
Supporting Information: Text

BAKR Binary Classification Model

Here, we detail an extension for the BAKR modeling framework when carrying out binary classification.
Assume y = [y1, . . . , yn]ᵀ is a vector of binary response variables. We specify the following generalized kernel
model (Mallick et al., 2005; Chakraborty et al., 2007; Chakraborty, 2009; Zhang et al., 2011; Chakraborty
et al., 2012) in matrix notation

y ∼ p(y |µ) with g−1(µ) = K̃α.

In the case of binary responses, typical link functions used for g are the probit or logit functions. In the
current work, we use the probit link due to its tractability for calculating marginal likelihood estimates. We
now specify the hierarchical classification model using the empirical kernel factor representation of BAKR
where K̃ = ŨΛ̃Ũᵀ:

yi =

{
1 if si > 0

0 if si ≤ 0,

s = Ũθ + ε, ε ∼ MVN(0, I),

θ ∼ MVN(0, σ2Λ̃),

σ2 ∼ Scale-inv-χ2(ν, φ).

(S1)

Under this specification, the responses in the kernel model are latent variables with standard normal errors.
We denote this vector of latent responses as s = [s1, . . . , sn]ᵀ.

The Gibbs sampler for the model specified in Equation (S1) is a slight adaptation of the sampler specified
for the approximate nonlinear regression specified in the main text. The MCMC procedure detailed here is
similar to the standard posterior sampling scheme for probit regression (Albert and Chib, 1993). Posterior
samples are generated by iterating the following conditional densities:

(1) For i = 1, .., n

s
(t+1)
i |θ, σ2, s(t),y ∼

{
N(ũᵀ

i θ, 1)1(s
(t)
i ≤ 0) if s

(t)
i ≤ 0

N(ũᵀ
i θ, 1)1(s

(t)
i > 0) if s

(t)
i > 0;

(2) θ | s, σ2,y ∼ MVN(m∗,V∗) where V∗ = σ2(Λ̃−1 + σ2I)−1 and m∗ = V∗Ũᵀs;

(3) β̃ = X†Ψ̃ᵀ(Λ̃ŨᵀK̃−1Ψ̃ᵀ)−1θ;

(4) σ2 | s,θ,y ∼ Scale-inv-χ2(ν∗, φ∗) where ν∗ = ν + q and φ∗ = ν∗−1(νφ+ θᵀΛ̃−1θ).

Again, the third step is deterministic and allows for posterior inferences to be made in the original co-
variate space. Iterating the above procedure T times will result in the following set of posterior draws:{
θ(t), σ2(t), β̃(t)

}T
t=1

.

BAKR Mixed Model Extension

There are many applications where a mixed modeling framework is desired. Examples of this include
cases where the observations are not independent but related via some genetic population structure or
known kinship, or cases where one needs to control for covariates and other fixed effects (e.g. age, sex, or
genotype principal components). Here, we detail a mixed model extension of BAKR. The extension to binary
classification is straightforward and based on the steps outlined for the BAKR-probit model in the main text.
One can adapt the representation of BAKR to include a random component as follows:

y = K̃α+ Zδ + ε, ε ∼ MVN(0, τ2I) (S2)

where, Z contains covariates representing additional population structure, and δ are the corresponding
random effects assumed to be normally distributed with mean 0 and some covariance structure ∆. In



many statistical genetics applications, ∆ is not assumed to be diagonal or block-diagonal, which implies
that the elements in the response vector y are correlated via the random effects (Liu et al., 2007). The
relevance of the random effects is that they capture a key proportion of the phenotypic variance that allows
for more accurate statistical inferences. This correction can increase the model’s power to detect true causal
variants, rather than falsely identifying significant covariates that may have large effect sizes simply due to
correlations within the population structure (Kang et al., 2008, 2010; Zhang et al., 2010; Yang et al., 2014).
This flexibility of the mixed modeling approach is a major reason why it is used in applications such as
genome-wide association studies (GWAS) (Yang et al., 2014).

We now specify the following empirical factor hierarchical mixed model

y = Ũθ + Zδ + ε, ε ∼ MVN(0, τ2I),

θ ∼ MVN(0, σ2
θΛ̃),

δ ∼ MVN(0, σ2
δ∆),

σ2
θ , σ

2
δ , τ ∼ Scale-Inv-χ2(ν, φ),

(S3)

Note that the model specification is almost identical to the original BAKR formulation — the difference
being the addition of simulating the random effects from the kinship matrix ∆. We call this version of the
model the BAKR mixed model (BAKR-MM).

