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Documentation of Methods for Small Area Estimation

1 Introduction
We provide a mid-level documentation of our analytic approaches to SAE. For background and
technical details on Bayesian methods see Banerjee et al. (2014); Carlin and Louis (2009);
Diggle (2014); Gelman et al. (2013). See the main manuscript for details on the analysis goals,
data and results.

2 Woman-level, Bernoulli Modeling
Because some covariates vary over women within an EA, modeling must be Bernoulli (0/1
outcome) at the woman-specific level, with estimates ‘rolled-up’ to the EA level. To fix ideas,
the following is for a single survey wave and so the subscript t in Section 3 is omitted.

Notation:
• k = 1, . . . ,K: EA index

• i = 1, . . . , nk, indexes women in EA k.

• Yik: 0/1 indicator of woman i in region k (not using)/using birth control
(or whatever other binary outcome is relevant).

• [Yik | Pik] ∼ Bernoulli(Pik).

• P̂k = Y+k/nk : direct (unadjusted) estimate for EA k.

• Xik: regressors for woman i in region k, 1× q row vector including the intercept. Note
that some covariates may be EA-specific, but it’s best to retain the (i, k) subscript for all
covariates.

• β : a q × 1 column vector of regression slopes.

• Pik = P (Xikβ + uk): the true, underlying woman-specific probability for woman i in EA
k, conditional on [Xik,β, Uk = uk].

logit{P (Xikβ + uk} = Xikβ + uk

• Uk ∼ N(0, τ); k = 1, . . . ,K are the EA-specific, random effects
(Note that U is indexed only by k)

◦ The independence model sets Uk iid N(0, τ2)

◦ A time-series model (e.g., AR1) induces between-wave correlation (see Section 3).

• The ‘average logistic’, Avelogistick =
∑nk

i=1 P (Xikβ + Uk), integrated over the posterior
distribution of β and over the prior distribution for the Uk. The avelogistic plays the role
of a standard logistic regression, but brings in uncertainty in the slopes (frequentists
should do this too!), and also integrates over the prior distribution of the Uk.



2.1 Using the MCMC samples
Both the population parameters and EA-specific MCMC outputs are relevant to in and out of
sample inferences and predictions. Most programs, including BUGS and rstan, provide some
summaries of monitored features, for example their mean, median, quantiles, etc. But, by
monitoring and saving all relevant values, one has access to the full joint distribution of all
quantities, a distribution that includes all uncertainties.

With ν = 1, . . . ,M indexing MCMC post-burn-in, pooled over chains samples, the following
are available and need to be saved. Of course, the Xk are also available.

• Population parameters
{
β(ν), τ (ν)

}
, τ (ν) =

√
τ2 (ν) ; EA random effects (U (ν)

k ); and the
Xik are combined to produce woman-specific draws from the posterior distribution:

P
(ν)
ik = P

(
Xikβ

(ν) + U
(ν)
k

)
, ν = 1, . . . ,M ; i = 1, . . . , nk; k = 1, . . . ,K (1)

• These woman-specific posterior distributions are then ‘rolled-up’ to the EA-level,
specifically, for each MCMC draw, let

P
(ν)
+k =

nk∑
i=1

P
(ν)
ik , ν = 1, . . . ,M ; k = 1, . . . ,K (2)

A big advantage of the MCMC approach is the availability of these samples. They can be
analyzed to produce virtually any summary feature of the joint posterior distribution. For
example, the posterior distribution of P+1 × P+2 is obtained by computing products using the
output data and summarizing the M values.

For each k, the following, EA-specific summaries using
(
P

(1)
+k , . . . , P

(M)
+k

)
are of primary

interest (of course, others can be computed):

• The full posterior distribution: the histogram or smoothed density

• The sample mean:

E(P+k | data) = P̄+k =
1

M

∑
ν

nk∑
i=1

P
(
Xikβ

(ν) + U
(ν)
k

)

• SD(P+k | data): the sample standard deviation of the P (ν)
+k . Note that this is the SD of

the estimate, so is its SE. (Warning: using the SE for CIs is not recommended!)

• Percentile-based CI: Their 2.5th, 50th and 97.5th percentiles with the 50th being a ‘point
estimate’ and the (2.5th, 97.5th) producing a CI. Consider using the format, 2.55097.5
(see Louis and Zeger, 2008)

• Moment-based CI: P̄+k ± 1.96× SD(Pik) (not recommended!)
Since the posterior distribution for a Pk can be highly skewed, the percentile approach is
recommended. If you want the moment-based intervals, do compute them in the logit
scale (compute logits of the P (ν)

+k , do the analysis and and then invert (‘expit’) the
endpoints. Better still, use the percentile-based CI.
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• The posterior distribution of the Uk: for each EAk the 2.5th, 50th and 97.5th percentiles
with the 50th being a ‘point estimate’ and the (2.5th, 97.5th) producing a CI.

Population parameters
Similar summaries of the population parameters are also available by data-analyzing the
{β(ν), τ (ν)}, ν = 1, . . . , T . In addition, you can plot, for example, β1 versus β2 or compute the
full covariance matrix for the βs.

3 The first-order auto-regressive (AR1) model
We provide an overview; the relevant literature is needed to fill in the details. The index t
denotes ‘wave’ and we focus on the Ukt. The complete model also includes the fixed-effects,
Xiktβ (a more general model would allow a t index on β, so βt.1 As for all regression models,
the implicit assumption is that the unconditional mean structure is modeled by the fixed effects
and that the Ukt are residuals and have marginal mean 0.

We focus on the first-order, auto-regressive (AR1) model, starting with a model that allows for
a wave-specific, cross-sectional variance (τ2t ) and then specialize to τ2t ≡ τ2. Several other
time-series models are candidates for inducing longitudinal association among the Ukt. We
outline these in Section 3.5.

3.1 The AR1 model
• Ukt are the EA- and wave-specific random effects, k = EA, t = wave.

• The AR1 model induces correlation, ρs, ρ ∈ [0, 1) for Us that are s time units apart.2

◦ For equally spaced time increments, ρs = cor(Ukt, Uk(t+s))

• Gaussian prior on the Ukt : [U11, . . . , UK1 | τt]
iid∼ N(0, τ2t )

• Options for the prior on the τ2t (independent for each t):
◦ Inverse Gamma

◦ Uniform over some interval

◦ In rstan, ‘flat’

• Options for the prior for ρ
(for AR1 and other AR models ρ should be restricted to [0, 1]):
◦ Fisher’s Z: Half-normal {restricted to [0,∞)} for Z(ρ) = 0.5× log{(1 + ρ)/(1− ρ)}
◦ ρ ∼Uniform[0, 1.0]

3.2 AR1 conditional distributions
We present conditional distributions for a general set of τ2t and when τ2t ≡ τ2.

1Generally, a smoothing approach would be used rather than saturating the βt model.
2Giving ρ < 0 prior support is inappropriate for the AR1 model.
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3.2.1 Longitudinal conditional distribution for a general τ2t
Here is the distribution conditional on all previous U-values:

[Ukt|Uk1, . . . , Uk(t−1); τ1, . . . , τt−1, τt, ρ] = [Ukt|Uk(t−1); τt−1, τt, ρ] ∼ N
(
ρτtτ

−1
t−1Uk(t−1), (1− ρ

2)τ2t
)

= ρτtτ
−1
t−1Uk(t−1) + τt

(
1− ρ2

) 1
2 ekt

ekt ∼ N(0, 1) independent of the Us and the other es

Notes:
1. Marginally for wave t, Ukt iid N(0, τ2t )

2. Even though we condition on all of the prior Us, only the most recent is used to compute
the conditional mean

3. Setting ρ = 0 unlinks the Us over time so that there is no ‘learning’ from wave to wave

3.2.2 Longitudinal conditional distribution for τ2t ≡ τ2
This is the one we’ll be doing. Here is the distribution conditional on all previous U-values:

[Ukt|Uk1, . . . , Uk(t−1); τ, ρ] = [Ukt|Uk(t−1); τ, ρ] ∼ N
(
ρUk(t−1), (1− ρ2)τ2

)
(3)

= ρUk(t−1) + τ
(
1− ρ2

) 1
2 ekt

ekt ∼ N(0, 1) independent of the Us and the other es

Notes:
1. Marginally for wave t, Ukt iid N(0, τ2)

2. Even though we condition on all of the prior Us, only the most recent is used to compute
the conditional mean

3. Setting ρ = 0 unlinks the Us over time so that there is no ‘learning’ from wave to wave

3.3 The marginal distribution when τt ≡ τ
Taking K = 3 and τt ≡ τ , the marginal distribution of U = (Uk1, Uk2, Uk3)

′ with equal
time-spacing is,

U ∼ N3

(
0
¯
, τ2R

)
R =

 1 ρ ρ2

ρ 1 ρ
ρ2 ρ 1

 (4)

The correlations decrease exponentially fast with time-separation. Note that as in the foregoing
equations, the conditional distributions use only the most proximal Us.
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3.3.1 General conditional distribution when τt ≡ τ
The AR1 structure isn’t restricted to longitudinal relations; it depends on ‘neighbors.’ For
example, using the covariance matrix in equation (4), we have,

E(U2 | U1, U3; τ, ρ) =

(
2ρ

1 + ρ2

)(
U1 + U3

2

)

V (U2 | U1, U3, τ, ρ) =

(
1− ρ2

1 + ρ2

)
τ2 ≤ (1− ρ2)τ2

There is automatic conditioning on the two neighbors, U1 and U3. Doing so reduces the
variance more than just conditioning on U1 (no surprise!). More generally, with the AR1
structure

E(Us | U1, U2, . . . , Us−1, Us+1, . . . ; τ, ρ) =

(
2ρ

1 + ρ2

)(
Us−1 + Us+1

2

)

V (Us | U1, U2, . . . , Us−1, Us+1, . . . ; τ, ρ) =

(
1− ρ2

1 + ρ2

)
τ2

3.4 Bringing in the fixed effects
All of the foregoing is for the residuals Ukt. With covariates, let θikt = logit(Pikt), and for
specificity τt ≡ τ . With Xik = (Xik1,Xik2, . . . ,Xikt), we have,

[θikt | Uk1, . . . , Uk(t−1);Xik,β, τ, ρ] ∼ N
{
Xiktβ + ρUk(t−1), (1− ρ2)τ2

}
= Xiktβ + ρUk(t−1) + τ(1− ρ2)

1
2 ekt

ekt ∼ N(0, 1) independent of the Us and the other es

Note that the ‘autoregression’ is the same as equation (3), it operates on residuals.

