Supplemental Material

for

The need for speed: run-on oligomer filament formation provides maximum speed with maximum sequestration of activity

Claudia Barahona, L. Emilia Basantes, Kassidy J. Tompkins, Desirae M. Heitman, Barbara I. Chukwu,

Juan Sanchez, Jonathan L. Sanchez, Niloofar Ghadirian, Chad K. Park & N. C. Horton*

Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721

	Protein
SgrAI Enzyme	Level
	(%) ²
WT	100%
T4D	38%
S6D	70%
I7E	57%
R24E	40%
N25E	30%
P27W	82%
P27G	74%
Q34D	80%
I51E	75%
S56E	68%
S56Q	29%
A57E	62%
A57Q	108%
I59E	59%
M62E	33%
R84E	33%
R127A	100%
R131A	38%
R134A	63%

Table S1.	Western	data to	quantitate	expression le	evels
-----------	---------	---------	------------	---------------	-------

Parameter	Number	Units
Estimated molecules SgrAI per cell	100	molecules
Molecules phage per cell (at the minimum)	1	molecules
size of cell in microns	1	microns
volume of a spherical cell	5x10 ⁻¹³	cm ³
	5x10 ⁻¹⁶	L
Concentration of SgrAI in the cell ^a	3x10 ⁻⁷	Μ
	300	nM
Calculation of the concentration of DNA and SgrAI recog	nition sites i	n the cell
Concentration of phage DNA in cell	3x10 ⁻⁹	Μ
	3	nM
Calculation of the local concentration of sites on the same	DNA molec	ule ^b
size of phage DNA	50,000	bp
Distance between sites on phage (if 5 sites per phage) ^c	8,333	bp
Distance in Ångstrom	28,333	Å
Radius of gyration	2,173	Å
Volume occupied by 2 sites in phage using radius=Rg	$4x10^{10}$	Å ³
	$4x10^{-14}$	cm ³
	$4x10^{-17}$	L
Local concentration of 2 SgrAI/site on phage using Rg	8x10 ⁻⁸	М
	80	nM

Table S2. Calculation of Local Concentration of Sites on Phage DNA

^{*a*}**Calculation of [SgrAI] in the cell:** first, the size of the cell is used to calculate volume, and with 100 molecules of SgrAI estimated, a concentration can be calculated as C=100/(Avogadro's number*volume of the cell), and is calculated to be 300 nM. With 1 copy of DNA per cell, a similar calculation gives 3 nM.

^{*b*}To calculate the local concentration of sites on the same phage DNA to each other: with 3.4 Å/bp, the 8,333 bp distance between sites gives 28,333 Å between sites on linear DNA if fully extended (and in B form). The radius of gyration was calculated according to the equation $Rg=((2*P*N)/6)^{1/2}$ in Å, P is persistence length (500 Å)^{*l*}, N is the linear distance (in Å) between sites. From this radius, a volume can be calculated (V=4/3 π r³), and the concentration calculated as 2 molecules (the two DNA bound SgrAI) in a volume (calculated as 4x10⁻¹⁷ L), which is ~80 nM.

^cThe number of primary sites will vary with each phage genome, for example, λ phage contains 6 primary sites, though 3 are predicted based on the statistics in a 50,000 kb genome.

