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Supplementary Note 1: Passive PT -symmetry breaking transition with static dissipation

When the resonant optical field is constant in time, that is Γ(t) = Γ0, the eigenvalues of the dissipative Hamiltonian
H are given by −iΓ0/2± λ = −iΓ0/2±

√
J2 − Γ2

0/4. Starting with the initial state |ψ(0)〉 = |↑ 〉, the atom numbers
for the two levels are given by

n′↑(t) = e−Γ0t |cos(λt) + (Γ0/2λ) sin(λt)|2 ,

n′↓(t) = e−Γ0t |i(J/λ) sin(λt)|2 . (1)

The corresponding scaled atom numbers are given by nσ(t) = eΓ0tn′σ(t). The passive PT -symmetric breaking tran-
sition occurs at Γ0 = 2J . When Γ0 < 2J , λ is real and nσ(t) oscillates with a period of π/λ which increases as Γ0

increases. When Γ0 > 2J , λ becomes purely imaginary, leading to the two eigenmodes with different decay rates,
one of which decreases as (2J)2/Γ0. So when Γ0 increase, the total unscaled atom number n′(t) decays slower.
Correspondingly, the scaled atom number n(t) = n↑(t) + n↓(t) increases exponentially with time.

Supplementary Figure 1a shows the total atom number n′(t) for various static dissipation. For smaller dissipation
in the PTS phase, the atom number n′(t) decays faster as Γ0 is increased (blue circles and diamonds); this trend
is reversed in the PTSB phase, that is Γ0 > 2J (red squares). Thus, the passive PT -symmetry breaking transition
occurs when n′(t) vanishes most rapidly. Supplementary Figure 1b shows the same data, plotted in terms of the scaled
atom number n(t). As is expected, n(t) shows oscillatory behavior with increasing amplitude and period in the PTSB
phase (blue circles and diamonds). Such behavior gives way to exponential-in-time in the PTSB phase (red squares).
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Supplementary Figure 1: Observation of the passive PT transition with static dissipation. a n′(t) shows faster
decay as the loss strength is increased from Γ0 = 0.28J (blue circles) to Γ0 = 0.9J (blue diamonds) in the PTS

phase. This trend is reversed at large Γ0 = 2.57J (red squares) indicating a PTSB phase. Here J = π × 2.15 kHz. b
n(t), obtained from the same data, shows oscillations with increasing amplitude and period in the PTS phase and

exponential rise (right vertical axis) in the PTSB phase. Each data point denotes average over 6 single-shot
measurements and the error bars are the standard deviation of the measurements.

To determine the passive PT phase transition threshold, we track the individual-level atom numbers n′σ(Γ0) and
their sum n′(Γ0) at a fixed time tm = π/2J as a function of dissipation strength in Supplementary Figure 2. n′(Γ0)
first decreases and then increases, due to the emergence of the long-lived mode in the PTSB phase. We fit these fixed-

time data n′σ(Γ0) to supplementary Eq.(1), with a fitting parameter for the PT -threshold, that is λ =
√

Γ2
exp − Γ2

0/2,

and extract a threshold value Γexp = (1.92 ± 0.09)J , which matches the theoretical value Γexp = 2.0J well shown in
the inset in Supplementary Figure 2.

Supplementary Note 2: Phase diagram of Floquet PT -symmetry transition

PT transition phase diagram with time-periodic dissipation. A perturbative calculation shows that for a sinusoidal
modulation of dissipation, the PTSB phase appearers near the modulation frequencies Ω ∈ [Ωn − δΩn,Ωn + δΩn],
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Supplementary Figure 2: Determination of the PT threshold. Individual level and total atom numbers n′σ(Γ0)
are measured at a fixed time tm = π/(2J) as a function of static dissipation strength. n′(Γ0) shows non-monotonic

behavior indicating the passive PT transition. The symbols are experimental data averaged over 5 single-shot
measurements and the dashed lines are the fitting results with Γexp as the fitting parameter. The inset shows Γexp

obtained from the best-fits of the data. In all cases, the initial state of the system is |↑ 〉. The error bars are the
standard deviation of the measurements.

where

δΩn =
(Γ0)2n+1

2πn(2n+ 1)(4J)2n
. (2)