3.5 Extensions
The AR1 model is a subset of a far more general ARIMA(p,q) (Autoregressive, Integrated
Moving Average) models. The ARMA(p,q) are a subset of these, with the following
representations (for a single k). The e are all iid mean 0:

Ut =

p∑
`=1

ϕ`Ut−` + et ARMA(p, 0)

Ut = et +

q∑
`=1

θ`et−` ARMA(0,q) (5)

Ut = et +

p∑
`=1

ϕ`Ut−` +

q∑
`=1

θ`et−` ARMA(p,q)

We don’t need this degree of flexibility and also don’t have a sufficient number of waves to
support much more than p+ q ≤ 2. We’ll stay with AR1 probably forever, but it’s interesting
to see the relation between the ARMA(1,0) and the ARMA(0,1) covariance matrices.
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Equation 4) is for the ARMA(1,0) model; the covariance for the ARMA(0,1) model, is:

ρ =
θ

1 + θ2

R =

 1 ρ 0
ρ 1 ρ
0 ρ 1


and more generally the diagonal is 1, the first super and sub diagonals are ρ and 0 elsewhere. In
this model, the correlation persist irrespective of time-separation. An ARMA(1,1) model allows
for correlation that decreases with time-separation down to a positive value rather than to 0.

4 Out of Sample Prediction
We consider general predictions and also those focused only on assessing fit of the regression
model. The predictive distribution captures full uncertainty in a ‘future direct estimate’ by
including uncertainty in the predictive model and in the observed data conditional on the
predictive model. The standard Bayes estimates that condition on all observeds are as specified
in Section 2; none of what follows changes them.

Out of sample prediction entails using a model informed by ‘training data’ to generate the full
predictive, possibly joint, distribution for ‘out of sample’ units. In our context these are a
subset of EAs identified by a list of (k, t) subscripts. The following assumes that a program is
available that accommodates use of ‘NA’ to indicate a missing direct estimate, or program the
model to treat missing data items as ‘parameters’ and that the M post-burn-in generated
imputations for the associated EAkt can be captured. If neither of these approaches are
available, imputations need to be programmed ‘by hand’ (see Section ?? for a basic example).
For complex models for the dependency of the Ukt (for example, a spatial model), it is quite
challenging and most assuredly not recommended.

Note that in what follows we use Ykt as shorthand for Y+kt, Pkt for P+kt etc.

4.1 The method
The high-level method is very straightforward.

Step 1: Define,

Ikt =

{
1, if EA (k, t) is to be imputed
0, if EA (k, t) is in the training sample

Step 2: If Ikt = 1, put ‘NA’ for the direct estimate, or provide the appropriate code that
treats the direct estimate as a parameter.

Step 3: Run the model, and retain the M post-burn-in draws for all unknowns including the
imputed ‘direct estimates’ for EAs with Ikt = 1.

Step 4: The draws for an EA with Ikt = 1 are the predictive distribution for it. In our
application, denote them by Ỹ (ν)

kt and so the predicted prevalences are

˜̂
P

(ν)

kt = Ỹ
(ν)
kt /nkt, (6)
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where the tilde (˜) denotes an imputed rather than an observed value.

• The (k, t)-specific mean, ˜̂
P

(•)
kt gives the point estimate prediction

• The interval with endpoints at the 2.5th and 97.5th percentiles gives the 95%
prediction interval

• If the direct estimate, P̂kt, is available (but not used in estimating the model),
then one can compute the traditional (observed - predicted)/SD standardized
residuals and also the more appropriate Z-value computed from the inverse
Gaussian of the percentile location, along with other diagnostics (see Section 5).

4.2 Notes
• Of course, Ikt ≡ 1 for any EA for which we don’t have the direct estimate. For EAs that

have a direct estimate, we can choose to declare Ikt = 1 to obtain the out of sample, full
predictive distribution.
• There needs to be sufficient information provided by the training data (the EAs with
Ikt = 0) to support fitting the specified model). And, even if estimable, a model with
high uncertainty posterior for the β or the τ will produce broad predictions
• The model must be specified to support predictions. For example, if you want to use

waves (1, 2, 3) to predict wave 4 and you want to allow for a wave-specific intercept, you
need to have a way to trend the wave (1, 2, 3) intercepts to wave 4. The base case of
‘no change’ is a single column of 1s in the X-matrix (µ1 = µ2 = µ3 = µ4). A linear trend
is produced by two columns in the X-matrix, a column of 1s and a column (0, 1, 2, 3)′,
producing µt = β0 + β1(t− 1), etc. Wave-specific intercepts are produced by using the
full 4 degrees of freedom with the most directly interpretable being suppressing the
overall intercept and including 4 columns in the design matrix with the tth column having
a 1 in the tth location and 0s elsewhere.

5 Diagnostics
The full predictive distribution supports a wide variety of additional fit and performance
assessments. If the modeling is correct or at least reasonably so, then the distribution of the
ensemble,

{
˜̂
P

(ν)
kt

}
, ν = 1, . . . ,M is an accurate depiction of location, spread, shape, etc. of

the full predictive distribution. If not, then the direct estimates, P̂kt will not come from their
respective, computed predictive distributions. One measure of this departure is that the
collection of percentile locations will depart from U(0,1) and so also the inverse Gaussian
transform will depart from a N(0,1) distribution. For model diagnostics, the following should
only be used for (k, t) pair with Ikt = 1.

5.1 Prediction mean, variance and SD
Mean: The prediction mean is,

Ekt =
˜̂
P

(•)
kt =

1

M

M∑
ν=1

˜̂
P

(ν)
kt (the predicted prevalence) (7)

7



Note 1: For EAs with Ikt = 1: Ekt =
˜̂
P

(•)
kt is the general version of ‘Avelogistickt,’ the

predicted value that conditions on information other than the direct estimate.
Therefore, this general definition of Avelogistic is the appropriate X-axis in assessing fit
of the (logistic) regression model coupled with the assumed model for association
amongst the U -values and the τt. The full predictive distribution is appropriate
evaluating for a wide variety of out of sample predictions, for example wave 4 direct
estimates, using wave (1,2,3) training data along with the Xs for wave 4 and a joint
distribution assumption on the Us (e.g, AR1). Performance can be compared for
different sets of Xs, different assumptions on relations among the Us, and among the
τt.

Note 2: Avlogistickt for an EA with Ikt = 1 mixes over the [Ukt | U`s, ` 6= k, s 6= t].
(a) For example, if the model being fit specifies that the Ukt are completely

independent, then Avlogistickt for an EA with Ikt = 1 mixes over the prior
distribution for that Ukt.

(b) If the model being fit specifies association among the Us (e.g., is spatial or
autoregressive), then the posterior distribution ‘learns’ from other U-values.

Note 3: For EAs with Ikt = 0: Ekt =
˜̂
P

(•)
kt is the posterior mean that, in addition to other

conditioning, conditions on the EA-specific direct estimate. The collection,{
˜̂
P

(ν)
kt

}
, ν = 1, . . . ,M provide the full, posterior distribution. Ekt should not be used

as the X-axis in a residual plot, but is the Bayes posterior mean estimate for EA k in
wave t, and is the standard point estimate for comparing EAs, coloring maps, etc. The
full distribution should be used for CIs (in Bayes-speak ‘credible intervals’) and the
lengths of these to color maps, etc.

Note 4: The full predictive distribution supports point estimates other than the predictive mean.
For example, in some applications the predictive median is more appropriate and in this
case ‘mean’ should be replaced by ‘median’ in the foregoing Notes. More generally,
pick your favorite one number summary (e.g., the 10% trimmed mean) and use it!

5.2 Mean, variance, SD of a residual
Equations (7) and (8) are used to compute the residual and the standardized residual, should
only be used for the (k, t) pairs with Ikt = 1, and of course they depend on availability of the

direct estimate. The sample variance of the ˜̂
P

(ν)
kt is:

Vkt =
1

M

M∑
ν=1

(
˜̂
P

(ν)
kt − Ekt

)2
(8)

SDkt = V
1
2
kt

The direct estimate and residuals are:

P̂kt =
Y+kt
nkt

(the direct estimate)

R̂kt = (P̂kt − Ekt)

R∗kt =
R̂kt
SDkt

=
P̂kt − Ekt

SDkt
(9)
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Residuals R̂kt and R∗kt in equation (9) are based on the observed direct estimate (P̂kt) and so
measure discrepancy from the assumed model with R∗kt calibrated by the standard deviation of
the predictive distribution. If the direct estimates have close to a Gaussian distribution, then
the R∗kt can be used to make residual plots, histograms, boxplots, QQ plots, etc. However, if
the direct estimates are not close to Gaussian, then use the percentile approach described in
Section 5.3. In any case, don’t use the R̂kt for any diagnostics, because they haven’t been
calibrated by their standard deviation.