Given the model specification in Equation (S3), we can again use a Gibbs sampler to draw from the joint
posterior distribution p(θ, δ, σ2

θ , σ
2
δ , τ

2 |y). The Gibbs sampler consists of iterated sampling of the following
conditional densities:

(1) θ | δ, σ2
θ , σ

2
δ , τ

2,y ∼ MVN(m∗θ,V
∗
θ) with V∗θ = τ2σ2

θ(τ2Λ̃−1 + σ2
θI)−1 and m∗θ = τ−2V∗θŨ

ᵀ(y − Zδ);

(2) β̃ = X†Ψ̃ᵀ(Λ̃ŨᵀK̃−1Ψ̃ᵀ)−1θ;

(3) δ |θ, σ2
θ , σ

2
δ , τ

2,y ∼ MVN(m∗δ ,V
∗
δ) with V∗δ = τ2σ2

δ (τ2∆−1 + σ2
δI)−1 and m∗δ = τ−2V∗δZ

ᵀ(y − Ũθ);

(4) σ2
θ |θ, δ, σ2

δ , τ
2,y ∼ Scale-inv-χ2(ν∗θ , φ

∗
θ) where ν∗θ = ν + q and φ∗θ = ν∗−1θ (νφ+ θᵀΛ̃−1θ);

(5) σ2
δ |θ, δ, σ2

θ , τ
2,y ∼ Scale-inv-χ2(ν∗δ , φ

∗
δ) where ν∗δ = ν +m and φ∗δ = ν∗−1δ (νφ+ δᵀ∆−1δ);

(6) τ2 |θ, δ, σ2
θ , σ

2
δ ,y ∼ Scale-inv-χ2(ν∗τ , φ

∗
τ ) where ν∗τ = ν + n and φ∗τ = ν∗−1τ (νφ + eᵀe), with e =

y − Ũθ − Zδ.

Once again, the second step is deterministic and maps back to the effect size analogs. Iterating the above

procedure T times results in a set of samples
{
β̃(t)

}T
t=1

. Prediction under this mixed modeling extension is
similar to the procedure we presented in the main text. More specifically, given an out of sample test set X∗

with corresponding covariates Z∗, draws from the conditional posterior predictive distribution are given as{
y∗(t) = X∗β̃(t) + Z∗δ(t)

}T
t=1

. (S4)

Note that this is also similar to other mixed effect modeling strategies (Skrondal and RabeHesketh, 2009).

Alternative Specifications. In the event that specific covariates are not known, posterior inference of
BAKR-MM may easily be adapted to mirror that of a Bayesian Gaussian process or any other standard
Bayesian nonparametric statistical method (Mallick et al., 2005; Chakraborty et al., 2007; Chakraborty,
2009; Liang et al., 2009; de los Campos et al., 2010; Zhang et al., 2011; Chakraborty et al., 2012). In these
cases, the response variables to be predicted are simply treated as missing random variables that we will
impute. The MCMC algorithm above can be easily adapted to allow for the sampling of the missing response
variables. Briefly, we partition the vector of response variables y into a set of training yr and validation
samples yv. The design matrix can be similarly partitioned into [Xr; Xv]. Under a randomized feature

map, the approximate kernel matrix K̃, and its eigenvalue decomposition Ũ, are computed based on the full
design matrix X. The matrix Xv implicitly forms part of the kernel model prior structure, even though the
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corresponding responses are missing. We now add an additional step to the MCMC procedure where yv is
imputed from the implied conditional posterior, which will be a draw from multivariate normal distribution
for this model.

There are some issues to consider with this model specification and inference procedure. Here, posterior
inferences are made using all the data, including Xv. Therefore, if any new validation samples are introduced,
the entire posterior analyses must be repeated (West, 2003; Mallick et al., 2005; Chakraborty et al., 2007;
Chakraborty, 2009; Liang et al., 2007, 2009). Furthermore, posterior inferences on the original covariate
effect sizes begin to lose meaning and interpretability when the sample size of the training set is smaller than
that of the validation set (i.e. nr < nv). Often the objective is to make inferences on a set of explanatory
variables, while correcting for population structure — meaning, there is no testing set to be considered.

Identifiability of the Effect Size Analog

The space of nonlinear functions we consider in this paper is the subspace of the RKHS realized by the
representer theorem. Namely,

H
X

=
{
f | f(x) = Ψᵀ

X
c and ‖f‖2K <∞

}
with Ψ

X
= [ψ(x1), . . . ,ψ(xn)]. Here, the coefficients c determine the nonlinear function. Note that the

empirical kernel factor model implicitly models these coefficients via a lower dimensional representation with
effect sizes θ. For convenience in this analysis, we consider the full parameter space c, rather than the
reduced rank parameter space θ.

A reasonable identifiability requirement for the effect size analog is that two different functions in H
X

will result in two different vectors for β̃. This requirement can be restated as the projection P̃ = X†Ψ̃ᵀ

should be an injective map from c to β̃. Since we are working with an approximation of the Gaussian kernel
and p� n, we can assume that the approximate shift-invariant kernel matrix K̃ = Ψ̃ᵀΨ̃ is positive definite.
First we consider the classic linear regression setting where

β̂ = X†y,

where X† is the Moore-Penrose pseudoinverse. Observe that two vectors β̂1 and β̂2 that only differ in the
null space of X will give rise to the same response y. This same issue will arise for our nonlinear effect size
analog. Hence, the statement we will make about the injectivity of the map P̃ will hold modulo the null
space of X.

Claim S1. Consider an approximate shift-invariant kernel matrix K̃ that is strictly positive definite with
random feature map ψ̃ : Rp → Rp. The projection P̃ is injective for any coefficient vector for which the
projection P̃ is in the span of the design matrix X. Alternatively, the projection P̃ is injective for the span
of the design matrix, span(X).

Proof. Consider positive definite kernel matrices K̃. The assumption that the approximate kernel matrix is
positive definite is key as it implies that Ψ̃ spans the entire p-dimensional covariate space. In the case that
K̃ is positive semi-definite, we would have to understand the composition of the null space of K̃ with the
null space of the design matrix X.

