual 10

will turn around in the current time-step. From this, in turn, one can in general 11

compute how many individuals convert from going in one direction to the opposite, and 12

consequently the global alignment of the population in the next time-step. Since the 13

entire process is stochastic, this yields a probability distribution over z at the next 14

time-step. Taking the limit in which the time t and the alignment parameter z become 15

continuous, the dynamics can be cast as a Fokker-Planck equation, whose drift and 16

diffusion coefficients we derive as a function of – ultimately – the h-matrix, which 17

describes the memory of the individual locust. This form will allow us to compare the 18

predictions of our model to the results of other works. 19

Derivation of group-level transition probabilities 20

We begin by establishing the relevant variables. In addition to the total number of 21

agents N , we will use the combination B = W/2r, which specifies how many 22

neighbourhoods (or ‘bins’, defined as regions that an individual can see) the world is 23

divided into. (Recall that r denotes the sensory range, i.e., the distance up to which a 24

given agent can perceive others, while W is the size W of the world.) For the first part 25

of the derivation, which is cast explicitly in terms of discrete individuals, it is convenient 26

to use the variable X+ denoting the number of individuals moving in the clockwise 27

direction (which we arbitrarily label as positive) at the beginning of the current 28

time-step, while X− = N −X+ individuals are moving anticlockwise. This information 29

can equivalently be expressed by the alignment parameter z = 1
N (X+ −X−). 30

Focusing on a single, generic agent, the focal agent, let X̃± denote the numbers of 31

individuals moving in each direction within this agent’s sensory range, while ε = ±1 32

indicates in which direction the agent itself is moving. Thus, ε
(
X̃+ − X̃−

)
is the net 33
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flow of neighbours relative to the focal agent. Since the agent only distinguishes 34

absolute values up to two, the percept s can be written as 35

s = trunc
[
ε
(
X̃+ − X̃−

)]
∈ {−2,−1, 0,+1,+2} . (1)

Based on the probabilities of a given individual turning around, we will compute the 36

number of individuals turning from positive to negative (clockwise to anticlockwise), 37

denoted D−, and the number turning the opposite way, denoted D+. The variable of 38

interest in this calculation is the number of individuals moving clockwise in the 39

subsequent time-step, X ′+ = X+ + (D+ −D−), or equivalently the change 40

∆X+ = D+ −D−. 41

Probability distribution over percepts. We begin by determining the 42

probability that the focal agent receives a certain percept, which is essentially the 43

difference between the numbers of individuals moving each way within its sensory range, 44

X̃+ − X̃−. In order to derive a tractable expression for this quantity, we make three 45

assumptions: 46

• In order to derive transition probabilities that depend only on the fraction of 47

individuals going each way but not on their individual positions, we will assume 48

that the individuals are approximately homogeneously distributed in space. 49

• Moreover, we assume that individuals are independently distributed in space. 50

(This assumption is inaccurate in the limit of low densities, when, according to our 51

simulations, individuals tend to congregate in groups with density ≈ 1/r. 52

However, as soon as the number of agents relative to the size of the world is high 53

enough, N/W > 1/r, it becomes reasonable to assume a homogeneous, 54

independent distribution.) 55

• Finally, we will neglect the fact that the overall number of individuals going in 56

each way, X±, is in fact finite. This is justified by different considerations, 57

depending on the regime: If B � 1, then only a small fraction of the total X± is 58

located within a given bin. Therefore, for the purpose of determining how many 59

individuals are in this bin, the approximation that one is drawing from an infinite 60

pool is reasonable. If, however, B → 1, then the number X̃± of individuals 61

moving in a given direction within the focal agent’s sensory range is most likely 62

large anyway (of order N), and since percepts only distinguish X̃+ − X̃− up to 63

absolute values of 2, overestimating these numbers is unlikely to cause deviations. 64

Under these assumptions, the numbers X̃± follow a Poisson distribution with mean 65