5.3 Using the full predictive distribution
The formulas in display (9) measure deviation in standard deviation units, but other measures
less closely tied to the Gaussian distribution are available. The following are effective
diagnostics, but any computation using the ensemble that targets fit is ‘legal.’ The following
should only be computed for (k, t) with Ikt = 1!

1. Find the percentile location of P̂kt amongst the
{

˜̂
P

(ν)
kt

}
, denote it by ζkt, and use for

the standardized residual,

R‡kt =


−4.0, if P̂kt is below the range of the predictive distribution

Φ−1(ζkt), if P̂kt is in the range of the predictive distribution
4.0, if P̂kt is above the range of the predictive distribution

See Cook et al. (2006) for a similar approach and Efron (2008) for an example of
transforming to z-values.

To compute the percentile location it’s important to move away from 0 and 1 and to
account for ties. So, do the following,

ζkt =
#
{

˜̂
P

(ν)
kt <P̂kt

}
+ 1

2#
{

˜̂
P

(ν)
kt =P̂kt

}
M

=
2×#

{
˜̂
P

(ν)
kt <P̂kt

}
+ #

{
˜̂
P

(ν)
kt =P̂kt

}
2M

(10)

Note that this ratio is strictly greater than 0 and strictly less than 1. Also, if all of the
MCMC draws equal P̂kt, then ζ = 1

2 and the residual is 0, as it should be.

If the predictive distribution is exactly Gaussian, these will be identical to the R∗kt and in
general are less dependent on the Gaussian assumption.

For example, if the predictive distribution were a single binomial (not our case!), here are
comparisons of R∗ and R‡ when the direct estimate is 0. The formulas are:

R∗ = −
(

np

1− p

) 1
2

R‡ = Φ−1 {0.5×(1− p)n}

Of special note is that for small values of p, R‡ > R∗, and as p increases the relation
reverses for n = 25 (Table 1), but not for n = 5 (Table 2). Similar relations hold for
smaller values of n. The R‡ residuals are more appropriate in that they pay attention to
the details of the distribution. This benefit also applies when the approach is applied to
the full, predictive distribution when producing residuals Q-Q plots, etc.
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p 0.005 .01 .05 .10 .50
R∗ -0.35 -0.50 -1.15 -1.67 -5.00
R‡ -0.15 -0.28 -1.09 -1.80 -5.54

Table 1: Residuals when the predictive distribution is Bernoulli(n = 25, p) and the direct estimate
is 0. This is not our exact situation because our full predictive distribution is composed of a sum of
not necessarily identically distributed Bernoulli variates and it also includes uncertainty in the probability
(uncertainty in p).

p 0.005 .01 .05 .10 .50
R∗ -0.16 -0.22 -0.51 -0.75 -2.24
R‡ -0.03 -0.06 -0.29 -0.54 -2.15

Table 2: Residuals when the predictive distribution is Bernoulli( n = 5, p) and the direct estimate
is 0. This is not our exact situation because our full predictive distribution is composed of a sum of
not necessarily identically distributed Bernoulli variates and it also includes uncertainty in the probability
(uncertainty in p).

2. Box-plots: and other outlier diagnostics using the R∗k or R‡k.

3. Residual plots: with either R∗k or R‡k on the Y-axis and the appropriate Avelogistickt on
the X-axis. Importantly, these X-axis values should be for an MCMC run with Ikt = 1
(see Note 1 below equation 7).

4. Q-Q plots: of the R∗kt or the R
‡
kt against a Gaussian (normal) reference. This will be a

good diagnostic, but because P̂kt and the predictive distributions are computed, in part,
from sums of 0/1 variables, even under the null hypothesis the distribution won’t be
exactly N(0,1).

i. Equivalently, a Q-Q plot of the one-sided P-values computed using the R∗kt or
directly using the ζkt, against a U(0,1) reference.

5. Chi-square goodness of fit: When using (Observed - Predicted)/SD),

χ2
df =

K∑
1

(R∗kt)
2 (see equation 9) (11)

or, when using the percentile approach

χ2
df =

K∑
1

(
R‡kt

)2
(see Diag 1)

The exact df needs to be determined and will depend on whether the assessment is in or
out of sample, and on the correlation structure assumed for the Ukt. It is surely no
greater than K and for the AR1 or a spatial model considerably smaller.

5.4 Additional summaries
Out of sample residuals are central to assessing the performance of a model, but shouldn’t be
the only components a report or an evaluation. Here are a few others, with not intention to
provide a complete list.
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5.4.1 Shrinkage plots
In addition to the residual plot in Section 5.3, two ‘shrinkage plots’ are informative.

Direct estimate to Bayes:
• Direct estimates plotted horizontally sufficiently far above the X-axis
• Whisker for each proportional to the length of the 95%, Binomial likelihood-based CI

using the numerator and denominator of the direct estimate
• Bayes estimates plotted horizontally on the X-axis
• Lines connecting the Direct and the Bayes

(Direct - Avelogistic) to (Bayes - Avelogistic):
• (Direct - Avelogistic) plotted horizontally sufficiently far above the X-axis
• Whisker for each proportional to the length of the 95%, Binomial likelihood-based CI

using the numerator and denominator of the direct estimate
• (Bayes - Avelogistic) plotted horizontally on the X-axis
• Lines connecting the Direct and the Bayes

◦ Note: Unlike in Gaussian/Gaussian model, the signs of (Direct - Avelogistic) and
(Bayes - Avelogistic) can differ; a line can cross 0. Crossing can occur when
Avelogistic is sufficiently far from 0.5 and the Direct estimate is sufficiently close to
Avelogistic.

5.4.2 The degree of shrinkage
The degree of shrinkage for EAkt is,

Shrinkagekt =
Directkt − Bayeskt

Directkt − Avelogistickt
(12)

The between-EA variance (τ2) plays a role in how much an estimate shrinks towards the
regression model; itÕs all relative. For example, if τ2 is small relative to the variance of a direct
estimate (more properly, if the posterior distribution of τ2 has most of its mass far below the
variance of the direct estimate), then the regression model will get a lot of weight even if the
variance of the direct estimate is small. On the other hand, if the posterior distribution of τ2

has most of its mass far above the variance of the direct estimate, then the regression model
will get relatively little weight.

5.4.3 Reduction in uncertainty
Because the SD isn’t the best summary for binomial and other non-Gaussian data, it is far
better to compare the length of the properly computed, exact 95% CI associated with
the direct estimate3 and the length of the 95% probability content of the Bayes credibility
interval (provided by the MCMC output). Their ratio gives a good indication of the improved
stability conferred by the Bayesian model. If the lengths of the CIs based on the direct
estimates and the Bayes estimates are similar, then there has been no ‘Bayes advantage’ and
unless the direct estimates are all very stable (in which case there is no reason the stabilize
them), it is worth looking for additional covariates (or transforms of current, interactions of
current) that have predictive power and thereby shift the posterior distribution of τ2 closer to

3In R use binconf with method = ‘exact’
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0. If there are no such covariates, then so be it, we need to live with what we have. I stress
comparisons should be on CI length, because while for Gaussian data itÕs equivalent to
comparing SDs, for count data, especially when an estimate is near 0, they aren’t equivalent.

Related, as indicated in Section 5.4.1 use exact 95% CI length for whiskers: For our shrinkage
plots it is better to set the whiskers proportional to the length of the exact 95% CI associated
with the direct estimate rather than proportional to the SD.

5.4.4 Model criticism
As in evaluating a standard (non-Bayesian) regression or logistic regression, we donÕt expect
that the residuals will all be very close to 0, but for a good model we do expect that the
standardized residuals will look reasonable relative to random variables that have mean 0 and
variance 1 (not necessarily Gaussian). Ditto for the Bayesian approach and with the percentile
method for residuals the Zs should be close to Gaussian.

As for standard diagnostics, patterns matter as much as magnitude, and plotting standardized
residuals (ideally the percentile-based ones) versus the relevant Avelogistic values is a good way
to identify model lack of fit that might be reduced by including additional covariates including
carefully chosen interactions based on currently included covariates. The issue here are
essentially identical to traditional modeling.

Traditional models use AIC, BIC, adjusted R2, and other one-number summaries to assess fit.
In addition, Bayesian models with MCMC support DIC which is interpreted in a manner similar
to AIC and BIC.

6 Aggregation Diagnostics
Comparing aggregated posterior mean or median estimates to the direct estimate associated
with the aggregated regions can help diagnose model inadequacy. Aggregation needs to be
sufficient so that the aggregated direct estimates and the aggregated Bayes estimates are stable
and can be trusted. Subject to this requirement, any aggregation is ‘fair game’ with the most
spatially logical being to aggregate nested domains (e.g., EAs aggregated to regions, regions to
the country). These comparisons can be ‘decorated’ with uncertainty estimates (see Section 5),
but with sufficient aggregation, uncertainty will be relatively small.