Let c1 and c2 be two different coefficient vectors corresponding to the restricted RKHS subspace. There
exists δ such that c2 = c1 + δ with δ 6= 0 and

β̃1 = X†Ψ̃ᵀc1

β̃2 = X†Ψ̃ᵀc2 = X†Ψ̃ᵀ(c1 + δ) = X†Ψ̃ᵀc1 + X†Ψ̃ᵀδ.

Since K̃ is a positive definite matrix,

X†Ψ̃ᵀδ = δ̃‖ + δ̃⊥,
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where δ̃‖ is the projection onto the span of X, and δ̃⊥ is the projection onto the null space of X. Note that

Xδ̃⊥ = 0, so we cannot separate β̃1 6= β̃2 if the difference between c1 and c2 projects onto the null space of
X. By definition, if part of the vector δ projects onto the span of X, then P̃δ 6= 0 and β̃1 6= β̃2.

Variable Selection via Hard Thresholding

In many applications, an important objective is to determine how well a given predictor is associated with a
response. There are many approaches to computing marginal statistics for each explanatory variable based
on its corresponding effect size estimate. In the frequentist literature, these marginal statistics are typically
p-values. In the Bayesian literature, two commonly used quantities are posterior inclusion probabilities
(PIPs) (Barbieri and Berger, 2004) and posterior probabilities of association (PPAs) (Stephens and Balding,
2009). In this subsection, we will develop an analog to these selection quantities, which we call the posterior
probability of association analog (PPAA).

The BAKR framework does not allow for a direct computation of PIPs or PPAs. However, here we
show how to compute an analog to these selection quantities (i.e. the PPAA), which is based on a hard
thresholding operation. The main idea of considers a posterior probability of the form Pr[|β| ≥ z | y] > r —
in which z and r denotes some effect size and posterior probability thresholds — which has been proposed
as an alternative to the conventional Bayesian hypothesis testing in a series of previous works (Stephens and
Balding, 2009; Shi and Kang, 2015; Pasanen et al., 2015). The PPAA quantity is compatible to the PIP and
PPA when the posterior distribution of |β| is assumed to be heavy tailed and centered at zero.

We use a variation of an adaptive technique used in Bayesian image analysis to select an explanatory
variable specific threshold zj (Abramovich and Benjamini, 1995; Rajankar and Talbar, 2014; Shi and Kang,
2015). The following procedure to compute PPAAs can be added as a deterministic step to the proposed

MCMC that computes effect size analogs. Assume that under the null hypothesis H
(j)
0 : β̃j = 0 with the

classical testing significance level λ:

(1) Calculate the probability of a variable being associated under the null hypothesis

π̃j = 2

(
1− Φ

(
|β̃j |
σ̂

))
j = 1, . . . , p.

Here, Φ is the cumulative distribution function of the standard normal distribution. The procedure is
adaptive since σ is unkown and needs to be estimated. We use the consistent median absolute deviation
(MAD), σ̂ = MAD/0.674.

(2) Sort all of the probabilities corresponding to the variant effect sizes in ascending order as π̃1 ≤ π̃2 ≤
π̃3 ≤ . . . ≤ π̃p.

(3) Compute j∗ as the largest j such that π̃j ≤ λ(j/p).

(4) For this j∗, calculate zj∗ = σ̂Φ−1
(

1− π̃j∗

2

)
.

(5) Threshold all |β̃j | at the level zj∗ .

Note that ideal false discovery rates are achieved through λ(j/p). This procedure allows allows us to derive

a metric of evidence for each predictor variable directly from posterior inference on effect sizes, β̃j . After
the computing each zj∗ , the PPAA may then be alternatively represented by the following

γ̃j =

{
1 if |β̃j | ≥ zj∗
0 if Otherwise

for j = 1, . . . , p (S5)

where γ̃j effectively represents an indicator that predictor variable j is associated with the response.
The PPPA allows for posterior inferences on the relevance of each original covariate. In statistical genetics

applications, we can define candidate causal variables as those covariates that satisfy {γ̃ : Pr[γ̃ = 1 | y] > r}.
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This is analogous to the classical association studies that use p-values, PIPs, and PPAs as measures of
covariate relevance. In practice, r may be chosen subjectively (Hoti and Sillanpaa, 2006), or taken to be r =
0.5 in order to obtain an equivalence of a Bayesian “median probability model” (Barbieri and Berger, 2004).
Another option is to define r through k-fold permutation to find an effective predictor-wide threshold. For any
set of significant variables, further analyses may be carried out involving the relative costs of false positives
and false negatives to make an explicitly reasoned decision about which predictors to pursue (Stephens and
Balding, 2009).

