
1 
 

Boundedly Rational Expected Utility Theory 

Online Appendix 

 

 

Daniel Navarro-Martinez
1
, Graham Loomes

2
, Andrea Isoni

2
, David Butler

3
, and 

Larbi Alaoui
1
 

 

1
Department of Economics and Business, Pompeu Fabra University, and Barcelona Graduate School 

of Economics, Ramon Trias Fargas 25-27, 08005 Barcelona, Spain. 

2
Warwick Business School, University of Warwick, Coventry CV4 7AL, UK. 

3
Department of Accounting, Finance and Economics, Griffith Business School, Griffith University, 

Gold Coast, Queensland, Australia. 

 

 

 

Journal of Risk and Uncertainty 57(3), December 2018 

 

  



2 
 

This appendix contains three theorems relating to the limiting case of d → 0, and their corresponding 

proofs, that establish general conditions under which BREUT will produce violations of independence 

and betweenness like the ones shown in Section 3. Theorem 1 applies the limiting case to analyse what 

happens when the probabilities of the best consequence are scaled down, as in the CR scenario. 

Theorem 2 derives more general properties about the shape of the indifference curves for cores of 

utility functions restricted to be either weakly concave or weakly convex, which has implications for 

whether or not BREUT satisfies betweenness. By combining insights from Theorem 1 and Theorem 2, 

Theorem 3 elaborates further on the circumstances under which the CC effect can be obtained. 

Theorems 1 and 2 and their proofs are followed by intuitive explanations of their implications. 

The proofs below make use of the following observation. For any two lotteries A and B, if 

Pr(A ≻ B) → 1 as d → 0, then E[V(A, B)] > 0, and so the expected CE of A is greater than the expected 

CE of B (i.e., E(CEA) > E(CEB), where, for any lottery L, E(CEL) denotes its expected CE). If Pr(A ≻ 

B) → 0.5 as d → 0, then E[V(A, B)] = 0 and E(CEA) = E(CEB). Recall also that the mixture operator is 

defined in the usual way, i.e., if A(x) and B(x) denote the probability of reaching prize x in lotteries A 

and B, respectively, then (             =                 for all    

Theorem 1 

Let the core consist of N > 1 CRRA functions, i.e., functions of form              where ri < 1 

for all i ϵ {1, ..., N}, and assume that ri ≠ rj for at least some i, j ϵ {1, ..., N}. Take any lotteries S 

= (xm, p; 0, 1 – p) and R = (xh, q; 0, 1 – q) for which xh > xm > 0, p ϵ (0, 1], q ϵ (0, 1) and for which 

Pr(S ≻ R) → 0.5 as d → 0. Then, for any lottery S' = (xm, σp; 0, 1 – σp) and R' = (xh, σq; 0, 1 – 

σq) where σ ϵ (0, 1), it must be that Pr(S' ≻ R') → 0 as d → 0. 

Proof. For convenience, define    
 

    
  so that            , with    > 0. Without loss of 

generality, assume the   ’s are ordered according to           (Note that, while in principle it 

may be that        for some distinct i, j, there are at least one i and one j such that       . So, the 

above ordering can be done by replacing N with the cardinality of the strict ordering, which is of at 

least 2.)  Let    denote the probability of    occuring. We proceed by contradiction. Suppose that the 

result does not hold, so that Pr(S ≻ R) → 0.5 and Pr(S' ≻ R') does not tend to 0 as d → 0. First, E(CES) 

= E(CER) and hence 

      
   

           
   

     which implies    
      

   
   

    
   

   

  

Second, since it must be that Pr(S' ≻ R') tends to a number greater than 0 as d → 0 (and specifically 

0.5 or 1), then E(CES’) ≥ E(CER’), and hence  
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     which implies    
            

   

          
   

. 

Combining the two, we obtain:  

    
   

   

    
   

   

  
       

   
   

       
   

   

  

where we have divided by    on both sides. Noting that    , we write     , where       ϵ (0, 

1). We therefore have: 

       
   

   

    
   

   

  
        

   
   

       
   

   

  

 
           

   
          

   
              

   
       

   
   . 

So: 

    
                       

                      

    
                             

              . 

Factoring out the left-hand side (LHS) and the right-hand side (RHS) of the equation: 

    
                  

                                   

     
               

                                    

                                                                                                                    

      
                  

                   
             

  

  
                 

                                 

     
              

                                  

                                                                                                                 

      
                 

                  
              

Canceling out the common terms on the LHS and the RHS side and grouping the terms that include 

     with those that include     , we obtain: 

     
                          

                     …                   

             
                          

                                            
                          

             

             
                      …                                     
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which can be written as: 

       
                    

   

   

 

     

        
                    

   

   

 

     

  

But notice that for any          
                          

                       as it is 

implied by                             , which is implied by                        

     , which is implied by           and by        , which are both true because 

                         Since this is true for each of the comparisons of the matching terms in 

the LHS and the RHS sums, it follows that: 

       
                    

   

   

 

     

        
                    

   

   

 

     

  

which is a contradiction and completes the proof.   