6.1 Country-level aggregation
Recall that we use the shorthand Ykt =

∑nkt
i=i Yikt, etc. Aggregating EAs to the country-level is

straightforward. For a fit assessment, compute a weighted average of the Y (ν)
kt , producing,

Y
(ν)
wt =

∑
k

wktY
(ν)
kt , ν = 1, . . . ,M (13)

and see where P̂wt =
∑

k wktP̂kt falls in the distribution. The wkt need to be specified; use
wkt = nkt/n+t, if the nkt are proportional to the population size (i.e., the number of eligible
women) of region k; otherwise use weights based on the true population sizes. Section 6.2
provides additional details. This computation is equivalent to comparing P̂wt to the aggregated
Ewt =

∑
k wktEkt. It produces a single number, but can be helpful.
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6.2 General aggregation
Let A indicate the EAs to be aggregated. That is, A is a list of subscripts {k1, k2, . . . , k|A|},
where |A| is the number of subscripts in A. Then, compute,

Y
(ν)
wt|A =

(
1∑

k∈Awkt

)∑
k∈A

wktY
(ν)
kt , ν = 1, . . . ,M (14)

and use as in Section 6.1 Compute the foregoing for a collection of A that partition the EA
space (e.g., regions), look at patterns, etc. Any partition can be used, ideally motivated by
substantive considerations such as aggregated urban and aggregated rural. The collection of
these aggregations can be very helpful in diagnosing model inadequacies, especially when
aggregation is sufficient so that the aggregated direct are stable.

6.3 Benchmarking
The goal is to ‘roll up’ to a target prevalence, for example the directly estimated country
prevalence. If the modeling is reasonably good, the rolled-up (usually weighted by EA sample
size) Bayesian estimates should come close to the target. If not, either it’s an inappropriate
target or the modeling wasn’t very good. In any case, estimates can be adjusted
(benchmarked) to produce the match. There are a variety of ways to force the Bayes estimates
(the posterior means) to benchmark, and this is the subject of a forthcoming section. Suffice
for now that there are two views on forcing a benchmark:
• Force benchmarking so that the estimates are ‘face-valid’ to stakeholders.

• Don’t force benchmarking; notable discrepancies indicate model inadequacy and these
should be remedied.

The most naive, and definitely not recommended, is to rake the estimates by applying a
common factor to the EA-specific estimates (Bayes or otherwise). For example, if the rolled-up
Bayes estimates are 1% higher than the target, divide each of them by 1.01 to guarantee the
match. More appropriate is to optimize predictions, subject to a (linear) benchmarking
constraint (see, Bell et al., 2013), replacing,

‘EA-specific estimates are the mean of the posterior distribution; they minimize
posterior squared-error loss.’

By,

‘EA-specific estimates minimize posterior-squared error loss, subject to the linear
constraint that they roll up to the target.’

Though the foregoing is very appropriate for benchmarking posterior means, it can’t deal with
non-standard goals such as ranks and it’s not clear what benchmarking would mean in that
context. However, recent work I’m doing with Beka Steorts (Duke), embeds the benchmarking
in the full posterior distribution so that any quantity computed from it will be ‘benchmarked.’
Work on this idea continues.
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PMA2020 sample design 
PMA2020 survey samples are designed to provide estimates of the mCPR indicator with a margin of error 

of 2 percentage points at the national level and within 3 percentage points for rural and urban areas 

separately.  Burkina Faso, Ghana and Uganda surveys employed a two-stage sampling strategy (urban-

rural strata and then enumeration area (EA)). Ethiopia and Kenya had an additional level, stratifying first 

by region and county respectively.  Once stratified by rural/urban residence, EAs were randomly selected 

in all countries.  In selected EAs, all households were mapped and listed, and then with a random start, 

between 35 and 42 households were systematically selected for interviews.  The EA size varied 

depending on the expected response rate and number of eligible women per household.   

 

Local government agencies that sponsored the PMA2020 surveys often requested the sample be designed 

to provide subnational estimates for their administrative divisions.  This has challenged the project’s 

limited resources, usually leading to some but not all subnational units being accommodated in the 

sampling.  Specifically, in addition to the stratification by urban-rural residency, Ethiopia and Kenya had 

an additional level, stratifying first by region and county respectively. In Ethiopia, of the 11 regions five 

account for more than 80% of the country’s populations and were identified for subnational sampling, 

while the remaining six combined into a residual region group.  EAs were allocated proportionally across 

the six regional groups.  In Kenya, following the 2013 general election, 47 counties constituted the 

government’s Level-1 administrative units.  The Kenyan National Council for Population and 

Development and the Ministry of Health sought county-level estimates from the PMA2020 surveys.  With 

a probability proportional to size (PPS) approach and within allowable resources, nine counties were 

selected to provide county-level estimates while in the aggregate also providing national and urban-rural 

estimates of mCPR. These nine counties encompass almost 30 percent of the population based on the 

2009 census. Over time, independently drawn EAs were added to the samples for Ethiopia and Kenya.  

However, the analytic samples for this study are based on the EA samples consistently included across all 

four rounds (or two rounds in Burkina Faso).   
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Table 1: Woman-level outcome, covariates and their definitions 

Indicator Definitions of indicators and categories 
Outcome 
Modern contraceptive 
use 

Whether currently using a modern contraceptive method 

Covariates 
Residence Urban, rural, metropolitan residence 
Schooling Highest level attained: No education, primary, secondary or above 
Wealth quintile Five groups of approximately equal size based on a factor analysis score 

constructed from household assets 
Child survival Whether the last child born in the preceding two years is still alive 
Age Five-year age groups (15-19 years, …, 45-49 years) 
Cohabitation Not married; married and living with husband; married but not living with 

husband 
Recent sex Whether had sex in the past 4 weeks 
Health worker visit Whether visited at home by a health worker in the last 12 months 
FP message Whether heard a family planning (FP) message on radio/TV or saw in print 

in past 12 months 
Fertility intention Whether desires her next pregnancy 24 months or later 
Parity Number of live births 
Distance Distance (km, log transformed) to the nearest facility providing three or 

more modern contraceptive methods 
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Table 2a: Sample Characteristics for Ghana PMA Rounds 1-4 
Indicator Round 

1 2 3 4 Total 
No. % No. % No. % No. % No. % 

Modern contraceptive use         
Yes 591 14.0 520 14.4 770 18.1 1,108 22.8 2,988 17.6 
No 3,636 86.0 3,102 85.6 3,476 81.9 3,746 77.2 13,960 82.4 
Residence           
Rural 1,983 46.9 1,677 46.3 1,606 37.8 1,769 36.5 7,036 41.5 
Urban 1,457 34.5 1,315 36.3 1,834 43.2 2,228 45.9 6,835 40.3 
Metropolitan 786 18.6 629 17.4 806 19.0 856 17.6 3,077 18.2 
Schooling           
No education 893 21.1 753 20.8 790 18.6 871 18.0 3,307 19.5 
Primary school 770 18.2 686 18.9 733 17.3 872 18.0 3,061 18.1 
Secondary school 2,564 60.7 2,183 60.3 2,723 64.1 3,110 64.1 10,580 62.4 
Wealth quintile           
Poorest 784 18.6 826 22.8 844 19.9 1,053 21.7 3,507 20.7 
Poorer 793 18.8 656 18.1 808 19.0 956 19.7 3,213 19.0 
Middle 771 18.2 734 20.3 928 21.9 982 20.2 3,414 20.1 
Richer 869 20.6 717 19.8 866 20.4 917 18.9 3,370 19.9 
Richest 1,010 23.9 688 19.0 800 18.8 945 19.5 3,444 20.3 
Last child died          
Yes 53 1.3 27 0.7 30 0.7 37 0.8 147 0.9 
No 4,174 98.7 3,595 99.3 4,216 99.3 4,816 99.2 16,801 99.1 
Age group           
15-19 years 767 18.2 685 18.9 777 18.3 977 20.1 3,207 18.9 
20-24 years 772 18.3 621 17.1 796 18.7 926 19.1 3,114 18.4 
25-29 years 779 18.4 642 17.7 746 17.6 831 17.1 2,998 17.7 
30-34 years 578 13.7 567 15.7 658 15.5 749 15.4 2,553 15.1 
35-39 years 561 13.3 490 13.5 526 12.4 591 12.2 2,168 12.8 
40-44 years 429 10.1 329 9.1 370 8.7 389 8.0 1,516 8.9 
45-49 years 341 8.1 288 7.9 373 8.8 391 8.0 1,392 8.2 
Cohabitation           
Not married 1,433 33.9 1,458 40.2 1,810 42.6 2,124 43.8 6,825 40.3 
Live together 1,872 44.3 1,573 43.4 1,726 40.6 1,918 39.5 7,089 41.8 
Not living 
together 

921 21.8 591 16.3 710 16.7 811 16.7 3,033 17.9 

Had sex last 4 weeks          
Yes 1,785 42.2 1,545 42.7 1,916 45.1 2,462 50.7 7,708 45.5 
No 2,442 57.8 2,076 57.3 2,330 54.9 2,391 49.3 9,239 54.5 
Visited by health 
worker 

          