Simulations: Controlling False Discovery Rates. To validate BAKR and the proposed posterior
probability of association analogue (PPAA), we carried out a simulation study. Specifically, we use a sim-
ulated matrix X with p = 2000 covariates to create continuous outcomes using the following polynomial
model: y = X3b + ε where ε ∼ MVN(0, I) and X3 = X ◦ X ◦ X is the element-wise third power of X.
We assume that the first 100 covariates are relevant to the response with b1:100 ∼ MVN(0, I), while the
remainder are assumed to have zero effect. In order to investigate that the PPAA gives the correct control
on the false discovery rate (FDR), we first set up the term λ(j/p) (i.e. the procedure to compute Equation
(S5)) to give a desired FDR = 0.05. Next, for a given sample size n, we check that PPAA yields the desired
FDR. Here, we consider n = {500, 750, 1000} where we analyzed 100 datasets in each case. The results for
each n are 0.063 (0.004), 0.057 (0.002), and 0.051 (0.001), respectively, with the numbers in parentheses
representing the variability between simulated runs. As expected based on previous notes in the literature,
the PPAA controls the FDR for reasonably sized datasets, and can be slightly liberal when the sample size
is small. Presumably, the liberal behavior of the PPAA in small samples arises from the fact that the hard
thresholding procedure mirrors a frequentist test and does not directly take into account the uncertainty in
the estimates of the effect size analog.

Sparsity Conditions for the Effect Size Analog

In this section, we state conditions for which the projection of the approximate nonlinear kernel function
inferred onto the input covariates can be sparse. We will adapt arguments from the compressive sensing
literature (Candès et al., 2006; Ben-Haim et al., 2010) to provide conditions under which inference using
BAKR, coupled with hard thresholding, can result in sparse effect size analogs. We will first provide rigorous
results under which a frequentist adaptation of BAKR can result in sparse effect size analogs.

In the main text, we formulated the following approximation for nonlinear kernel regression

Kα ≈ XB̃θ, (S6)

where θ are the empirical factor regression parameters to be inferred by BAKR, B̃ = X†Ψ̃ᵀ(Λ̃ŨᵀK̃−1Ψ̃ᵀ)−1,

and β̃ = B̃θ are the effect size analogs. We define the set of s-sparse signals as Θs = {β̃ : ‖β̃‖`0 ≤ s}. Given
equation (S6), we can formally state the following definition of sparsity for nonlinear regression.

Definition S1 (Sparsity of Effect Size Analog). The effect size analog β̃ is (s, ε)-sparse if for the following
minimization problem [

β̂ ≡ B̃θ̂
]

= arg min
θ

(‖B̃θ‖0 subject to ‖XB̃θ − y‖|22 ≤ ε),

the minimizer β̂ is s-sparse, with β̂ ∈ Θs.

We now state conditions under which one can infer (s, ε)-sparse effect sizes based on sparse regression
methods. One of the conditions that will arise is coherence of the design matrix µ(X), which is defined as

µ(X) = max
1≤i<j≤n

|〈xi,xj〉|
‖xi‖2‖xj‖2

,

where xi and xj are the i-th and j-th columns of X, respectively. We assume the following data generation
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model

y = K̃α∗ + ε = Xβ∗ + ε (S7)

where β̃ = B̃θ, α∗ and β∗ are the true parameters, and ε ∼ MVN(0, τ2I). The inference algorithm we
consider computes an estimator by minimizing the following functional[

β̂ ≡ B̃θ̂
]

= arg min
θ

(‖XB̃θ − y‖|22 + λ‖B̃θ‖1), λ > 0 (S8)

The following is an immediate result of Corollary 1 in (Ben-Haim et al., 2010).

Proposition S1. Given the generating model (S7) with coherence µ(X) and β∗ ∈ Θs with s ≤ 1/(3µ), and

β̂ inferred by algorithm (S8), with λ =
√

8τ2(1 + α)log(n− s) and α > 0 being a small number. Then with
probability greater than (

1− 1

(n− s)α

)(
1− exp

{
−s

7

})
,

the solution β̂ is unique, supp(β̂) ⊂ supp(β∗), and

‖β̂ − β∗‖22 ≤ (
√

3 + 3
√

2(1 + α)log(n− k))2sτ2. (S9)

The above proposition states that if coherence assumptions are satisfied and the generating effect analog β∗

is (s, ε)-sparse then algorithm (S8) will recover an s-sparse estimate β̂ that is close to β∗. Furthermore, any

nonzero element of β̂ is a nonzero element of the true effect analog β∗.
We have shown that sparse regularization methods can recover this more general notion of an effect size.

In its current formulation, BAKR does not implement sparse regularization. However, there are two trivial
adaptations of BAKR that do implement sparse regularization. The first class of adaptations involves the
replacement of the normal prior on the effect size analogs with a heavy tailed prior that will induce sparsity.
An example of this approach is the Bayesian Lasso (Park and Casella, 2008). There is rich literature providing
theory on how prior specification in sparse linear models gives rise to sparse posterior effect sizes (Castillo
et al., 2015). The second approach is based on the observation that iterating least-squares regression and
hard thresholding implements sparse regularization (Monajemi et al., 2013). The Stagewise Orthogonal
Matching Pursuit (StOMP) algorithm is a concrete example of this approach (Donoho et al., 2012). BAKR
with a diffuse prior on the effect size analog, followed by hard thresholding, is equivalent to one step of an
algorithm such as StOMP. If we were to run multiple iterations of BAKR followed by hard-thresholding,
then we would be implementing a sparse regularization algorithm.

Extension to Anisotropic Kernel Functions. Recall in Section 2.2 of the main text, the anisotropic
kernel that has been previously used for variable selection often takes on the following form

kϑ(u,v) = k
(

(u− v)ᵀDiag(ϑ)(u− v)
)
, ϑj > 0, j = 1, . . . , p.