Reaction Step	Forward Rate Constant	Reverse Rate Constant
Equations fo	or Run-on Oligomer Fila	ment Mechanism
Binding of SgrAI binding to i	ts recognition site in DNA (site)	to create the SgrAI/DNA complex R
$\mathbf{SgrAI} + \mathbf{site} \rightleftharpoons \mathbf{R}$	k ₁	k.1
Self-as	ssociation of a SgrAI/DNA com	plexes (i.e. <mark>R</mark>)
$\mathbf{R} + \mathbf{R} \rightleftharpoons \mathbf{RR}$	k ₂	k-2
$\mathbf{R} + \mathbf{R} \rightleftharpoons \mathbf{RR}$	k ₂	k.2
$\mathbf{RR} + \mathbf{R} \rightleftharpoons \mathbf{RRR}$	k ₂	k.2
$\mathbf{R} + \mathbf{R} \mathbf{R} \rightleftharpoons \mathbf{R} \mathbf{R} \mathbf{R}$	k ₂	k-2
DNA cleavage within	the ROO filament (X denotes S	grAI bound to cleaved DNA)
$\mathbf{RR} \rightleftharpoons \mathbf{XR}$	k ₃	k-3
$\mathbf{RR} \rightleftharpoons \mathbf{RX}$	k ₃	k-3
$\mathbf{XR} \rightleftharpoons \mathbf{XX}$	k ₃	k-3
$\mathbf{R}\mathbf{X} \rightleftharpoons \mathbf{X}\mathbf{X}$	k3	k-3
$\mathbf{RRR} \rightleftharpoons \mathbf{XRR}$	k3	k-3
$\mathbf{RRR} \rightleftharpoons \mathbf{RXR}$	k ₃	k-3
$\mathbf{RRR} \rightleftharpoons \mathbf{RRX}$	k3	k-3
$\mathbf{XRR} \rightleftharpoons \mathbf{XXR}$	k3	k-3
$\mathbf{XRR} \rightleftharpoons \mathbf{XRX}$	k ₃	k-3
$\mathbf{XXR} \rightleftharpoons \mathbf{XXX}$	k ₃	k.3
$\mathbf{XRX} \rightleftharpoons \mathbf{XXX}$	k3	k-3
$\mathbf{RXR} \rightleftharpoons \mathbf{XXR}$	k3	k.3
$\mathbf{RXR} \rightleftharpoons \mathbf{RXX}$	k3	k.3
$\mathbf{XXR} \rightleftharpoons \mathbf{XXX}$	k3	k-3
$\mathbf{R}\mathbf{X}\mathbf{X} \rightleftharpoons \mathbf{X}\mathbf{X}\mathbf{X}$	k ₃	k.3
$\mathbf{RRX} \rightleftharpoons \mathbf{XRX}$	k3	k.3
$\mathbf{RRX} \rightleftharpoons \mathbf{RXX}$	k3	k-3
$\mathbf{XRX} \rightleftharpoons \mathbf{XXX}$	k ₃	k.3
$\mathbf{R}\mathbf{X}\mathbf{X} \rightleftharpoons \mathbf{X}\mathbf{X}\mathbf{X}$	k ₃	k.3
Dissociation of run-on oligomer	filaments that contain some Sg	grAI/DNA complexes with cleaved DNA
(<i>i.e. X) and some with uncleaved</i>	l (i.e. R)
$\underline{\mathbf{XR} \rightleftharpoons \mathbf{R} + \mathbf{X}}$	<u>k-2</u>	<u> </u>
$\mathbf{RX} \rightleftharpoons \mathbf{R} + \mathbf{X}$	<u>K-2</u>	<u>k</u> 2
$\mathbf{X}\mathbf{X} \rightleftharpoons \mathbf{X} + \mathbf{X}$	<u>K-2</u>	<u>k</u> 2
$\underline{\mathbf{XRR}} \rightleftharpoons \mathbf{X} + \mathbf{RR}$	<u>k-2</u>	<u>k</u> 2
$\underline{\mathbf{XRR}} \rightleftharpoons \mathbf{XR} + \mathbf{R}$	<u>k-2</u>	<u>k</u> 2
$\underline{\mathbf{RXR} \rightleftharpoons \mathbf{R} + \mathbf{XR}}$	k-2	<u>k</u> ₂
$\underline{\mathbf{RXR}} \rightleftharpoons \mathbf{RX} + \mathbf{R}$	k-2	k ₂
$\underline{\mathbf{RRX} \rightleftharpoons \mathbf{R} + \mathbf{RX}}$	k-2	k ₂
$\mathbf{RRX} \rightleftharpoons \mathbf{RR} + \mathbf{X}$	k-2	k ₂
$\mathbf{XXR} \rightleftharpoons \mathbf{X} + \mathbf{XR}$	k- 2	k ₂
$XXR \rightleftharpoons XX + R$	k-2	k ₂

Table S3. Equilibria used in simulations of the ROO filament and Binary mechanisms