X±/B. (One may note that the means of the distributions P
(
X̃±

)
are related by the 66

constraint X+ +X− = N . However, the particular values for X̃± that we draw from 67

these distributions – that is, how many of the X± individuals going each way are within 68

the focal agent’s sensory range – are statistically independent. (In fact, this statistical 69

independence also holds for finite N , in which case X̃± follow binomial distributions.) 70

The difference between two Poisson-distributed variables with means µ1,2 follows a 71

Skellam distribution, 72

Sk (s′;µ1, µ2) ≡ e−(µ1+µ2)

(
µ1

µ2

) s′
2

Is′ (2
√
µ1µ2) , (2)

where Is′ (z) denotes the modified Bessel function of the first kind. In our case, this
gives the probability distribution over s′ conditioned on (i.e., if one knows the value of)
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the total number of individuals moving in the positive direction, X+:

P
(
X̃+ − X̃− = s′|X+

)
= Sk

(
s′;

X+

B
,
X−
B

)

= e−N/B
(
X+

X−

) s′
2

Is′

(
2

B

√
X+X−

)
, (3)

where one can replace X− = N −X+. (Note that we condition only on X+, since 73

including X− in the known information would be redundant.) 74

Notice that the difference X̃+ − X̃− = s′ can in principle run over all integers; only
in the agent’s perception are values s′ ≥ 2 resp. s′ ≤ −2 combined into a single percept
each. The sum

P
(
X̃+ − X̃− ≥ 2|X+

)
= e−N/B

+∞∑
s′=2

(
X+

N −X+

) s′
2

· Is′
(

2
√
X+ (N −X+)

)
, (4)

is simply an element of the cumulative density function associated with the Skellam 75

distribution, and analogously P
(
X̃+ − X̃− ≤ −2|X+

)
. If the focal agent is currently 76

moving in the positive (clockwise) direction, then this probability distribution is 77

precisely the probability distribution over percepts, s = s′ (with the cutoff |s| ≤ 2), 78

whereas for agents moving in the negative direction, the percept is s = X̃− − X̃+ = −s′ 79

(again enforcing |s| ≤ 2). 80

Probability of turning. In the PS model, the h-matrix determines the probabilities 81

of turning around given a percept, P (turn|s). Together with the probabilities 82

computed in the previous section, P (s|X+, ε), this allows us to obtain 83

P (turn|X+, ε = ±) =
∑
s

P (turn|s)P (s|X+, ε) , (5)

which indicate how likely it is that a particular individual from either sub-population 84

(clockwise or anticlockwise) turn around in a given time-step. Notice that, under the 85

assumptions detailed above, this probability depends only on the global variable X+ 86

and the individual’s orientation ε. 87

Probability distribution over populations X ′±. In order to obtain the 88

populations going in each direction at the next time-step, X ′±, we will now compute the 89

numbers of individuals turning from the positive to the negative direction (clockwise to 90

anticlockwise), denoted D−, and the number turning from negative to positive, denoted 91

D+. Notice that only the difference D+ −D− manifests as an effective increase of the 92

population X+, but for the purpose of computing transition probabilities, one must 93

distinguish how many individuals turned in each direction, even if their numbers 94

partially cancel afterwards. 95

Since the individuals that turn, D± , are necessarily a subset of those currently
moving in the direction in question, X∓, we model D± as following a binomial
distribution:

P (D±|X+) = Binom (D±;X∓, p = Prob(turn|∓))

=

(
X∓
D±

)
pD± (1− p)(X∓−D±)

. (6)
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The probability distribution over ∆X+ = D+ −D− resulting from this model does not 96

have a closed form, requiring instead a sum over the various combinations of D± that 97

lead to each ∆X+. Specifically, letting D denote the set of ordered pairs (D+, D−) such 98

that D+, D− ≥ 0 and ∆X+ = D+ −D−, we can write 99

P (∆X+|X+) =
∑

(D+,D−)∈D

P (D+|X+)P (D−|X+) . (7)