A very natural variation of the StOMP algorithm is to use the inferred vector β̃ to set the magnitude
of the elements in ϑ at each iteration. From an optimization perspective, this would involve applying an
exponential decay to each coordinate rather than performing a hard thresholding at each step of the iteration.
A Bayesian procedure for coupling the effect size analog and the anisotropic kernel may be of interest, but
we have concerns about how well the sampling from the posterior of ϑ will mix.

Note About Collinearity and Interpretation

Collinearity between covariates is important to consider when analyzing effect sizes estimated by a linear
regression model. If not dealt with correctly, this issue can cause problems with the interpretation of results
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for practical applications. The same concerns arise with respect to the interpretation of the effect sizes
estimated by the BAKR. To mitigate some of these concerns we apply the following analogous steps to those
prescribed in linear regressions to reduce the effects of collinearity (Gelman and Hill, 2007):

(1) Centering the Data: Before performing spectral decomposition and dimensionality reduction, we
center the approximate kernel matrix to ensure that the first principal component is proportional to
the maximum variance of the multidimensional data. The aim behind this is to reduce collinearity
between predictors in the basis space and RKHS—which we expect to implicitly reduce collinearity
between the original covariates.

(2) Orthogonalizing the Data: The spectral decomposition of the approximate kernel matrix achieves
this step on the data.

(3) Variable Selection: The g-prior specification on the kernel factor coefficients induces shrinkage on
the original covariate effect sizes. Further variable selection may be carried out by enforcing sparsity
across the original coefficients via thresholding as detailed in the previous subsection.

Preprocessing of Real Datasets

The WTCCC data set is from the Wellcome trust case control consortium (WTCCC) 1 study (The Wellcome
Trust Case Control Consortium, 2007). The data set consists of about 14,000 cases of seven common diseases,
including 1,868 cases of bipolar disorder (BD), 1,926 cases of coronary artery disease (CAD), 1,748 cases of
Crohn’s disease (CD), 1,952 cases of hypertension (HT), 1,860 cases rheumatoid arthritis (RA), 1,963 cases
of type 1 diabetes (T1D) and 1,924 cases of type 2 diabetes (T2D), as well as 2,938 shared controls. We
selected a total of 458,868 shared single nucleotide polymorphisms (SNPs) following a previous study (Zhou
et al., 2013). In the analysis, we mapped SNPs to the closest neighboring gene(s) using the the databases
dbSNP, ImmunoBase, and UCSC Genome Browser, which can be found at the following:

• dbSNP: http://www.ncbi.nlm.nih.gov/SNP/

• ImmunoBase: http://www.immunobase.org/

• UCSC Genome Browser: http://ucscbrowser.genap.ca/

The heterogeneous stock of mice consists of 1,904 individuals from 85 families, all descended from eight
inbred progenitor strains (Valdar et al., 2006). The data contains 129 quantitative traits that are classified
into 6 broad categories including behavior, diabetes, asthma, immunology, haematology, and biochemistry.
A total of 12,226 autosomal SNPs were available for all mice. For individuals with missing genotypes, we
imputed missing values by the mean genotype of that SNP in their family. All polymorphic SNPs with minor
allele frequency above 1% in the training data were used for prediction.

Variance Component Analysis of Stock Mice Traits

For the phenotypic decomposition of the 129 quantitative mice traits, we consider a linear mixed model with
multiple variance components (Morota et al., 2014; Zhou, 2016). Specifically, this random effect model is
formulated as the following:

y = g1 + g2 + g3 + gc + ε, ε ∼ MVN(0, τ2I) (S10)

where g1 ∼ MVN(0, σ2
1K) is the linear effects component; g2 ∼ MVN(0, σ2

2K
2) is the pairwise interaction

component; g3 ∼ MVN(0, σ2
3K

3) is the third order interaction component; and gc ∼ MVN(0, σ2
cC) is the

common environmental component. Here, we let σ2 = {σ2
1 , σ

2
2 , σ

2
3 , σ

2
c} be the corresponding random effect

variance terms. The matrix I is an identity matrix. The covariance matrix K = XXᵀ/p is a linear kernel
matrix (Keerthi and Lin, 2003; Jiang and Reif, 2015). The covariance matrix K2 = K ◦ K represents a
pairwise interaction relationship matrix and is obtained by using the Hadamard product (i.e. the squaring
of each element) of the linear kernel matrix with itself. Similarly, the matrix K3 = K ◦K ◦K represents a
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third order interaction relationship matrix (i.e. the cubing of each element). Lastly, C is a matrix of common
environmental factors where a given entry Cij = 1 if mice i and j are from the same cage. One can think of
gc as structured noise determined via cage assignment, while ε is considered as random noise.

The point of this analysis is to directly estimate the contribution of nonlinear genetic effects across an
array of different phenotypes and traits — particularly amongst samples that are related through some com-
mon environmental structure. We quantify these contributions by examining the proportion of phenotypic
variance explained (pPVE) using the following equation (Zhou et al., 2013; Zhou, 2016):

pPVEj ∝
σ̂2
j

n
tr(Σj) and

∑
j

pPVEj = 1,

where Σ = [K,K2,K3,C]. In the main text, we plot the pPVEs corresponding to the random effect variance
terms σ̂2 = {σ̂2

1 , σ̂
2
2 , σ̂

2
3 , σ̂

2
c}. The variance component that explains the greatest portion of the overall PVE

then represents the most influential effect onto that particular phenotypic response. We implement this
model by using the -vc argument in the software, GEMMA (Zhou and Stephens, 2012). This software is
publicly available at http://www.xzlab.org/software.html. Briefly, GEMMA fits variance component
models by using a MQS algorithm (Zhou, 2016), which is based on a combination of a method of moments
(MoM) (Hansen, 1982) and minimal norm quadratic unbiased estimation criteria (MINQUE) (Rao, 1971).
Note, that each phenotype is quantile normalized before running the analysis in GEMMA.