The half-width δΩn(Γ0) decreases as the power-law with the order of the resonances.
It is difficult to implement the sinusoidal modulation precisely in the experiment because the nonlinear relation

between the intensity of the resonant beam and the atom loss strength Γ(t), so we use a square-wave loss profile with
period 2τ = 2π/Ω as,

Γ(t) =

 Γ0 0 ≤ t < π/2Ω,
0 π/2Ω ≤ t < 3π/2Ω,

Γ0 3π/2Ω ≤ t ≤ 2π/Ω.
(3)

The non-unitary time evolution operator

GPT (2π/Ω) ≡ e−iH(t+τ,t+2τ)e−iH(t,t+τ) (4)

can be analytically calculated for square-wave modulation, and we can use it to determine the phase diagram.
The numerical PT phase diagram is shown in Supplementary Figure 3 as plotted in the (Γ0,Ω) plane. In the

weak-loss limit, the eigenvalues of GPT (2π/Ω) are given by

µ±(γ, ω) = cos(2π/ω)± i
[
sin2(2π/ω)− γ2 sin2(π/ω)

]1/2
(5)

where γ = Γ0/2J � 1 is the dimensionless loss amplitude and ω = Ω/J is the dimensionless frequency. The system is in
the PTSB phase when the two eigenvalues have different magnitudes, which happens when Ω ∈ [Ωn −∆Ωn,Ωn + ∆Ωn]
where

∆Ωn(Γ0) =
Γ0

π

(
Ωn

2J

)2

. (6)

In comparison with the sinusoidal case [1], the half-width ∆Ωn(Γ0) of the square-wave modulation remains linearly
proportional to the loss amplitude. Supplementary Figure 3b shows the vicinity of first three resonances Ωn =
{2J/5, 2J/3, 2J} from the numerical simulation as well as the analytical calculation of the phase boundaries (white
lines)from supplementary Eq.(6). As n increases, both Ωn and the half-width of the PTSB phase ∆Ωn decrease. Note
that the linear-phase-boundary is a better approximation for smaller loss amplitude.
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Supplementary Figure 3: PT phase diagram of the square-wave modulated time-periodic dissipation. The color
region represents the PTSB phase with ∆µ = (|µ+| − |µ−|)/(|µ+|+ |µ−|) as the value of the color density. a In the
range of Ω/J ∈ {0.2, 2.2} and Γ0/J ∈ {0.01, 1.8}. b In the vicinity of first three resonances, Ωn = 2J/(2n+ 1) for
n = {2, 1, 0}. The triangular region of the PTSB phase (∆µ > 0) separates the PTS phase (∆µ = 0). White lines

are the phase boundaries obtained from supplementary Eq.(6) which are good approximation in the limit Γ0 � 2J .

PT transition phase diagram with time-periodic coupling. We also apply the square-wave modulation on the coupling
strength of two spin states. For time-periodic coupling experiments, we apply constant dissipation Γ0, but modulate
J(t) with a square-wave. Applying the similar method to get the analytical eigenvalues GPT (2π/Ω) in the weak-loss
limit, we have

µ±(γ, ω) = cos
π

ω
cosh

γπ

ω
+ 2γ sin

π

ω
sinh

γπ

ω
± [− sin2 π

ω
+ (cos

π

ω
sinh

γπ

ω
+ 2γ sin

π

ω
cosh

γπ

ω
)2]1/2 (7)

Following supplementary Eq.(7), the system is in the PTSB when the two eigenvalues have different magnitudes,
which happens when Ω ∈ [Ωn −∆Ωn,Ωn + ∆Ωn] where

∆Ωn(Γ0) = Γ0
Ωn

2J
. (8)

Supplementary Figure 4b shows the numerical simulation the vicinity of four resonances Ωn = {J, J/2, J/3, J/4} in
the (Γ,Ω) plane. The ∆Ωn(Γ0) is linearly proportional to the loss amplitude in the weak-loss limit. As n increases, both
Ωn and ∆Ωn decrease. We emphasize that the ∆Ωn(Γ0) has larger values in the time-periodic coupling (supplementary
Eq. 8) comparing with the time-periodic dissipation (supplementary Eq. 6).
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Supplementary Figure 4: PT phase diagram of the square-wave modulated time-periodic coupling. a, In the
range of Ω/J ∈ {0.1, 1.1} and Γ0/J ∈ {0.01, 0.5}. b, In the vicinity of first four resonances, Ωn = 2J/n for

n = {2, 4, 6, 8}. The triangular region of PT -symmetry broken phase (∆µ > 0) separates the PT -symmetric phase
(∆µ = 0). White lines are the analytic phase boundaries obtained from supplementary Eq.(8).