Result: discrete-time transition matrices. The above method allows one to 100

derive a stochastic rule that describes the changes to the probability distribution over 101

the alignment parameter. In the discrete case, P (X+) can be represented as a vector, 102

and the transition probabilities P
(
X ′+|X+

)
take the form of a matrix. In the limit of 103

large population size N , it is convenient to replace the argument X+ by 104

z = 1
N (X+ −X−), which becomes continuous as N →∞, making the distribution P (z) 105

and the conditional P (z′|z) functions of one resp. two continuous variables, with range 106

[−1, 1]. The conditional probability P (z′|z) specifies how the probability distribution 107

P (z) changes in a time-step ∆t (that is, during the time it takes for an agent to 108

deliberate and choose its next action), and it allows one to read off key features of the 109

collective dynamics, such as whether there are metastable states, how strongly aligned 110

the group is in these states, and how quickly the system transitions between them. 111

The transition functions generated by our model, with the fixed h-matrix given by 112

Eq. (3) in the main text, are shown in Fig. A1. All instances exhibit a narrow band of 113

non-negligible probabilities, which implies that the mapping from z at time t to z′ at 114

time t+ ∆t is approximately deterministic. If this band lies in the diagonal z′ = z, then 115

the alignment parameter tends to remain unchanged at any value. Fig. A1 shows how 116

the dynamics deviates from this default in response to two parameters: Firstly, as the 117

effective density N/B increases, the peak of P (z′|z) remains at a fixed, large |z′| for a 118

wider range of z. That is, the dynamics maps a wider range of intermediate states z to 119

a particular pair of strongly aligned states. This can be understood as a consequence of 120

high densities quickly suppressing non-aligned states. Secondly, as decisiveness d 121

increases, the value of |z′| to which the system tends increases; that is, the two 122

metastable states between which the system alternates become more strongly aligned. 123

This can be attributed to the high decisiveness making individuals less likely to turn 124

against the majority. (One can see this effect clearly in the following example: if the 125

group was initially perfectly aligned, z = 1, then the expected alignment at the next 126

time-step is z′ = 1− 1
1+d/2 .) 127

Making the alignment parameter z and the time t continuous 128

The limit of continuous time and transition rates. The model derived above 129

gives the probabilities of finite changes in the populations X± over discrete and finite 130

time-steps ∆t, which is natural in the context of reinforcement learning. However, in 131

order to relate our work to other models that may not necessarily assume discrete time, 132

we will now modify the above treatment to recover continuous time. To this end, we 133

will introduce an infinitesimally small interval δt and determine the transition 134

probabilities Pδt
(
X ′+|X+

)
for this time-step. 135

In order to derive group-level transition probabilities Pδt
(
X ′+|X+

)
for an

infinitesimally small δt, we begin with the following consideration: if a single individual
has a probability P∆t (turn|s) of turning around in a finite time interval of default
duration ∆t, then the probability of turning in a smaller time interval δt is
proportionately smaller, δt

∆tP∆t (turn|s). Formally, this assertion can be derived from
the assumption that ‘turning’ is an instantaneous event that could happen with uniform
probability at any time. The probability of not turning, which is the absence of such an
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Fig A1. Stochastic transition functions P (z′|z) describing the evolution of (the
probability distribution over) the global alignment parameter, for the agents with fixed
interaction rules described in Eq. (3) in the main text. Parameters: N = 100, (a) d = 1,
B = 1000, (b) d = 1, B = 100, (c) d = 1, B = 10, (d) d = 10, B = 1000, (e) d = 10,
B = 100, (f) d = 10, B = 10. (Note that the independent parameters W and r do not
appear in the calculations leading to these plots; only the ratio B = W/2r matters.)

event, is consequently 1− P∆t (turn|s) and 1− δt
∆tP∆t (turn|s), respectively. This

prescription changes the probabilities (5) of turning and staying that we derive from the
h-matrix (which is based on the finite ∆t), giving