Potentially Novel Loci Discovered in WTCCC Study

In the main text, we apply BAKR to an association mapping analysis of all seven diseases from the Wellcome
Trust Case Control Consortium (WTCCC) 1 study (The Wellcome Trust Case Control Consortium, 2007).
Overall, BAKR identified 29 significantly associated genomic regions — 14 of which were highlighted in the
original WTCCC study as having strong associations, and 3 others that were highlighted in other studies
which analyzed the same dataset. BAKR missed 6 genomic regions that were identified as strongly associated
in the original WTCCC study, but was able to discover 12 new loci in five of the seven diseases: CD, HT,
RA, T1D, and T2D. We detail these potentially novel findings here:

Crohn’s Disease (CD). Variants spanning from 70.20Mb-70.29Mb on chromosome 10 were detected by
BAKR as being associated with Crohn’s disease. The leading significant SNP in this region with the highest
PPAA is rs2579176. This variant, in particular, has been reported as being upstream of DLG5, a gene which
has been found to be associated with perianal Crohn’s disease (de Ridder et al., 2007). This gene was also
validated (Zhang, 2012) as a member of a pairwise genetic interaction that is very influential in the cause
of the trait and hard to detect. Complete details of the potentially novel loci discovered by BAKR can be
found in the Supporting Information.

Hypertension (HT). The original WTCCC study did not report any regions of the genome as strongly
associated with hypertension. Moreover, across all other compared studies, there does not appear to be
much cohesion or obvious patterns in the regions determined to be significant. This is most likely due to
a few reasons. First, many of the studies we compare (including our own) deal with different variations of
the same dataset (e.g. depending on data origin, preprocessing measures, etc). Second, hypertension may be
more susceptible to misclassification bias due to the presence of hypertensive individuals within the control
samples (The Wellcome Trust Case Control Consortium, 2007). Hence, we could lessen the chance for false
positives if we excluded controls with elevated blood pressure. Nonetheless, BAKR detected one locus as
being moderately associated with the trait, marked by rs762015. This locus is near the gene LOC100506412
— which is the same gene that is reported to be near a moderately significant locus found in the original
WTCCC study. However, because of the reasons we just mentioned, we do not feel confident in speculating
that this is a true associated region, and conclude that the locus reported by BAKR is possibly a false
positive.
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Rheumatoid Arthritis (RA). BAKR identified 3.85Mb-4.16Mb on chromosome 17 as one potentially
novel region associated with rheumatoid arthritis. The leading significant SNP in this genomic region with
the highest PPAA is rs9913077. This variant is upstream from ANKFY1, whose specific mechanistic function
is unknown, but is a notable member of the ankyrin repeat gene family. This particular family of genes has
been indicated to play a role in rheumatoid arthritis (Stahl et al., 2010; Zhernakova et al., 2011; Okada et al.,
2014), and thus suggests evidence that this finding by BAKR may be a true positive.

Type 1 Diabetes (T1D). BAKR identified seven new associated regions. On chromosome 2, BAKR
identifies two regions marked by SNPs rs4147713 and rs6737675, which are upstream of genes NDUFS1 and
ABCA12, respectively. NDUFS1 has been reported as being responsible for transferring electrons from the
NADH to the respiratory chain, while ABCA12 plays a role in lipid and ATP transfers (Akiyama et al.,
2005). We note that both of these cellular mitochondrial functions have been cited as becoming dysfunctional
in the presence of type 1 diabetes (Sivitz and Yorek, 2010). The closest gene to rs1618545, on chromosome
3, is TSEN2. Nothing is known about the specific influence of TSEN2 on type 1 diabetes. There is more
indication that rs9302151 on chromosome 15 might be associated with the disease, as it is known that the
corresponding gene ATP8B4 is involved with ATP transfer and phospholipid transport in the cell membrane
(Harris and Arias, 2003). Nothing is cited about the other SNPs rs1097157 and rs10934261 on chromosome
3, or rs12660882 on chromosome 6, as it pertains to type 1 diabetes. We note that they might be false
positives, or the product of dependencies between SNPs that have yet to be detected by previous methods
based on linear assumptions. Type 1 diabetes appears to be a more complex disease than hypertension,
therefore we believe the speculation of nonlinear and relatedness influence here to be more valid.