Yes 717 17.0 571 15.8 573 13.5 613 12.6 2,475 14.6 
No 3,509 83.0 3,051 84.2 3,673 86.5 4,240 87.4 14,473 85.4 
FP message           
Yes 3,176 75.1 2,608 72.0 3,140 74.0 3,697 76.2 12,622 74.5 
No 1,051 24.9 1,013 28.0 1,106 26.0 1,156 23.8 4,326 25.5 
Desire to postpone          
Yes 1,439 34.0 1,179 32.6 1,358 32.0 1,695 34.9 5,671 33.5 
No 2,788 66.0 2,442 67.4 2,888 68.0 3,159 65.1 11,277 66.5 
 Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median 

Parity 2.3/2.3 1.7 2.2/2.3 1.6 2.0/2.1 1.5 1.9/2.1 1.3 2.1/2.2 1.5 
Distance 7.3/9.6 2.2 8.0/11.5 2.2 3.4/6.8 0.8 3.1/6.0 0.74779 5.2/8.8 1.1 
           
Total 4,227 100.0 3,621 100.0 4,246 100.0 4,853 100.0 16,948 100.0 
Note:  Sample of females 15 to 49 years of age.  See Table 1 for variable definitions. 
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Table 2b: Sample Characteristics for Ethiopia PMA Rounds 1-4 
Indicator Round 

1 2 3 4 Total 
No. % No. % No. % No. % No. % 

Modern 
Contraceptive 

          

Yes 1,231 23.4 1,484 24.4 1,580 26.8 1,596 27.0 5,890 25.4 
No 4,023 76.6 4,599 75.6 4,324 73.2 4,313 73.0 17,259 74.6 
Residence           
Rural 3,990 75.9 4,598 75.6 4,344 73.6 4,308 72.9 17,240 74.5 
Urban 872 16.6 1,165 19.2 1,212 20.5 1,267 21.4 4,516 19.5 
Metropolitan 392 7.5 319 5.3 348 5.9 334 5.7 1,394 6.0 
Schooling           
No education 2,284 43.5 2,604 42.8 2,490 42.2 2,300 38.9 9,678 41.8 
Primary school 2,020 38.4 2,312 38.0 2,207 37.4 2,315 39.2 8,854 38.2 
Secondary school 950 18.1 1,166 19.2 1,207 20.4 1,295 21.9 4,618 19.9 
Wealth quintile           
Poorest 850 16.2 1,022 16.8 1,048 17.8 1,043 17.6 3,963 17.1 
Poorer 877 16.7 1,146 18.8 1,075 18.2 1,038 17.6 4,137 17.9 
Middle 943 17.9 1,170 19.2 1,115 18.9 1,072 18.1 4,300 18.6 
Richer 1,163 22.1 1,288 21.2 1,196 20.3 1,234 20.9 4,882 21.1 
Richest 1,420 27.0 1,456 23.9 1,470 24.9 1,522 25.8 5,868 25.4 
Last child died           
Yes 76 1.5 114 1.9 104 1.8 138 2.3 433 1.9 
No 5,177 98.5 5,969 98.1 5,799 98.2 5,771 97.7 22,716 98.1 
Age group           
15-19 years 1,197 22.8 1,426 23.4 1,389 23.5 1,401 23.7 5,413 23.4 
20-24 years 901 17.2 1,114 18.3 1,105 18.7 1,032 17.5 4,152 17.9 
25-29 years 983 18.7 1,226 20.2 1,041 17.6 1,058 17.9 4,308 18.6 
30-34 years 750 14.3 791 13.0 774 13.1 814 13.8 3,129 13.5 
35-39 years 714 13.6 753 12.4 766 13.0 694 11.7 2,927 12.6 
40-44 years 412 7.8 447 7.4 451 7.6 501 8.5 1,811 7.8 
45-49 years 295 5.6 326 5.4 378 6.4 410 6.9 1,410 6.1 
Cohabitation           
Not married 1,688 32.1 2,152 35.4 2,178 36.9 2,270 38.4 8,288 35.8 
Live together 3,050 58.1 3,705 60.9 3,470 58.8 3,416 57.8 13,641 58.9 
Not live together 515 9.8 226 3.7 256 4.3 223 3.8 1,220 5.3 
Had sex last 4 weeks           
Yes 2,624 49.9 3,257 53.5 3,418 57.9 3,326 56.3 12,625 54.5 
No 2,630 50.1 2,826 46.5 2,485 42.1 2,583 43.7 10,525 45.5 
Visited by health 
worker 

          

Yes 1,142 21.7 1,105 18.2 1,224 20.7 1,023 17.3 4,495 19.4 
No 4,111 78.3 4,978 81.8 4,680 79.3 4,886 82.7 18,654 80.6 
FP message           
Yes 2,158 41.1 2,506 41.2 2,562 43.4 2,592 43.9 9,819 42.4 
No 3,095 58.9 3,576 58.8 3,342 56.6 3,317 56.1 13,330 57.6 
Desire to postpone           
Yes 1,391 26.5 1,874 30.8 1,992 33.7 2,116 35.8 7,373 31.8 
No 3,862 73.5 4,209 69.2 3,912 66.3 3,792 64.2 15,776 68.2 
 Mean/S

D 
Median Mean/ 

SD 
Median Mean/ 

SD 
Median Mean/ 

SD 
Median Mean/ 

SD 
Median 

Parity 2.2/2.5 1.4 2.1/2.5 1.2 2.1/2.5 1.2 2.1/2.5 1.2 2.1/2.5 1.3 
Distance 4.6/10.2 1.0 1.6/3.3 0.8 1.6/3.0 0.8 1.6/3.4 0.8 2.3/5.9 0.8 
           
Total 5,253 100.0 6,083 100.0 5,904 100.0 5,909 100.0 23,149 100.0 
Note:  Sample of females 15 to 49 years of age.  See Table 1 for variable definitions. 
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Table 2c: Sample Characteristics for Kenya PMA Rounds 1-4 
Indicator Round 

1 2 3 4 Total 
No. % No. % No. % No. % No. % 

Modern contraceptive use         
Yes 1,534 41.7 1,723 40.3 2,010 46.5 2,207 46.0 7,475 43.7 
No 2,147 58.3 2,556 59.7 2,313 53.5 2,596 54.0 9,612 56.3 
Residence           
Rural 2,104 57.1 2,590 60.5 2,616 60.5 2,947 61.4 10,256 60.0 
Urban 866 23.5 920 21.5 969 22.4 1,065 22.2 3,821 22.4 
Metropolitan 711 19.3 769 18.0 738 17.1 791 16.5 3,010 17.6 
Schooling           
No education 142 3.9 158 3.7 187 4.3 187 3.9 675 4.0 
Primary school 1,830 49.7 2,151 50.3 2,107 48.7 2,341 48.7 8,429 49.3 
Secondary 
school 

1,709 46.4 1,970 46.0 2,029 46.9 2,274 47.4 7,982 46.7 

Wealth quintile          
Poorest 625 17.0 858 20.0 893 20.7 1,023 21.3 3,398 19.9 
Poorer 635 17.2 892 20.8 890 20.6 1,014 21.1 3,431 20.1 
Middle 662 18.0 833 19.5 879 20.3 981 20.4 3,354 19.6 
Richer 810 22.0 834 19.5 797 18.4 840 17.5 3,280 19.2 
Richest 950 25.8 863 20.2 865 20.0 945 19.7 3,623 21.2 
Last child died          
Yes 45 1.2 31 0.7 55 1.3 44 0.9 175 1.0 
No 3,636 98.8 4,248 99.3 4,269 98.7 4,758 99.1 16,911 99.0 
Age group           
15-19 years 487 13.2 813 19.0 684 15.8 967 20.1 2,950 17.3 
20-24 years 812 22.0 803 18.8 928 21.5 974 20.3 3,517 20.6 
25-29 years 861 23.4 860 20.1 906 21.0 968 20.2 3,595 21.0 
30-34 years 560 15.2 576 13.5 631 14.6 656 13.6 2,423 14.2 
35-39 years 439 11.9 501 11.7 481 11.1 553 11.5 1,974 11.6 
40-44 years 298 8.1 446 10.4 357 8.3 376 7.8 1,477 8.6 
45-49 years 226 6.1 280 6.6 335 7.8 308 6.4 1,149 6.7 
Cohabitation           
Not married 1,280 34.8 1,672 39.1 1,583 36.6 1,985 41.3 6,519 38.2 
Live together 2,010 54.6 2,173 50.8 2,224 51.4 2,328 48.5 8,735 51.1 
Not living 
together 

392 10.6 434 10.1 517 12.0 490 10.2 1,832 10.7 

Had sex last 4 weeks          
Yes 1,922 52.2 2,230 52.1 2,709 62.7 2,877 59.9 9,737 57.0 
No 1,760 47.8 2,049 47.9 1,615 37.3 1,925 40.1 7,349 43.0 
Visited by health worker         
Yes 415 11.3 553 12.9 455 10.5 465 9.7 1,888 11.0 
No 3,267 88.7 3,726 87.1 3,869 89.5 4,337 90.3 15,199 89.0 
FP message           
Yes 3,190 86.6 3,743 87.5 3,807 88.1 4,254 88.6 14,993 87.7 
No 492 13.4 536 12.5 517 11.9 549 11.4 2,093 12.3 
Desire to postpone          
Yes 1,175 31.9 1,502 35.1 1,513 35.0 1,867 38.9 6,057 35.4 
No 2,506 68.1 2,777 64.9 2,811 65.0 2,936 61.1 11,029 64.6 
 Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median 