$\mathbf{XRX} \rightleftharpoons \mathbf{X} + \mathbf{RX}$	k- 2	k ₂
$\mathbf{XRX} \rightleftharpoons \mathbf{XR} + \mathbf{X}$	k- ₂	k ₂
$\mathbf{R}\mathbf{X}\mathbf{X} \rightleftharpoons \mathbf{R} + \mathbf{X}\mathbf{X}$	k- ₂	k ₂
$\mathbf{R}\mathbf{X}\mathbf{X} \rightleftharpoons \mathbf{R}\mathbf{X} + \mathbf{X}$	k- ₂	k ₂
$\mathbf{X}\mathbf{X}\mathbf{X} \rightleftharpoons \mathbf{X} + \mathbf{X}\mathbf{X}$	k- ₂	k ₂
$\mathbf{XXX} \rightleftharpoons \mathbf{XX} + \mathbf{X}$	k-2	k ₂
Dissociation of SgrAI/DNA complete	xes which contain clea	aved DNA (i.e. X) to SgrAI and cleaved DNA
$\mathbf{X} \rightleftharpoons \mathbf{SgrAI} + \mathbf{cleaved} \ \mathbf{DNA}$	k_4	k-4
Equa	ations for Binary	Mechanism
Binding of Binary enzyme E to it	ts recognition site in L	DNA (site) to create the E/DNA complex R
$\mathbf{E} + \mathbf{site} \rightleftharpoons \mathbf{R}$	\mathbf{k}_1	k-1
Self-ass	ociation of a E/DNA c	complexes (i.e. <mark>R</mark>)
$\mathbf{R} + \mathbf{R} \rightleftharpoons \mathbf{RR}$	\mathbf{k}_2	k-2
DNA cleavage within the Binary complex (X denotes enzyme E bound to cleaved DNA)		
$\mathbf{RR} \rightleftharpoons \mathbf{XR}$	k3	k-3
$\mathbf{RR} \rightleftharpoons \mathbf{RX}$	k ₃	k.3
$\mathbf{XR} \rightleftharpoons \mathbf{XX}$	k ₃	k.3
$\mathbf{R}\mathbf{X} \rightleftharpoons \mathbf{X}\mathbf{X}$	k3	k-3
Dissociation of Binary complexes the	hat contain some E/D	NA complexes with cleaved DNA (i.e. X) and
S	ome with uncleaved D	NA (i.e. R)
$\mathbf{XR} \rightleftharpoons \mathbf{X} + \mathbf{R}$	k- ₂	k ₂
$\mathbf{R}\mathbf{X} \rightleftharpoons \mathbf{R} + \mathbf{X}$	k- 2	k ₂
$XX \rightleftharpoons X + X$	k- 2	k ₂
Dissociation of E/DNA complexes	which contain cleaved	DNA (i.e. X) to enzyme E and cleaved DNA
$\mathbf{X} \rightleftharpoons \mathbf{E} + \mathbf{cleaved} \ \mathbf{DNA}$	\mathbf{k}_4	k-4

Table S4. Rate constants using in simulations

Reaction	Forward Rate Constant	Reverse Rate Constant
DNA recognition site (site) binding by		
SgrAI (ROO mechanism) or enzyme E	$k_1 = 10^9 M^{-1} s^{-1}$	$k_{-1} = 0.06 \text{ s}^{-1}$
(Binary mechanism)		
Association and self-association of		
enzyme-substrate (R) and enzyme-product	$k_2 = 1.3 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$	$k_{-2} = 0.03 \text{ s}^{-1}$
complexes (X)		
DNA cleavage by SgrAI (ROO	$1_{r_{2}} = 0.8 \text{ s}^{-1}$	$k_3 = 0$
mechanism) or E (Binary mechanism)	$K_3 = 0.8 S$	(considered irreversible)
Product release (release of cleaved DNA	$1r = 0.4 a^{-1}$	$k_{-4} = 3x10^7 M^{-1} s^{-1}$ (Fig. 3A-B, D)
from SgrAI or E)	$K_4 - 0.4 S$	$k_{-4} = 3x10^6 M^{-1} s^{-1} (Fig. 3C)$