Type 2 Diabetes (T2D). BAKR identifies two previously unmentioned regions on chromosomes 4 and 5,
marked by SNPs rs7698608 and rs11167666, respectively. The former is upstream of CISD2 — which is an
iron/sulfur cluster gene and is said to be involved in calcium homeostasis in the liver — has been suggested
to have an association with type 2 diabetes (Kang et al., 2012). The latter SNP, on the other hand, is most
likely to be connected to more relevant and insightful biology. This variant is near the gene GALNT10,
which has been previously been linked to the fluctuation of body mass index (BMI), obesity, and the cause
of type 2 diabetes (Schwenk et al., 2013).
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Supporting Information: Algorithmic Overview

Algorithm S1 Bayesian Approximate Kernel Regression

1: Select a desired positive definite shift-invariant kernel function k(xi,xj) = k(xi − xj)

2: Compute the Fourier transform of the kernel function: f(ω) = (2π)−1
∫

exp{−ιωᵀ(xi − xj)}k(xi −
xj)d(xi − xj)

3: Draw ω`
iid∼ f(ω) and b`

iid∼ U [0, 2π] for ` = 1, . . . , p

4: Configure Ω = [ω1, . . . ,ωp] ∈ Rp×p and b = [b1, . . . ,bp] ∈ Rp

5: Construct K̃ = Ψ̃ᵀΨ̃ where Ψ̃ = [ψ̃(x1), . . . , ψ̃(xn)] and ψ̃(xi)
ᵀ =

√
2
d cos (xiΩ + b)

6: Factorize K̃ = ŨΛ̃Ũᵀ, where Ũ ∈ Rn×q and Λ̃ ∈ Rq×q for chosen q

7: Run the Gibbs Sampler (T Iterations)

8: for t = 1→ T do

9: θ | σ2, τ2,y ∼ MVN(m∗,V∗) with V∗ = τ2σ2(τ2Λ̃−1 + σ2Iq)
−1 and m∗ = τ−2V∗Ũᵀy

10: β̃ = X†Ψ̃ᵀ(Λ̃ŨᵀK̃−1Ψ̃ᵀ)−1θ;

11: σ2 | θ, τ2,y ∼ Scale-inv− χ2(ν∗σ, φ
∗
σ) where ν∗σ = ν + q and φ∗σ = ν∗−1σ (νφ+ θᵀΛ̃−1θ)

12: τ2 | θ, σ2,y ∼ Scale-inv− χ2(ν∗τ , φ
∗
τ ) where ν∗τ = ν + n and φ∗τ = ν∗−1τ (νφ+ εᵀε)

13: end for

Algorithm S2 Bayesian Approximate Kernel Probit Regression

1: Select a desired positive definite shift-invariant kernel function k(xi,xj) = k(xi − xj)

2: Compute the Fourier transform of the kernel function: f(ω) = (2π)−1
∫

exp{−ιωᵀ(xi − xj)}k(xi −
xj)d(xi − xj)

3: Draw ω`
iid∼ f(ω) and b`

iid∼ U [0, 2π] for ` = 1, . . . , p

4: Configure Ω = [ω1, . . . ,ωp] ∈ Rp×p and b = [b1, . . . ,bp] ∈ Rp

5: Construct K̃ = Ψ̃ᵀΨ̃ where Ψ̃ = [ψ̃(x1), . . . , ψ̃(xn)] and ψ̃(xi)
ᵀ =

√
2
d cos (xiΩ + b)

6: Factorize K̃ = ŨΛ̃Ũᵀ, where Ũ ∈ Rn×q and Λ̃ ∈ Rq×q for chosen q

7: Run the Gibbs Sampler (T Iterations)

8: for t = 1→ T do

9: for i = 1→ n do

10: s
(t+1)
i |θ, σ2, s(t),y ∼

N(ũᵀ
i θ, 1)1(s

(t)
i ≤ 0) if s

(t)
i ≤ 0

N(ũᵀ
i θ, 1)1(s

(t)
i > 0) if s

(t)
i > 0;

11: end for

12: θ | s, σ2,y ∼ MVN(m∗,V∗) where V∗ = σ2(Λ̃−1 + σ2I)−1 and m∗ = V∗Ũᵀs

13: β̃ = X†Ψ̃ᵀ(Λ̃ŨᵀK̃−1Ψ̃ᵀ)−1θ;

14: σ2 | s,θ,y ∼ Scale-inv-χ2(ν∗, φ∗) where ν∗ = ν + q and φ∗ = ν∗−1(νφ+ θᵀΛ̃−1θ)

15: end for
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Supporting Information: Figures
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(a) Scenario I (ρ = 0.2): Group 1 SNPs
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(b) Scenario I (ρ = 0.2): Group 2 SNPs
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(c) Scenario II (ρ = 0.8): Group 1 SNPs
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(d) Scenario II (ρ = 0.8): Group 2 SNPs

Figure S1: Sensitivity analysis comparing the power of BAKR under its empirical factor representation when
explaining different amounts of the cumulative variance (V) in the approximate kernel matrix K̃. Values
considered here are V = {1, 0.9, 0.8, 0.7, 0.6, 0.5}. Group 1 SNPs are those that exhibit additive effects,
while the SNPs in group 2 are those involved in interactions. The x-axis shows the false positive rate, while
the y-axis gives the rate at which true causal predictor variables were identified. Results are based on 100
different simulated datasets in each scenario.
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Figure S2: Sensitivity analysis comparing the mean square prediction error (MSPE) for BAKR under its
empirical factor representation when explaining different amounts of the cumulative variance (V) in the

approximate kernel matrix K̃. Values considered here are V = {1, 0.9, 0.8, 0.7, 0.6, 0.5}. In Scenario I,
pairwise interactions make up 80% of the broad-sense heritability (i.e. ρ = 0.2). In Scenario II, additive
effects dominate 80% of the broad-sense heritability (i.e. ρ = 0.8). Values in bold represent the method with
the lowest MSPE. These results are based on 100 different simulated datasets in both scenarios.
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Figure S3: The portion of phenotypic variance explained (pPVE) by four different genetic effects of interest:
(1) additive effects, (2) pairwise interactions, (3) third order interactions, and (4) common environmental
(i.e. cage specific) effects.
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TCF7L2CISD2
GALNT10