Parity 2.5/2.2 2.1 2.4/2.3 2.0 2.4/2.2 2.0 2.2/2.3 1.7 2.4/2.3 1.9 
Distance 2.1/2.7 1.4 1.8/1.6 1.3 1.6/2.1 1.2 1.7/2.3 1.2588 1.8/2.2 1.3 
           
Total 3,682 100.0 4,279 100.0 4,323 100.0 4,802 100.0 17,086 100.0 
Note:  Sample of females 15 to 49 years of age.  See Table 1 for variable definitions. 
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Table 2d: Sample Characteristics for Uganda PMA Rounds 1-4 
Indicator Round 

1 2 3 4 Total 
No. % No. % No. % No. % No. % 

Modern contraceptive use        
Yes 754 21.0 939 26.3 939 25.9 1,025 27.5 3,657 25.2 
No 2,838 79.0 2,628 73.7 2,691 74.1 2,705 72.5 10,861 74.8 
Residence           
Rural 2,859 79.6 2,810 78.8 2,874 79.2 2,981 79.9 11,524 79.4 
Urban 521 14.5 528 14.8 519 14.3 514 13.8 2,082 14.3 
Metropolitan 212 5.9 228 6.4 237 6.5 236 6.3 912 6.3 
Education           
No education 493 13.7 344 9.6 357 9.8 340 9.1 1,533 10.6 
Primary school 724 20.2 742 20.8 752 20.7 790 21.2 3,008 20.7 
Secondary school 2,375 66.1 2,480 69.6 2,522 69.5 2,600 69.7 9,977 68.7 
Wealth quintile           
Poorest 654 18.2 607 17.0 675 18.6 716 19.2 2,651 18.3 
Poorer 661 18.4 660 18.5 675 18.6 693 18.6 2,688 18.5 
Middle 702 19.6 746 20.9 729 20.1 754 20.2 2,931 20.2 
Richer 771 21.5 751 21.1 755 20.8 759 20.4 3,037 20.9 
Richest 803 22.4 802 22.5 797 21.9 808 21.7 3,211 22.1 
Last child died           
Yes 79 2.2 63 1.8 88 2.4 102 2.7 332 2.3 
No 3,512 97.8 3,503 98.2 3,542 97.6 3,628 97.3 14,186 97.7 
Age group           
15-19 years 754 21.0 802 22.5 742 20.4 767 20.5 3,064 21.1 
20-24 years 757 21.1 759 21.3 834 23.0 790 21.2 3,140 21.6 
25-29 years 678 18.9 610 17.1 686 18.9 639 17.1 2,612 18.0 
30-34 years 490 13.6 470 13.2 467 12.9 532 14.3 1,959 13.5 
35-39 years 392 10.9 396 11.1 373 10.3 415 11.1 1,576 10.9 
40-44 years 314 8.7 313 8.8 317 8.7 333 8.9 1,276 8.8 
45-49 years 207 5.8 217 6.1 213 5.9 255 6.8 892 6.1 
Cohabitation           
Not married 1,268 35.3 1,288 36.1 1,255 34.6 1,213 32.5 5,025 34.6 
Live together 1,993 55.5 1,941 54.4 2,082 57.4 2,115 56.7 8,131 56.0 
Not live together 330 9.2 337 9.5 293 8.1 403 10.8 1,362 9.4 
Had sex last 4 weeks          
Yes 1,914 53.3 1,985 55.7 2,164 59.6 2,254 60.4 8,317 57.3 
No 1,677 46.7 1,581 44.3 1,466 40.4 1,476 39.6 6,200 42.7 
Visited by health worker          
Yes 607 16.9 588 16.5 599 16.5 582 15.6 2,375 16.4 
No 2,985 83.1 2,978 83.5 3,032 83.5 3,148 84.4 12,143 83.6 
FP message           
Yes 2,929 81.5 2,849 79.9 2,893 79.7 3,021 81.0 11,691 80.5 
No 663 18.5 717 20.1 738 20.3 709 19.0 2,827 19.5 
Desire to postpone          
Yes 989 27.5 1,097 30.8 1,081 29.8 1,156 31.0 4,323 29.8 
No 2,602 72.5 2,469 69.2 2,550 70.2 2,574 69.0 10,195 70.2 
 Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median Mean 

/SD 
Median 

Parity 3.0/2.9 2.3 2.8/2.8 2.0 2.8/2.8 2.1 3.0/2.8 2.4 2.9/2.8 2.2 
Distance 2.7/3.3 1.5 2.6/2.9 1.5 3.7/7.8 1.4 2.7/3.5 1.40151 2.9/4.8 1.4 
           
Total 3,591 100.0 3,566 100.0 3,630 100.0 3,730 100.0 14,518 100.0 
Note:  Sample of females 15 to 49 years of age.  See Table 1 for variable definitions. 
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Table 2e: Sample Characteristics for Burkina Faso PMA Rounds 3-4 
Indicator Round 

3 4 Total 
No. % No. % No. % 

Modern contraceptive use       
Yes 698 21.6 699 21.9 1,398 21.7 
No 2,539 78.4 2,492 78.1 5,031 78.3 
Residence       
Rural 2,401 74.2 2,386 74.8 4,787 74.5 
Urban 430 13.3 414 13.0 844 13.1 
Metropolitan 406 12.5 392 12.3 798 12.4 
Schooling       
No education 2,036 62.9 2,058 64.5 4,094 63.7 
Primary school 574 17.7 514 16.1 1,088 16.9 
Secondary school 627 19.4 620 19.4 1,247 19.4 
Wealth tertile       
Poorest 1,159 35.8 1,105 34.6 2,264 35.2 
Middle 984 30.4 1,039 32.6 2,022 31.5 
Richest 1,094 33.8 1,047 32.8 2,142 33.3 
Last child died       
Yes 91 2.8 75 2.3 166 2.6 
No 3,146 97.2 3,116 97.7 6,262 97.4 
Age group       
15-19 years 774 23.9 694 21.8 1,468 22.8 
20-24 years 585 18.1 549 17.2 1,134 17.6 
25-29 years 582 18.0 556 17.4 1,138 17.7 
30-34 years 422 13.0 464 14.5 886 13.8 
35-39 years 393 12.1 405 12.7 799 12.4 
40-44 years 263 8.1 293 9.2 557 8.7 
45-49 years 218 6.7 229 7.2 447 6.9 
Cohabitation       
Not married 821 25.4 781 24.5 1,602 24.9 
Live together 2,125 65.7 2,137 67.0 4,263 66.3 
Not live together 291 9.0 273 8.5 564 8.8 
Had sex last 4 weeks       
Yes 1,835 56.7 1,824 57.1 3,659 56.9 
No 1,402 43.3 1,367 42.9 2,769 43.1 
Visited by health worker       
Yes 482 14.9 629 19.7 1,110 17.3 
No 2,755 85.1 2,562 80.3 5,318 82.7 
FP message       
Yes 1,991 61.5 1,959 61.4 3,950 61.4 
No 1,246 38.5 1,232 38.6 2,478 38.6 
Desire to postpone       
Yes 1,285 39.7 1,257 39.4 2,541 39.5 
No 1,952 60.3 1,935 60.6 3,887 60.5 
 Mean/SD Median Mean/SD Median Mean/SD Median 
Parity 2.5/2.6 1.8 2.9/2.7 2.3 2.7/2.7 2.0 
Distance 3.8/8.0 1.3 2.8/3.5 1.4 3.3/6.2 1.4 
       
Total 3,237 100.0 3,191 100.0 6,428 100.0 
Note:  Sample of females 15 to 49 years of age.  See Table 1 for variable definitions. 

 

 



22 
 

Table 3: Direct estimates of the modern contraceptive prevalence rate and 95% uncertainty intervals in Ghana, Ethiopia, Kenya, Uganda and 
Burkina Faso by round 

Country Region Round 1 Round 2 Round 3 Round 4 Change: round 1 
to 4 Mean Lower Upper Mean Lower Upper Mean Lower Upper Mean Lower Upper 

Ghana Ashanti 16.1 13.7 18.7 18.3 15.7 21.2 17.1 14.6 19.8 23.7 21.1 26.4 7.6 
Brong-Ahafo 17.4 13.9 21.3 16.2 12.4 20.7 22.8 18.5 27.6 24.3 19.9 29.2 7.0 
Central 16.0 12.4 20.1 23.1 18.3 28.4 21.8 18.3 25.5 25.8 22.6 29.1 9.8 
Eastern 13.5 10.4 17.2 12.3 9.0 16.4 18.8 14.4 23.9 24.4 19.8 29.4 10.9 
Greater-Accra 15.0 12.6 17.7 15.9 13.1 19.0 19.9 17.2 22.9 22.8 20.1 25.8 7.8 
Northern 7.7 5.4 10.6 5.6 3.5 8.4 10.3 7.3 13.8 13.3 10.2 16.9 5.5 
Upper-East 19.3 13.7 25.9 17.1 11.6 23.7 16.1 11.9 21.2 32.4 27.5 37.5 13.1 
Upper-West 26.5 18.7 35.6 19.6 13.0 27.8 24.7 19.0 31.2 34.7 28.2 41.6 8.1 
Volta 8.8 5.8 12.6 7.1 4.4 10.8 15.5 10.8 21.2 15.7 11.4 20.9 6.9 
Western 6.0 3.7 9.1 7.2 4.7 10.6 13.9 10.7 17.6 12.1 9.0 15.8 6.0 
ALL 14.0 12.9 15.1 14.4 13.2 15.5 18.1 17.0 19.3 22.8 21.7 24.0 8.8 