Reaction Step	Forward Rate	Reverse Rate Constant	
SerAI binding to primary site DNA or	secondary site DNA in	to SgrAI/DNA complexes A and R.	
	respectively	, , , , , , , , , , , , , , , , , , , ,	
SgrAI+ <mark>PRIMARY</mark> ≓ P	k ₁	k-1	
SgrAI+SECONDARY \rightleftharpoons S	k ₂	k-2	
Self-association of a SgrAI/PRIMARY co	omplex (i.e. <mark>P</mark>) with an <u>P</u>)	other SgrAI/ <mark>PRIMARY</mark> complex (i.e.	
$\mathbf{P} + \mathbf{P} \rightleftharpoons \mathbf{PP}$	k ₃	k-3	
$\mathbf{P} + \mathbf{P} \rightleftharpoons \mathbf{PP}$	k ₃	k-3	
$\mathbf{SP} + \mathbf{P} \rightleftharpoons \mathbf{SPP}$	k3	k-3	
$\mathbf{P} + \mathbf{PS} \rightleftharpoons \mathbf{PPS}$	k3	k-3	
$\mathbf{PP} + \mathbf{P} \rightleftharpoons \mathbf{PPP}$	k ₃	k-3	
$\mathbf{P} + \mathbf{PP} \rightleftharpoons \mathbf{PPP}$	k3	k-3	
$\mathbf{PPP} + \mathbf{P} \rightleftharpoons \mathbf{PPPP}$	k3	k-3	
$\mathbf{P} + \mathbf{PPP} \rightleftharpoons \mathbf{PPPP}$	\mathbf{k}_3	k-3	
$\mathbf{P} + \mathbf{PPS} \rightleftharpoons \mathbf{PPPS}$	k ₃	k-3	
$\mathbf{P} + \mathbf{PSP} \rightleftharpoons \mathbf{PPSP}$	k ₃	k-3	
$\mathbf{P}\mathbf{S}\mathbf{P} + \mathbf{P} \rightleftharpoons \mathbf{P}\mathbf{S}\mathbf{P}\mathbf{P}$	\mathbf{k}_3	k-3	
$\mathbf{SPP} + \mathbf{P} \rightleftharpoons \mathbf{SPPP}$	k ₃	k-3	
SP+PP ⇒ SPPP	k ₃	k-3	
$SP+PS \rightleftharpoons SPPS$	k ₃	k-3	
Association of a SgrAI/PRIMARY complex (i.e. P) with a SgrAI/SECONDARY complex (i.e. S)			
$\mathbf{P} + \mathbf{S} \rightleftharpoons \mathbf{PS}$	k4	k.4	
$\mathbf{S} + \mathbf{P} \rightleftharpoons \mathbf{SP}$	k4	k.4	
$\mathbf{PS} + \mathbf{P} \rightleftharpoons \mathbf{PSP}$	k4	k.4	
$\mathbf{P} + \mathbf{SP} \rightleftharpoons \mathbf{PSP}$	k4	k.4	
$\mathbf{PP} + \mathbf{S} \rightleftharpoons \mathbf{PPS}$	k4	k-4	
$\mathbf{S} + \mathbf{PP} \rightleftharpoons \mathbf{SPP}$	k4	k.4	
$\mathbf{S} + \mathbf{PS} \rightleftharpoons \mathbf{SPS}$	k4	k.4	
$SP + S \rightleftharpoons SPS$	k4	k.4	
$\mathbf{S} + \mathbf{PPP} \rightleftharpoons \mathbf{SPPP}$	k4	k.4	
$\mathbf{S} + \mathbf{PPS} \rightleftharpoons \mathbf{SPPS}$	k4	k.4	
$\mathbf{SPP} + \mathbf{S} \rightleftharpoons \mathbf{SPPS}$	k4	k-4	
$\mathbf{S} + \mathbf{PSP} \rightleftharpoons \mathbf{SPSP}$	k4	k.4	
$SPS + P \rightleftharpoons SPSP$	k4	k.4	
$\mathbf{P} + \mathbf{SPS} \rightleftharpoons \mathbf{PSPS}$	k4	k-4	
PSP + S ⇒PSPS	k4	k-4	
$\mathbf{PPP} + \mathbf{S} \rightleftharpoons \mathbf{PPPS}$	k4	k.4	
$\mathbf{PPS} + \mathbf{P} \rightleftharpoons \mathbf{PPSP}$	k4	k.4	
$\mathbf{P} + \mathbf{SPP} \rightleftharpoons \mathbf{PSPP}$	k4	k-4	
$\mathbf{PP} + \mathbf{SP} \rightleftharpoons \mathbf{PPSP}$	k4	k.4	
PS+PP ⇒ PSPP	\mathbf{k}_4	k-4	