Pδt (turn|X+, ε = ±)

=
∑
s

δt

∆t
P∆t (turn|s)P (s|X+, ε) . (8)

It will be convenient to define transition rates (probability per time) for a given
individual in a particular sub-population turning around, given the current value of X+:

τ± (X+) ≡ lim
δt→0

Pδt (turn|X+, ε = ∓)

δt

=
∑
s

P∆t (turn|s)
∆t

P (s|X+, ε = ∓) . (9)

This allows us to write the probabilities as 136

Pδt (turn|X+, ε = ±) = δt · τ∓ (X+) , (10)

thereby making the dependence on the time interval explicit. 137

The remainder of the derivation of P (∆X+|X+) proceeds as before, resulting in a 138

combination of two binomial distributions. For notational simplicity, let us restrict 139

ourselves to the case ∆X+ ≥ 0. (The alternative case follows by exchanging + and −.) 140

Recalling that D is the set of (D+, D−) such that D+, D− ≥ 0 and ∆X+ = D+ −D−, 141

this implies that we must sum over D+ ≥ ∆X+. On the other hand, since the 142
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individuals turning into the positive direction are drawn from X−, it holds that 143

D+ ≤ X−. This gives 144

Pδt (∆X+|X+)

=

X−∑
D+=∆X+

(
X−
D+

)(
X+

D+ −∆X+

)
· [δtτ+]

D+ [1− δtτ+]
(X−−D+)

· [δtτ−]
(D+−∆X+)

[1− δtτ−]
(X+−D++∆X+)

. (11)

As soon as δt becomes small enough that τ±δt� 1 – in other words, that the turning
probabilities for a single individual become small –, one can neglect the terms with large
numbers D+ and D− = D+ −∆X+ of individuals turning in both directions. Assuming
that this makes D± � X∓, one can then approximate the binomial coefficients as

X
D∓
± / (D∓!), yielding

Pδt (∆X+|X+) ≈
∑

D+≥∆X+

1

D+! (D+ −∆X+)!

· [X−δtτ+]
D+ [X+δtτ−]

(D+−∆X+)
. (12)

If one suppresses all but the lowest order in X∓δtτ±, which means neglecting all terms 145

except D+ = ∆X+, one obtains 146

Pδt (∆X+|X+) ≈

{
1

∆X+! [X−δtτ+]
∆X+ ∆X+ ≥ 0

1
∆X+! [X+δtτ−]

∆X+ ∆X+ ≤ 0
. (13)

One can see that the conditional probability Pδt
(
X ′+|X+

)
becomes sharply peaked 147

around X ′+ = X+, with small values for X ′+ = X+ ± 1 and negligible values outside that 148

region. That is, the most relevant quantities are 149

Pδt
(
X ′+ = X+ ± 1|X+

)
≈ δt ·X∓τ± (X+) . (14)

Again, for notational simplicity, we introduce the transition rates 150

T± (X+) ≡ lim
δt→0

Pδt
(
X ′+ = X+ ± 1|X+

)
δt

. (15)

Substituting the approximate expression for Pδt
(
X ′+ = X+ ± 1|X+

)
, 151

T± (X+) ≈ X∓τ± (X+) . (16)

As one should expect, the probability of any one out of X∓ individuals turning around 152

grows linearly as one increases the number of individuals one is sampling from. This 153

observation will become relevant in the next section. 154

The limit of continuous alignment parameter z. The final step is to make the 155

alignment parameter z ≡ 2X+

N − 1 continuous, by letting N →∞. To this end, notice 156

that one can rewrite the transition rates obtained in the previous subsection as 157

T± (z) ≡ lim
δt→0

Pδt
(
z′ = z ± 2

N |z
)

δt
. (17)
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In the limit of continuous time, as simultaneous transitions of more than one individual
become negligibly unlikely, the balance of probabilities of (a) leaving the state with a
particular z and (b) reaching that state starting from nearby states with z′ = z ± 2