Ethiopia Addis Ababa 20.6 16.7 25.0 22.8 18.3 27.8 29.1 24.3 34.1 27.0 22.3 32.1 6.4 
Afar 3.0 0.1 13.9 6.5 1.4 17.4 24.9 14.3 38.4 13.2 6.3 23.3 10.2 
Amhara 35.9 33.1 38.8 35.6 33.0 38.3 31.8 29.5 34.2 35.3 32.9 37.8 -0.6 
Benishangul Gumuz 10.9 4.3 21.7 11.4 5.5 20.1 16.2 9.3 25.4 14.9 8.4 23.9 4.0 
Dire Dawa 12.5 0.8 45.3 28.5 8.0 58.8 29.3 12.2 52.2 37.3 19.0 58.8 24.8 
Ethiopia Somali 7.5 0.9 24.3 5.9 0.7 19.7 6.1 1.0 18.3 6.7 1.3 19.1 -0.8 
Gambella 23.2 10.0 41.8 23.4 12.1 38.4 24.4 12.2 40.6 24.7 12.1 41.6 1.5 
Harari 28.3 11.4 51.4 20.2 5.3 45.6 21.2 7.5 42.4 22.4 7.4 45.5 -5.9 
Oromiya 18.6 16.9 20.3 21.1 19.5 22.8 23.0 21.0 25.1 21.8 19.8 23.8 3.2 
SNNPR 23.7 21.2 26.3 22.2 20.1 24.5 27.6 25.4 29.8 28.0 25.9 30.2 4.3 
Tigray 20.1 16.2 24.4 22.9 18.8 27.3 22.9 19.1 27.0 22.1 18.4 26.2 2.0 
ALL 23.4 22.3 24.6 24.4 23.3 25.5 26.8 25.6 27.9 27.0 25.9 28.2 3.6 

Kenya Bungoma 43.9 38.2 49.7 37.1 32.1 42.2 45.3 40.3 50.4 43.5 38.7 48.5 -0.3 
Kericho 39.8 35.4 44.5 37.8 33.7 42.1 42.9 38.7 47.1 38.9 35.2 42.8 -0.9 
Kiambu 43.4 38.6 48.2 48.4 43.7 53.1 44.9 40.5 49.4 50.0 45.6 54.4 6.6 
Kilifi 27.9 23.6 32.4 25.9 22.1 30.0 32.0 27.9 36.3 31.4 27.7 35.2 3.5 
Kitui 39.8 34.9 44.8 39.6 35.2 44.1 51.0 46.6 55.3 53.1 48.9 57.3 13.3 
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Nairobi 45.3 41.6 49.0 41.4 37.9 45.0 51.3 47.6 54.9 48.6 45.1 52.2 3.3 
Nandi 44.6 39.2 50.2 44.5 39.7 49.3 50.1 45.2 55.1 47.6 42.9 52.4 3.0 
Nyamira 50.0 44.1 56.0 52.2 46.6 57.9 58.5 52.9 64.0 56.7 51.2 62.0 6.6 
Siaya 41.9 36.7 47.3 40.1 35.4 44.9 45.0 40.1 50.0 50.0 45.4 54.6 8.1 
ALL 41.7 40.1 43.3 40.3 38.8 41.8 46.5 45.0 48.0 46.0 44.5 47.4 4.3 

Uganda Central1 25.8 21.6 30.3 35.1 30.5 39.9 34.8 30.1 39.7 29.2 25.0 33.7 3.5 
Central2 18.9 14.9 23.6 25.9 21.1 31.1 32.3 27.3 37.6 30.6 26.0 35.5 11.7 
East_Central 17.3 13.8 21.3 21.6 17.8 25.7 27.1 23.1 31.5 26.5 22.4 30.9 9.2 
Eastern 19.4 16.3 22.8 26.4 22.9 30.2 21.9 18.6 25.5 27.3 23.9 31.0 7.9 
Kampala 29.1 23.1 35.7 38.2 31.9 44.8 38.9 32.6 45.4 34.0 28.0 40.4 4.9 
Karamoja 10.7 5.8 17.7 4.5 1.6 9.8 4.7 1.6 10.2 3.9 1.1 9.6 -6.8 
North 24.3 19.8 29.2 27.1 22.6 31.9 23.0 18.9 27.5 25.8 21.4 30.5 1.5 
South_West 24.5 20.5 28.9 25.2 21.2 29.5 24.0 19.9 28.5 32.9 28.2 37.9 8.4 
West_Nile 7.1 4.5 10.5 14.5 10.5 19.3 12.3 8.6 16.9 17.3 13.1 22.2 10.3 
Western 26.5 22.5 30.9 30.9 26.4 35.6 27.8 23.8 32.2 29.8 25.6 34.2 3.2 
ALL 21.0 19.7 22.4 26.3 24.9 27.8 25.9 24.5 27.3 27.5 26.1 29.0 6.5 

Burkina  
Faso 

Boucle du Mouhoun       18.6 14.9 22.9 20.0 16.2 24.1 1.3 
Cascades       26.5 19.9 34.0 19.1 13.3 26.2 -7.3 
Centre       30.3 25.9 35.0 36.1 31.3 41.1 5.8 
Centre Est       11.8 7.8 17.1 18.5 13.1 24.9 6.6 
Centre Nord       18.8 14.7 23.6 15.1 11.3 19.7 -3.7 
Centre Ouest       23.2 18.5 28.4 20.6 16.1 25.7 -2.6 
Centre Sud       27.7 19.5 37.2 29.8 20.2 40.9 2.0 
Est       17.7 14.2 21.7 23.6 19.1 28.6 5.9 
Haut Bassins       28.0 23.0 33.3 30.9 25.8 36.4 2.9 
Nord       21.1 15.5 27.8 18.8 14.2 24.1 -2.3 
Plateau Central       26.0 18.1 35.3 14.6 9.0 22.0 -11.4 
Sahel       12.7 8.7 17.8 10.3 6.7 14.9 -2.4 
Sud Ouest       19.1 12.4 27.3 14.7 8.6 22.7 -4.4 
ALL             21.6 20.2 23.0 21.9 20.5 23.4 0.3 

Note:  Lower and upper denote the boundaries of the 95% uncertainty interval for direct estimate 
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Covariate selection  
 
Effective prediction depends on striking a balance between bias and stability. A saturated model can 

reduce bias but at the cost or risk of unstable predictions; a prediction based on too few covariates, or 

their transforms, is relatively stable but at the cost or risk of increased bias. This is particularly true in our 

study given sampling and measurement errors in the covariates. Our selection criteria for covariates are 

based on: (1) theory; (2) a review of previous empirical studies; and (3) model assessment. We also use a 

deviance information criterion (DIC) in selecting several variables and specifying their definitions. For 

example, the literature indicates that survival status of previous births influences women’s contraceptive 

use.1 There are two possible ways to measure previous child survival--the number of children who have 

died or whether the last child born in the preceding two years is still alive. The model with the latter 

measurement showed a smaller DIC and therefore was used in the study. Based on these criteria, we 

arrived at a list of 12 covariates: residence, schooling, wealth quintile, child survival, age, cohabitation, 

recent sex, health worker visit, family planning message, fertility intention, parity, and distance to the 

nearest facility. See the appendix for their definitions (p 3)  

Accounting for survey weight 
While there are a variety of approaches for accommodating survey sampling weights in a frequentist 

analysis, including reciprocal propensity weighting (e.g. the Horvitz-Thompson approach) and case-

specific propensity as a covariate, the latter is most directly implementable in a Markov chain Monte 

Carlo context.2,3 The goal is to build a model wherein the sampling process is “ignorable”, i.e., that the 

analysis includes all variables that affect the probability of a person being included in the sample, and 

thereby accommodate the weights when estimating the fixed effects. 

 

We evaluated the impact of including sampling weight as a model covariate.  Including both a linear and 

quadratic terms did not appreciably change the population estimates and predictions compared to non-

inclusion.  Therefore, in the spirit of parsimony, our estimates are based on models that do not include the 
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sampling weight as a covariate. We account for sampling weight in the post-estimation aggregation from 

individual level to EA-level, regional, and national estimates.  

Model checking and assessment 
 

We use several methodological approaches to assess the predictive performance of our model. Within-

sample assessments are more optimistic than out-of-sample ones, because the former use the same data 

for fitting and evaluation. Technical adjustments are not generally available in this complex modeling 

situation. For example, if we wish to perform a chi-square test for the overall standardized residual of the 

model, it is difficult to determine the degrees of freedom.  

 

The most important indicator in model diagnosis is the model residual, which is defined as the difference 

between the MLE and Bayesian estimates. The model residual is then standardized to eliminate the 

influence of level and scale and provides a metric, i.e. the standardized residual, which is comparable 

across models. The values and distribution of the standardized residual indicate whether the model 

captures the most important covariates and whether the model assumptions (e.g. structure of random 

effects) are reasonable. The standardized residual is based on the direct estimate and thus measures its 

difference from a model-based estimate.  This approach is satisfactory if the direct estimates have a nearly 

Gaussian distribution.  

 

However, the mCPR outcome in this study does not have a Gaussian distribution, and therefore we have 

to develop a new diagnostic measure, Z-value. It indicates the percentile location of the direct estimate in 

amongst its predictive distribution from the BHM. In general, the Z-value is less dependent on the 

Gaussian assumption, and it will be identical to the standardized residual if the predictive distribution is 

exactly Gaussian. In this study the Z-value is more appropriate than the standardized residual because the 
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mCPR values for many small areas are very low and could be far from following a Gaussian distribution. 