Theorem 1 concerns lotteries of the form typically used in CR scenarios, S = (xm, p; 0, 1 – p) 

and R = (xh, q; 0, 1 – q), with xh > xm > 0. The commonly used case in which p = 1 is also allowed by 

the theorem.  

To illustrate the intuition, suppose that Pr(S ≻ R) → 0.5 as d → 0 (i.e., the decision maker is 

indifferent between S and R in the limit, so that E[V(S, R)] = 0) for some p ≤ 1. The key result is that, 

for a core made of CRRA functions, scaling the probabilities of the best outcome of each lottery down 

by some factor σ always results in the DM having a strict preference for the scaled down risky lottery 

R'. Although Theorem 1 starts from perfect indifference between S and R in the scaled-up pair, an 

immediate corollary is that it will always be possible to obtain a strict preference in favour of S by 

slightly reducing q, the probability of winning xh in R. That is, in the limit, a CR effect can always be 

obtained in which the DM has a strict preference for the safer lottery in the scaled-up pair and a strict 

preference for riskier lottery in the scaled-down pair. A preference reversal in the other direction does 

not occur for any lotteries of these forms.  

Theorem 1 holds as long as there are at least two different CRRA utility functions in the core, 

without any further assumption about the core distribution, such as the degree of risk aversion implied 

by each function. The case of a continuous distribution (like the ones used in our simulations) can be 

approximated by taking an N that is sufficiently large. 

Figure A.1 illustrates the implications of Theorem 1. For convenience, pairs {S, R} and {S', 

R'} are drawn on (dashed) lines with the same gradient as the pairs of lotteries in Figure 1, which are 

also shown in the Figure A.1. S is drawn for some p < 1 (i.e., on the bottom edge of the triangle, but 

away from lottery A in the bottom-left corner). Because of the requirement that the DM is indifferent 
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between S and R in the limit, S and R lie on the same indifference curve (the solid line connecting S 

and R). In the limiting case of BREUT, an indifference curve is the set of lotteries for which the core 

entails exactly the same mean CE. Theorem 1 implies that R' lies above the indifference curve passing 

through S'. In other words, indifference curves become flatter as one moves towards the bottom-right 

corner of the triangle, in line with the often discussed ‘fanning out’ pattern. Similarly, because the S in 

Figure A.1 has been selected arbitrarily, the theorem implies that, to the left of S, indifference curves 

will be steeper. For a DM with indifference curves like those in Figure A.1, Pr Lim(A, B) = 1, Pr 

Lim(A, E) = 1 and Pr Lim(C, D) = 0, that is, she would display both the CR and the CC patterns with 

probability 1 in the limit. 

 

FIGURE A.1 

A sketch of BREUT’s indifference curves for the limiting case (d → 0) 

 

Theorem 2 

Maintain the assumptions of Theorem 1 (i.e., the core consists of N CRRA functions, at least two 

of which are distinct). Take any distinct lotteries S = (xh, p1; xm, p2; 0, 1– p1 – p2) and R = (xh, q1; 

xm, q2; 0, 1 – q1 – q2) for which xh > xm > 0, p1, p2, q1, q2 ϵ [0, 1], p1 + p2 < 1, q1 + q2 < 1 and for 

which Pr(S ≻ R) → 0.5 as d → 0. 

Suppose that all utility functions are (weakly) concave, i.e., 0 ≤ ri < 1 for all i ϵ {1, ..., N}. Then 

Pr(S ≻ ωS + (1 – ω)R) → 1 and Pr(R ≻ ωS + (1 – ω)R) → 1 as d → 0, where ω ϵ (0, 1).  

Suppose that all utility functions are (weakly) convex, i.e., ri ≤ 0 for all i ϵ {1, ..., N}. Then Pr(S 

≻ ωS + (1 – ω)R) →  0 and Pr(R ≻ ωS + (1 – ω)R) → 0 as d → 0. 
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Proof.  We only prove the case for 0 ≤ ri < 1 for all i ϵ {1,..., N}; an analogous proof holds for ri ≤ 0 

for all i ϵ {1, ..., N}. Adopt the same notation as in the proof of Theorem 1, with the added restriction 

here that      for all i. Moreover, since there are at least two distinct     in the support, it must be 

that      for at least one i, i.e., it must be that at least one utility function is strictly concave.  

Since Pr(S ≻ R) → 0.5 as d → 0, it must be that E(CES) = E(CER) and hence that 

        

 
  

 
     

 
  

 
    

 

   

          

 
  

 
     

 
  

 
    

 

   

  

Moreover, since ωS + (1 – ω)R = (xh, ωp1 + (1 – ω)q1; xm, ωp2 + (1 – ω)q2; 0, 1 – ω (p1 + p2) – (1 – 

ω)(q1 + q2)), 

                                        

 
  

 
                 

 
  

 
    

 

   

 

           

 
  

 
     

 
  

 
            

 
  

 
     

 
  

 
     

 

   

  

Since      for all i and      for at least one i, it follows from Jensen’s Inequality for weakly and 

strictly convex functions that:   

       