N is

∂

∂t
P (z, t) = − [T+ (z) + T− (z)]P (z, t)

+T+

(
z − 2

N

)
P

(
z − 2

N
, t

)
+T−

(
z +

2

N

)
P

(
z +

2

N
, t

)
. (18)

One can now use a Taylor expansion around z to rewrite this as

∂

∂t
P (z, t) = − 2

N

∂

∂z
[{T+ (z)− T− (z)}P (z, t)]

+
4

2N2

∂2

∂z2
[{T+ (z) + T− (z)}P (z, t)] +O

(
1

N3

)
. (19)

This has the form of a Fokker-Planck equation, 158

∂

∂t
P (z, t) = − ∂

∂z
[F (z)P (z, t)] +

∂2

∂z2
[D′ (z)P (z, t)] , (20)

with coefficients 159{
F (z) = 2

N [T+ (z)− T− (z)]

D′ (z) = 4
2N2 [T+ (z) + T− (z)] .

(21)

One can verify that, as one takes the continuous limit, F (z) is simply the drift 160

coefficient, while D′(z) is closely related to the diffusion coefficient D(z) introduced in 161

the main article. 162

It is instructive to rewrite these expressions in terms of more fundamental quantities, 163

in particular the transition rates τ± for single individuals, defined in Eq. (9). Using the 164

simplified expression for T± from Eq. (16) and recalling that X± = N
2 (1± z), one can 165

write 166{
F (z) ≈ (1− z) τ+ (z)− (1 + z) τ− (z)

D (z) ≈ 1
N [(1− z) τ+ (z) + (1 + z) τ− (z)] .

(22)

One can see that the pre-factor 2
N in the expression for F (z), which appeared as a 167

by-product of the first derivative ∂z, is cancelled by the fact that the group-level 168

transition rates T± increase linearly with N . Consequently, the function F (z) – when 169

written in terms of the individual transition probabilities τ± – remains finite in the limit 170

of infinitely many individuals, and gives the drift coefficient. 171

The coefficient D′(z), on the other hand, acquires a pre-factor 4
N2 due to the second 172

derivative ∂2
z , which is only partially cancelled by the N -scaling of the transition rates 173

T±. Consequently, when written in terms of the individual transition rates τ±, it 174

vanishes as 1/N in the limit of infinitely many individuals. This is, in fact, not 175

surprising. To see this, consider the example of N completely non-interacting 176

individuals, each of which independently changes direction with some fixed transition 177

rate τ : as a function of N , the number of individuals that change direction per time 178

interval grows as N , but the net change in the number of aligned individuals – since 179

most of the changes cancel out – scales only as
√
N . (It is equivalent to the expected 180

traversed distance in an N -step random walk.) Moreover, changing the number of 181

aligned individuals by 1 only changes the normalised parameter z by 2/N . Thus, the 182

overall change to z over a fixed time scales as 1/
√
N , and the diffusion coefficient, which 183
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is related to the square of this parameter, shrinks as 1/N with the size of the population. 184

The object of interest for the present work, however, is how the diffusion varies in 185

addition to this scaling, and in order to isolate this effect, it is preferable to consider 186

D (z) ≡ ND′ (z) . (23)

One can verify that, if one keeps the decisiveness d and the density N/B constant while 187

varying the number of individuals, then this D (z) remains unchanged. 188

Finally, we note that, in the extrema z = ±1, the expressions for the drift and the 189

diffusion coefficients reduce to 190{
F (z = −1) = τ+ (z = −1) = D (z = −1)

−F (z = +1) = τ− (z = +1) = D (z = +1) .

One can see this relation between drift and diffusion in the predictions of our model, 191

shown in Fig. 3a in the main text. More importantly, the same can be seen in Fig. 3c, 192

which depicts the predictions of a model that Dyson et al. fitted to experimental data. 193
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