See webappendix (pp) for additional details.   

 

Z-value vs Avelogistic plots 
 
Figures 1a-1e illustrates the distribution of Z-values versus avelogistic estimates for the four countries 

where each data point is an area-round (e.g. region or county 1 in round 1; region or county 1 in round 2) 

because the model uses area-level random effects.  The data points in the right panel represent specific 

EA-rounds because our study interest is regional estimates. The lack of a pattern in the left panel’s graphs 

indicates that our model performs equally well across low, middle and high-mCPR areas.  

 
Priors for model parameters  
 
The following priors are used in the study. And the information has been added to the appendix. 
 

!" ∼ $(0,10000), * = 1,… , $- 

.[0, 1] ∼ 3
$(0, 4567.[1, 1]),												0 = 1; 														1 = 1,… , $:;
$(<.[0, 1], 4567.[0, 1]), 0 = 2,… , $>; 1 = 1,… , $:;

 

<.[0, 1] ∼ ? ∗ .[0 − 1, 1], 0 = 2, … , $>; 1 = 1,… , $:; 

4567.[0, 1] ∼ 3
1/CD,																							0 = 1; 														1 = 1,… , $:;
1/((1− ?D)CD)		, 0 = 2,… , $>; 1 = 1,… , $:;

 

? ∼ EF*GH5<(0.01,0.99) 
CD ∼ KL<<L(0.001,0.001) 

 
where NX denotes the number of coefficients; NT denotes the number of rounds; NEA denotes 
the number of EAs.  



27 
 

 
Figure 1a: Z-value vs. Avelogistic estimates: Ghana round 1-4 



28 
 

 
Figure 1b: Z-value vs. Avelogistic estimates: Ethiopia round 1-4 
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Figure 1c: Z-value vs. Avelogistic estimates: Kenya round 1-4 
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Figure 1d: Z-value vs. Avelogistic estimates: Uganda round 1-4 
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Figure 1e: Z-value vs. Avelogistic estimates: Burkina Faso round 3-4 
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Shrinkage plots 
 
In a shrinkage plot, each line denotes a subnational unit (region or county) in a survey round with the 

standard deviations of the direct estimates as whiskers; the middle line shows the direct estimates; and the 

bottom shows the predicted estimates from the BHM. The model shrinks the direct estimates toward the 

model-based predictions, with the shrinkage mainly determined by the uncertainty of the direct estimates. 

 

Figures 2a-2e show the shrinkage after removing the influence of a logistic regression. Instead of using a 

separate logistic model, our indicator, called avelogistic, is based on a logistic model with the same set of 

covariates averaged over the posterior distribution of coefficients and random effects of the BHM.  The 

shrinkage of the residual between direct-minus-logistic estimates toward the residual between Bayesian-

minus-avelogistic estimates indicate the extent to which Bayesian estimates help achieve a balance 

between information from women’s direct report of contraceptive use (i.e. direct estimates) and pure 

model-based prediction (i.e. avelogistic estimates). The balance is largely determined by the accuracy of 

the direct estimates, where estimates with a longer whiskers tend to shrink more, and have larger variation 

in random effects. The plots show that our BHMs are achieving a balance between direct and pure model-

based estimates. 
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Table 2: Median and 95% uncertainty intervals (UI) of parameter estimates from Bayesian hierarchical models 

Parameters 
Burkina Faso Ethiopia Ghana Kenya Uganda 

Median 95% UI Median 95% UI Median 95% UI Median 95% UI Median 95% UI 

Intercept -4.25 -4.66 -3.89 -5.09 -5.40 -4.81 -4.49 -4.86 -4.12 -4.45 -4.75 -4.13 -4.42 -4.72 -4.08 

Round 2    0.07 -0.05 0.19 0.04 -0.15 0.24 0.00 -0.12 0.12 0.29 0.15 0.44 

Round 3    0.16 0.03 0.29 0.41 0.20 0.65 0.22 0.08 0.36 0.25 0.09 0.41 

Round 4 -0.04 -0.24 0.17 0.16 0.02 0.30 0.64 0.42 0.88 0.29 0.15 0.43 0.32 0.13 0.48 

Residence (ref=rural) 0.82 0.48 1.17 0.79 0.47 1.13 -0.02 -0.36 0.30 0.17 -0.05 0.38 0.25 -0.06 0.59 

Metropolitan 0.96 0.59 1.39 0.83 0.32 1.28 0.38 -0.07 0.84 0.25 -0.11 0.60 0.61 0.29 0.95 

Primary (ref=no education) 0.53 0.34 0.71 0.26 0.16 0.37 0.39 0.24 0.53 0.99 0.77 1.20 0.56 0.39 0.75 

Secondary 0.79 0.59 1.00 0.17 0.04 0.30 0.54 0.35 0.72 1.13 0.90 1.34 0.70 0.52 0.92 

Last child died -0.88 -1.39 -0.37 -0.70 -1.00 -0.41 -0.18 -0.68 0.28 -0.68 -1.03 -0.34 -0.42 -0.73 -0.11 

Parity 0.25 0.20 0.29 0.17 0.14 0.19 0.22 0.19 0.25 0.19 0.17 0.22 0.12 0.10 0.15 

Poorer (ref=poorest)    0.11 -0.06 0.28 0.19 0.02 0.36 0.12 0.00 0.22 0.30 0.14 0.47 

Middle 0.00 -0.23 0.23 0.21 0.02 0.39 0.13 -0.07 0.33 0.13 0.01 0.25 0.38 0.20 0.57 

Richer    0.37 0.17 0.58 0.17 -0.06 0.39 0.21 0.06 0.36 0.43 0.26 0.62 

Richest 0.12 -0.16 0.39 0.35 0.13 0.59 -0.04 -0.30 0.21 0.11 -0.07 0.30 0.50 0.30 0.72 

20-24 years (ref=15-19) 0.89 0.63 1.15 0.93 0.79 1.07 0.97 0.79 1.15 1.13 0.98 1.28 0.76 0.61 0.92 

25-29 years 0.69 0.42 0.96 0.88 0.73 1.03 0.89 0.69 1.09 1.51 1.36 1.68 0.92 0.76 1.11 

30-34 years 0.54 0.23 0.85 0.56 0.39 0.73 0.63 0.42 0.84 1.37 1.19 1.55 0.88 0.68 1.08 

35-39 years -0.02 -0.37 0.34 0.13 -0.05 0.31 0.40 0.16 0.64 1.20 1.00 1.37 0.82 0.61 1.05 

40-44 years -0.16 -0.56 0.24 -0.22 -0.44 -0.01 0.03 -0.23 0.30 0.69 0.48 0.89 0.61 0.38 0.87 

45-49 years -1.07 -1.55 -0.57 -1.20 -1.47 -0.93 -0.69 -1.00 -0.38 -0.14 -0.36 0.09 -0.03 -0.31 0.25 

Live together (ref=no married) -0.02 -0.23 0.21 0.79 0.67 0.91 -0.14 -0.28 0.00 0.57 0.47 0.68 -0.01 -0.13 0.12 

Not live together 0.23 -0.06 0.52 0.77 0.60 0.95 0.04 -0.11 0.19 0.72 0.58 0.85 0.12 -0.04 0.29 

Had sex last 4 weeks 1.49 1.33 1.65 1.91 1.80 2.02 1.22 1.11 1.32 1.22 1.13 1.31 1.07 0.96 1.19 

Visited by health worker 0.43 0.25 0.61 0.40 0.31 0.49 0.59 0.46 0.72 0.30 0.18 0.42 0.29 0.17 0.41 

FP message 0.34 0.16 0.50 0.35 0.25 0.44 0.24 0.12 0.36 0.14 0.01 0.26 0.20 0.07 0.33 
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Desire to postpone -0.02 -0.16 0.13 0.21 0.12 0.29 0.12 0.01 0.23 0.27 0.17 0.36 0.19 0.08 0.30 

Distance -0.02 -0.05 0.00 0.00 -0.01 0.01 0.00 -0.01 0.01 0.00 -0.02 0.03 -0.01 -0.02 0.01 

rho 0.42 0.09 0.69 0.92 0.88 0.95 0.75 0.65 0.84 0.83 0.74 0.90 0.77 0.65 0.87 

tau2 0.39 0.26 0.55 0.87 0.69 1.08 0.68 0.52 0.87 0.33 0.26 0.43 0.38 0.28 0.51 
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Figure 2a: Residual shrinkage: Ghana round 1-4 
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Figure 2b: Residual shrinkage: Ethiopia round 1-4 
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Figure 2c: Residual shrinkage: Kenya round 1-4 
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Figure 2d: Residual shrinkage: Uganda round 1-4 
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Figure 2e: Residual shrinkage: Burkina Faso round 3-4
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Figure 3a: Temporal and geographic variation in Bayesian estimates over four rounds of PMA2020 survey 
in Ghana 
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Figure 3b: Temporal and geographic variation in Bayesian estimates over four rounds of PMA2020 survey 
in Ethiopia 
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Figure 3c: Temporal and geographic variation in Bayesian estimates over four rounds of PMA2020 survey 
in Kenya 
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Figure 3d: Temporal and geographic variation in Bayesian estimates over two rounds of PMA2020 survey 
in Burkina Faso 
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