 
  

 
     

 
  

 
            

 
  

 
     

 
  

 
      

        

 
  

 
      

 
  

 
              

 
  

 
     

 
  

 
     

for all i, with strict inequality for at least one i for which     . The reason the inequality is strict for 

at least one    is that equality would only hold if for all   ,     

 
  

 
     

 
  

 
     

 
  

 
 

    

 
  

 
       

  
  

  
 

  
                    But this is impossible because there are at least two 

distinct     (i.e.,        for at least some j, k ϵ {1, ..., N}), and so  
  

  
  

 
  

 
, and hence the LHS, is 

different for the distinct        , while the RHS maintains the same value, and so equality can hold at 

most for one   (and note that in the case where N = 2,       and     , then clearly from E(CES) = 

E(CER),     

 
  

 
     

 
  

 
     

 
  

 
     

 
  

 
 could not hold for either     or   . Hence, even in that 

case, strict inequality would still hold for      . Therefore, combining all terms, we obtain: 
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=                                      , 

where we have used that                

 
  

 
     

 
  

 
    

     and                

 
  

 
  

   

    

 
  

 
    . We have therefore shown that                                    from which it 

follows that Pr(S ≻ ωS + (1 – ω)R) → 1 and Pr(R ≻ ωS + (1 – ω)R) → 1 as d → 0. This concludes the 

proof. The proof for ri ≤ 0 is analogous, but uses Jensen’s Inequality for concave and strictly concave 

functions instead.   

According to Theorem 2, if there are only (weakly) concave utility functions in the core, 

BREUT’s indifference curves are always concave. This is the case depicted in Figure A.1. Note that, 

since there must be at least two distinct utility functions in the core (as assumed in Theorem 1), the 

weak concavity requirement entails that there will be at least one strictly concave function. The key 

result is that any mixture of two lotteries, S = (xm, p; 0, 1 – p) and R = (xh, q; 0, 1 – q), that lie on the 

same indifference curve will be less preferred than either S or R. However, since the DM is assumed to 

be exactly indifferent between the two mixed lotteries, the degree of concavity of the indifference 

curves will typically be very small (unless the core is made of very extreme functions). This limits the 

room for observing violations of betweenness when sampling is limited (see our simulations in the 

main text). If the core contains only (weakly) convex utility functions, then indifference curves will be 

convex and any mixture of S and R will be preferred to both. If there are both concave and convex 

utility functions in the core, the exact shape of the indifference curves will depend on the balance 

between concave and convex functions and on how extreme these are. 

An implication of Theorems 1 and 2 is that, while the CR effect will always be observed in the 

limit, for any core, the same is not guaranteed for the CC effect. But the effect will always be found in 

the limit if the core does not contain convex utility functions (the case illustrated in Figure A.1), as 

detailed in Theorem 3. 

 

Theorem 3 

Maintain the assumptions of Theorem 1 (i.e., the core consists of N CRRA functions, at least two 

of which are distinct). Suppose that all utility functions are (weakly) concave, i.e., 0 ≤ ri < 1 for 
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all i ϵ {1, ..., N}. Take any lotteries T = (xm, 1) and Z = (xh, q1; xm, q2; 0, 1 – q1 – q2) for which xh > 

xm > 0, q1, q2 ϵ (0, 1), q1 + q2 < 1 and Pr(T ≻ Z) → 0.5 as d → 0. Then it must be that for T' = (xm, 

1 – q2; 0, q2) and Z' = (xh, q1; 0, 1 – q1), Pr(T' ≻ Z') → 0 as d → 0. 

Proof. Adopt the same notation as in the proofs of Theorems 1 and 2. We make use of both theorems 

to prove the result. First, it follows from Pr(T ≻ Z) → 0.5 as d → 0 that E(CET) = E(CEZ). Consider 

now the lottery G = (xh, 
  

    
; 0, 

       

    
), which is at the intersection between the hypotenuse and the 

line segment connecting lotteries T and Z in the corresponding Marschak-Machina diagram. Note that 

Z =      (     G, since      (     G =   (xm, 1) + (    )(xh, 
  

    
;0, 

       

    
) = (xh, q1; xm, 

q2; 0, 1 – q1 – q2). By Theorem 2, it cannot be that E(CEG) = E(CET), as this would imply that E(CEZ) 

< E(CET). It is also obvious from monotonicity that E(CEG) cannot be strictly less than E(CET), which 

would also imply that E(CEZ) < E(CET). It must therefore be that E(CEG) > E(CET). Now from 

Theorem 1, we know that if E(CET) = E(CEG) holds (i.e., Pr(T ≻ G) → 0.5 as d → 0), then E(CET’) < 

E(CEZ’) (i.e., Pr(T’ ≻ Z’) → 0 as d → 0). This can be seen by taking p in Theorem 1 to be 1, q to be  

  

    
, and σ to be       and replacing S with T, R with G, S’ with T’ and R’ with Z’. It is then clear 

by monotonicity that E(CEG) > E(CET) also implies that Pr(T’ ≻ Z’) → 0 as d → 0.   

 