Table S5. Equations for simulating reactions with secondary site DNA

$PS+PS \rightleftharpoons PSPS$	k4	k-4	
$SP+SP \rightleftharpoons SPSP$	k4	k.4	
$PP+PS \rightleftharpoons PPPS$	k4	k.4	
Cleavage of second	ary site DNA within the	e ROO filament	
	(S becomes X)		
$\mathbf{PS} \rightleftharpoons \mathbf{PX}$	k5	k-5	
$SP \rightleftharpoons XP$	k5	k.5	
$\mathbf{PSP} \rightleftharpoons \mathbf{PXP}$	k5	k-5	
$\mathbf{PPS} \rightleftharpoons \mathbf{PPX}$	k5	k-5	
$\mathbf{SPP} \rightleftharpoons \mathbf{XPP}$	k5	k.5	
$SPS \rightleftharpoons XPX$	k5	k.5	
$\mathbf{PPPS} \rightleftharpoons \mathbf{PPPX}$	k5	k-5	
$\mathbf{PPSP} \rightleftharpoons \mathbf{PPXP}$	k5	k.5	
$\mathbf{PSPP} \rightleftharpoons \mathbf{PXPP}$	k5	k.5	
$\mathbf{SPPP} \rightleftharpoons \mathbf{XPPP}$	k5	k-5	
$\mathbf{PSPS} \rightleftharpoons \mathbf{PSPX}$	k5	k.5	
PSPS ≓ PXPS	k5	k.5	
$\mathbf{PXPS} \rightleftharpoons \mathbf{PXPX}$	k 5	k-5	
$\mathbf{PSPX} \rightleftharpoons \mathbf{PXPX}$	k 5	k-5	
$\mathbf{SPPS} \rightleftharpoons \mathbf{XPPX}$	\mathbf{k}_5	k.5	
$\mathbf{SPSP} \rightleftharpoons \mathbf{XPXP}$	k 5	k-5	
Dissociation of a SgrAI/PRIMARY comp	plex (i.e. <mark>P</mark>) with anoth	er SgrAI/ <mark>PRIMARY</mark> complex (i.e. <mark>P</mark>)	
$\mathbf{XPP} \rightleftharpoons \mathbf{XP} + \mathbf{P}$	k-3	k3	
$\mathbf{PPX} \rightleftharpoons \mathbf{P} + \mathbf{PX}$	k-3	k3	
$\mathbf{PPP} \rightleftharpoons \mathbf{PP} + \mathbf{P}$	k-3	k3	
$\mathbf{PPP} \rightleftharpoons \mathbf{P} + \mathbf{PP}$	k-3	k3	
$\mathbf{PPPX} \rightleftharpoons \mathbf{P} + \mathbf{PPX}$	k-3	k3	
$\mathbf{PPXP} \rightleftharpoons \mathbf{P} + \mathbf{PXP}$	k-3	k3	
$\mathbf{PXPP} \rightleftharpoons \mathbf{PXP} + \mathbf{P}$	k-3	k3	
$\mathbf{XPPP} \rightleftharpoons \mathbf{XPP} + \mathbf{P}$	k-3	k3	
$\mathbf{PPPP} \rightleftharpoons \mathbf{PP+PP}$	k-3	k ₃	
$\mathbf{PPPX} \rightleftharpoons \mathbf{PP+PX}$	k-3	k ₃	
$\mathbf{XPPP} \rightleftharpoons \mathbf{XP+PP}$	k-3	k3	
$\mathbf{XPPX} \rightleftharpoons \mathbf{XP+PX}$	k-3	k ₃	
Dissociation of SgrAI/SECONDARY complex with cleaved secondary site DNA (i.e. X)			
from a SgrA	AI/PRIMARY complex	(i.e. P)	
$\mathbf{PX} \rightleftharpoons \mathbf{P} + \mathbf{X}$	<u>k-4</u>	<u> </u>	
$SP \rightleftharpoons X + P$	<u>k-4</u>	<u> </u>	
$\mathbf{PXP} \rightleftharpoons \mathbf{PX} + \mathbf{P}$	K-4	<u> </u>	
$\mathbf{PXP} \rightleftharpoons \mathbf{P} + \mathbf{XP}$	k-4	<u> </u>	
$\mathbf{PPX} \rightleftharpoons \mathbf{PP} + \mathbf{X}$	<u>k-4</u>	<u>k</u> 4	
$\mathbf{XPP} \rightleftharpoons \mathbf{X} + \mathbf{PP}$	<u>k-4</u>	<u>k</u> 4	
$\mathbf{XPS} \rightleftharpoons \mathbf{X} + \mathbf{PS}$	<u>k-4</u>	<u>k</u> 4	
$\mathbf{XPS} \rightleftharpoons \mathbf{XP} + \mathbf{S}$	k-4	\mathbf{k}_4	