Supplementary Note 3: Effective Floquet Hamiltonian

The long-term dynamic behaviors of the system can be studied by the effective Floquet Hamiltonian HF in a
stroboscopic fashion with steps of the driving period, which is defined by

G(2τ) ≡ e−iHF2τ . (9)

Floquet Hamiltonian of time-periodic dissipation. In the time-periodic dissipation PT system, we derive HF under
the weak dissipation limitation, which is expressed as

HF = cn

[
−iγ cos(Jτ) sin(ετ) J cos(Jτ) sin(ετ) + (ε cos(ετ) + γ sin(ετ)) sin(Jτ)

J cos(Jτ) sin(ετ) + (ε cos(ετ)− γ sin(ετ)) sin(Jτ) iγ cos(Jτ) sin(ετ)

]
(10)

where cn is a time-independent coefficients and ε =
√
J2 − γ2. It is very obvious we can derive out the PT phase

diagram by diagonalizing HF. Eigenvalues

λ± = cn
√
ε2 − [ε cos(ετ) cos(Jτ)− J sin(ετ) sin(Jτ)]2 (11)

become complex when
√
ε2 − [ε cos(ετ) cos(Jτ)− J sin(ετ) sin(Jτ) < 0, which comes with the PTSB phase.

Floquet Hamiltonian of time-periodic coupling. Similar as the above, the effective Hamiltonian under the weak
dissipation limitation is given by

H ′F = c′n

[
i{γ − ε cot(ετ) + e2γτ [γ + ε cot(ετ)]} −2J

−e−2γτ2J −i{γ − ε cot(ετ) + e2γτ [γ + ε cot(ετ)]}

]
. (12)
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c′n is a time-independent coefficient, and the eigenvalues of the rest matrix are given by

λ′± =
√

4e2+2γτ − [ε(1 + e2γτ ) cos(ετ) + γ(−1 + e2γτ ) sin(ετ)]2. (13)

Supplementary Note 4: Mapping the PT -symmetry phase diagram

It is relatively simple to map the phase diagram of the static dissipation, in which the PTS and PTSB phases
are separated by a single exceptional point. However, the phase diagram of Floquet Hamiltonians are extraordinary
rich, in which the (Γ0,Ω) parameter-plane has an infinite number of the PTS and PTSB regions separated by lines of
exceptional points [2].

We map the phase diagram by tracing the time evolution of the the normalized atom number n′(t). Supplementary
Figure 5a shows the time evolution of n′(t) in the vicinity of the primary resonance Ω ≈ 2J for a square-wave
modulated dissipation. We record n′(t) for five modulation frequencies. For all frequencies, the state-dependent
dissipation Γ0 = 0.22J is an order of magnitude smaller than the transition point 2.0J . It is found that the total atom
loss-rate decreases dramatically as Ω → 2J and reaches a minimum at the transition point. The loss rate increases
again when the modulation frequency is increased further more in the PTSB phase. Supplementary Figure 5b shows
n′(Γ0,Ω) at a fixed time-point tf. As Γ0 increases, the center position of the peaks of n′(t) remain pegged at the
transition point and the widths of n′(t) increases. The peaks of n′(t) indicate the appearance a long-lived mode
in the PT Hamiltonians, and thus signal the PTSB phase. A Gaussian fit is used to extract the half-width at
half-maximum (HWHM) of each peak. The inset in Supplementary Figure 5b shows that the extracted HWHM is
linearly proportional to the loss strength as predicted by the theoretical model. It is confirmed that the fixed-time,
frequency-dependent atom number n′(Ω) can be a good indicator to characterize the phase diagram of the Floquet
Hamiltonian. However, for finite probe time, the width of the residual atom number does not equal the width of
the PTSB phase predicted by theoretical calculations. The width of the residual atom number gets narrower for the
longer probing times, only approaching the width of the PTSB phase for ideal infinite probe time. In our experiments,
we usually extend the probe time to the point when about ten percents of the atoms left which gives us a fairly well
approximation of the width of the PTSB phase.