Figure S4: Genome-wide scan for seven diseases in the WTCCC dataset. For each of the seven diseases, the
posterior probabilities of association analogs (PPAA) for quality-control-positive SNPs are plotted against
position on each chromosome. Chromosomes are shown in alternating colors for clarity, with corresponding
PPAAs exceeding a trait-specific 5% FWER threshold highlighted in blue. The SNPs highlighted in red
are those that exceed the FWER threshold and lie in a potentially novel locus associated with the disease.
Labeled are the genes located near the enriched positions. The gene symbols are from Entrez Gene (Maglott
et al., 2011).

16



Supporting Information: Tables

Table S1

Sample Size

n = 500 n = 750 n = 1000

V(R2) 7.02× 10−6 2.26× 10−6 1.04× 10−6

Prop(R2)MCMC 0.92 (0.001) 0.87 (0.001) 0.85 (0.001)

Prop(R2)K̃ 0.08 (0.001) 0.13 (0.001) 0.15 (0.001)

Table S1: Assessment of how much of the variation between runs of BAKR is due to posterior
estimation via the Gibbs sampler, versus how much is due to the sampling of the approximate
kernel function. Here, we consider sample sizes n = {500, 750, 1000}, where we analyzed 100 different
datasets in each case. Within each individual dataset, we run BAKR 100 different times in order to get
a clear illustration of the variation in performance between runs of the model. We treat the variance of
the computed R2 (i.e. V(R2)) across runs as a quantity to measure error. We then decompose the variance
of R2 into the proportion due to MCMC (i.e. Prop(R2)MCMC) and the proportion due to the approximate
kernel (i.e. Prop(R2)K̃). Reported here are the averages across all simulated datasets. Standard errors across
replicates are given the parentheses.

Table S2

Computational time (in seconds) to run different Bayesian variable selection methods for 100
MCMC iterations, as a function of sample size and the number of covariates. Compared here are
Bayes Ridge (BRR), Bayes Lasso (BL), Bayes LMM (BLMM), and Bayes Cπ. BAKR is assessed under both
its full model specification (V = 1), as well as under its empirical factor representation (V ≈ 0.9 and 0.8,
respectively). Sample sizes considered were n = 100, 500, 1000, and 2000. The number of covariates
considered were p = 1× 103, 1× 104, 5× 104, and 1× 105, respectively. Note that only cases in which p > n
were timed. Results are based on 100 different simulated datasets. Standard errors across these replicates
for each model are given the parentheses. (PDF)

Table S3

Cumulative Variance Explained in K̃

Scenario V = 1 V ≈ 0.9 V ≈ 0.8 V ≈ 0.7 V ≈ 0.6 V ≈ 0.5

MSPE

(SD)

I
0.708 0.729 0.741 0.750 0.758 0.766

(0.20) (0.20) (0.20) (0.20) (0.21) (0.21)

II
0.687 0.714 0.733 0.746 0.758 0.768

(0.18) (0.18) (0.18) (0.19) (0.19) (0.19)

Table S3: Sensitivity analysis comparing the mean square prediction error (MSPE) for BAKR
under its empirical factor representation when explaining different amounts of the cumu-
lative variance (V) in the approximate kernel matrix K̃. Values considered here are V =
{1, 0.9, 0.8, 0.7, 0.6, 0.5}. In Scenario I, pairwise interactions make up 80% of the broad-sense heritability
(i.e. ρ = 0.2). In Scenario II, additive effects dominate 80% of the broad-sense heritability (i.e. ρ = 0.8). Val-
ues in bold represent the method with the lowest MSPE. These results are based on 100 different simulated
datasets in both scenarios. Standard errors across these replicates for each model are given the parentheses.
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Table S4

A table that lists the 129 quantitative mice phenotypes which are classified into the 6 cate-
gories: behavior, diabetes, asthma, immunology, haematology, and biochemistry. (XLSX)

Table S5

Table of all significant SNPs, discovered by BAKR according to the 0.05 FWER threshold,
for each of the seven diseases in the WTCCC dataset. Listed are the PPAAs for each variant, along
with their marginal p-value which was computed using a single-SNP linear model. The phenotype specific
FWER thresholds are given on page 2. (XLSX)

Table S6

Table of regions with at least two SNPs having PPAAs satisfying the 5% FWER threshold in
the analysis of the WTCCC Data. Listed for all regions are the SNPs with the highest PPAA and their
corresponding marginal p-values. The marginal p-values reported are found via linear regression and used as
a direct comparison. The reference column gives literature sources that have previously suggested some level
of association between a given region and disease. Rows listed in bold are those for which we did not find any
sources that previously suggested association with that disease. These regions could potentially be novel.
Note that some of the listed references are works that utilize methods that consider pairwise interactions
between SNPs. *Multiple SNPs in the HLA region are significant, so we choose the SNP with the lowest
marginal p-value and report that as the most extreme. (PDF)
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