$\mathbf{SPX} \rightleftharpoons \mathbf{S} + \mathbf{PX}$	k-4	k4	
$\mathbf{SPX} \rightleftharpoons \mathbf{SP} + \mathbf{X}$	k-4	\mathbf{k}_4	
$\mathbf{XPX} \rightleftharpoons \mathbf{X} + \mathbf{PX}$	k- 4	k_4	
$\mathbf{XPX} \rightleftharpoons \mathbf{XP} + \mathbf{X}$	k-4	k4	
PPPX≓PPP + X	k-4	k_4	
$\mathbf{PPXP} \rightleftharpoons \mathbf{PPX} + \mathbf{P}$	k-4	k_4	
$\mathbf{PXPP} \rightleftharpoons \mathbf{P} + \mathbf{XPP}$	k-4	k4	
$\mathbf{XPPP} \rightleftharpoons \mathbf{X} + \mathbf{PPP}$	k- 4	k 4	
$\mathbf{P}\mathbf{X}\mathbf{P}\mathbf{X} \rightleftharpoons \mathbf{P} + \mathbf{X}\mathbf{P}\mathbf{X}$	k-4	k_4	
$\mathbf{P}\mathbf{X}\mathbf{P}\mathbf{X} \rightleftharpoons \mathbf{P}\mathbf{X}\mathbf{P} + \mathbf{X}$	k-4	k 4	
$\mathbf{XPPX} \rightleftharpoons \mathbf{X} + \mathbf{PPX}$	k- 4	k 4	
$\mathbf{XPPX} \rightleftharpoons \mathbf{XPP} + \mathbf{X}$	k- 4	k_4	
$\mathbf{XPXP} \rightleftharpoons \mathbf{X} + \mathbf{PXP}$	k- 4	k_4	
$\mathbf{XPXP} \rightleftharpoons \mathbf{XPX} + \mathbf{P}$	k-4	k4	
$\mathbf{PSPX} \rightleftharpoons \mathbf{P} + \mathbf{SPX}$	k-4	k_4	
$\mathbf{PSPX} \rightleftharpoons \mathbf{PSP} + \mathbf{X}$	k-4	k_4	
$\mathbf{PXPS} \rightleftharpoons \mathbf{P} + \mathbf{XPS}$	k-4	k 4	
$\mathbf{PXPS} \rightleftharpoons \mathbf{PXP} + \mathbf{S}$	k-4	k_4	
$\mathbf{SPPX} \rightleftharpoons \mathbf{S} + \mathbf{PPX}$	k-4	k_4	
$\mathbf{SPPX} \rightleftharpoons \mathbf{SPP} + \mathbf{X}$	k- 4	k4	
$\mathbf{XPPS} \rightleftharpoons \mathbf{X} + \mathbf{PPS}$	k- 4	k4	
$\mathbf{XPPS} \rightleftharpoons \mathbf{XPP} + \mathbf{S}$	k-4	\mathbf{k}_4	
$\mathbf{SPXP} \rightleftharpoons \mathbf{S} + \mathbf{PXP}$	k- 4	k4	
$\mathbf{SPXP} \rightleftharpoons \mathbf{SPX} + \mathbf{P}$	k- 4	k4	
$\mathbf{XPSP} \rightleftharpoons \mathbf{X} + \mathbf{PSP}$	k-4	k4	
$\mathbf{XPSP} \rightleftharpoons \mathbf{XPS} + \mathbf{P}$	k- 4	\mathbf{k}_4	
$\mathbf{PPXP} \rightleftharpoons \mathbf{PP} + \mathbf{XP}$	k- 4	k4	
$\mathbf{PXPP} \rightleftharpoons \mathbf{PX} + \mathbf{PP}$	k-4	k4	
$\mathbf{P}\mathbf{X}\mathbf{P}\mathbf{X} \rightleftharpoons \mathbf{P}\mathbf{X} + \mathbf{P}\mathbf{X}$	k-4	k_4	
$\mathbf{XPXP} \rightleftharpoons \mathbf{XP} + \mathbf{XP}$	k- 4	k 4	
Dissociation of cleave	ed SECONDARY site	DNA from SgrAI	
$\mathbf{X} \rightleftharpoons \mathbf{SgrAI} + \mathbf{SECONDARY}^{\text{cleaved}}$	k ₆	k-6	
Binary Mechanism			
Binding of PRIMARY and SECOND	ARY site DNA to enzyn respectively	ne (E) to give complexes P and S ,	
$\mathbf{E} + \mathbf{PRIMARY} \rightleftharpoons \mathbf{P}$	k ₁	k_1	
$E + SECONDARY \rightleftharpoons S$	k ₂	k-2	
Association of two enzyme-substrate complexes-enzyme bound to primary (P) may self-associate, or			
associate with enzyme bound to secondary (S) but enzyme bound to secondary does not self-associate			
$\mathbf{P} + \mathbf{P} \rightleftharpoons \mathbf{PP}$	k ₃	k.3	
$\mathbf{P} + \mathbf{S} \rightleftharpoons \mathbf{PS}$	k4	k.4	
Conversion of sub	strate to product (S co	mplexes only)	
$PS \rightleftharpoons PX$	k5	k.5	
Dissociation of Binary co	mplex with cleaved SE	CONDARY site DNA	