The decrease of the decay rate of the total atom number in the PTSB phase reminds of quantum Zeno effect (QZE)
previously observed in cold atom experiments [3–6]. However, the difference between our experiments and those
QZE experiments exists: QZE refers to the reduction of the rate of transferring from one state to a second state by
the projection measurement of the second state. Since the perturbation is the projection measurement of the second
state, the reverse-transfer probability from the second state to the first state and the occupation of the second state
are both treated as zero. In comparison, PT -symmetric Hamiltonian experiments covers the crossover from the weak
dissipation to the strong dissipation, and the transfer probability from the second to the first level is usually nonzero.
Instead of the observation of the slow-down of the state transferring, the PTSB phase refers to the slow-down of the
decay of the total atom number. In this sense, QZE can be treated as the extremely strong dissipation limit of our
studies in which the strong atom loss can be treated as an irreversible projection measurement of the second level.
It is also expected that QZE phenomena can expanded for more general case by using the dissipation based point of
view instead of measurement based point of view, in which the analysis of PT phase transition can be used to study
QZE-like phenomena in a pure dissipative system [7].

Supplementary Note 5: Unscaled atom number data

We present the original unscaled atom number n′(t) of the experiments. Supplementary Figure 6, Supplementary
Figure 7, and Supplementary Figure 8 correspond to Fig. 1,Fig. 2, and Fig. 3 of the main paper respectively.
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Supplementary Figure 5: Mapping the PT -phase diagram with time-periodic dissipation. Symbols are
experimental data. Gray surface and solid lines are numerical simulation with no free parameters. a total atom

number n′(t) for Ω = 1.67J (open blue circles), Ω = 1.91J (open green squares), Ω = 2.00J (open red up-triangles),
Ω = 2.09J (open purple down-triangles), and Ω = 2.33J (open black diamonds). The total atom number decays
most slowly at the resonance frequency, an indicator of a PT -symmetry broken phase. A frequency-dependent

measurement n′(Ω) at a fixed time-point tf = 7.11(π/J) (solid cyan dots) shows a sharp peak at the resonance. For
all cases in a, Γ0 = 0.22J . b m(Γ0,Ω) at fixed time-points tm(Γ0) shows peaks associated with the PT -symmetry

broken region: Γ0 = 0.10J and tf = 11.37(π/J) (black), Γ = 0.16J and tf = 8.53(π/J) (blue), Γ0 = 0.22J and
tf = 7.11(π/J) (red), and Γ0 = 0.44J and tf = 4.27(π/J) (green). The inset shows that the HWHM of the peak
increases linearly with the loss amplitude Γ0, as does the half-width ∆Ω0 = Γ0/π of the PT -symmetry broken
(gray) region from the numerical simulation. The open squares are the Gaussian fits for n′(Ω) obtained from
experimental data, and the open circles are the fits for numerical simulation. The error bars are the standard

deviation of the measurements.
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Supplementary Figure 6: Data of the unscaled atom number of Fig.1 in the main text. Symbols are
experimental data, solid lines are theoretical calculation without free parameter. a Corresponding to Fig.1e and
Fig.1f in the main text. b Corresponding to Fig.1h and Fig.1i in the main text. Each time point contains 4-8

individual measurements and the error bars are the standard deviation of the measurements.
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Supplementary Figure 7: Data of the unscaled atom number of Fig 2 in the main text. Symbols are
experimental data, solid lines are theory with no free parameter. a Corresponding to Fig.2a in the main text. b

Corresponding to Fig.2b in the main text. c Corresponding to Fig.2c in the main text. d Corresponding to Fig.2d in
the main text. e Corresponding to Fig.2e in the main text. Each point contains 5 individual measurements and the

error bars are the standard deviation of the measurements.
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Supplementary Figure 8: Data of the unscaled atom number of Fig 3 in the main text. Symbols are
experimental data, solid lines are theory with no free parameter. a Corresponding to Fig.3a in the main text. b

Corresponding to Fig.3b in the main text. Each point contains 5 individual measurements and the error bars are the
standard deviation of the measurements.