$\mathbf{PX} \rightleftharpoons \mathbf{P} + \mathbf{X}$	k-4	k4	
Dissociation of cleaved SECONDARY site DNA from enzyme (E)			
$\mathbf{X} \rightleftharpoons \mathbf{E} + \mathbf{SECONDARY}^{cleaved}$	k ₆	k-6	

Table S6. Rate Constants used in simulating secondary site cleavage (equations of Table S5)

Reaction	Forward Rate Constant	Reverse Rate Constant
Binding of SgrAI (ROO filament mechanism) or enzyme E (Binary mechanism) to PRIMARY site DNA	$k_1 = 10^8 M^{-1} s^{-1}$	$k-1 = 0.006 s^{-1}$
Binding of SgrAI (ROO mechanism) or enzyme E (Binary mechanism) to SECONDARY site DNA	$k_2 = 10^8 M^{-1} s^{-1}$	$k_{-2} = 0.06 \text{ s}^{-1}$
Association of two SgrAI or two enzyme E complexes containing PRIMARY site DNA (P)	ROO: $k_3 = 1.3x10^5 \text{ M}^{-1}\text{s}^{-1}$ Binary: $k_3 = 1.3x10^5 \text{ M}^{-1}\text{s}^{-1}$ (Fig. 5A) $k_3 = 6.0x10^5 \text{ M}^{-1}\text{s}^{-1}$ (Fig. 5B)	k ₋₃ = 0.03 s ⁻¹
Association of enzyme-DNA complexes where one contains PRIMARY site DNA (P) and the other contains SECONDARY site DNA, cleaved or uncleaved (S or X , respectively)	ROO: $k_4 = 6.5 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$ Binary: $k_4 = 6.5 \times 10^4 \text{ M}^{-1} \text{s}^{-1}$ (Fig. 5A) $k_4 = 3.0 \times 10^5 \text{ M}^{-1} \text{s}^{-1}$ (Fig. 5B)	k ₋₄ = 0.03 s ⁻¹
Cleavage of SECONDARY site DNA within complex	$k_5 = 0.8 \ s^{-1}$	$k_{-5} = 0$ (set to 0 to be irreversible)
Dissociation of cleaved SECONDARY site DNA from SgrAI (ROO) or enzyme E (Binary)	$k_6 = 0.4 \text{ s}^{-1}$	$k_{-6} = 0$ (set to 0 to be irreversible)

Species	Initial Concentration (nM)		
	4000		
SgrAI or E	(excess to ensure complete DNA		
	binding)		
PRIMARY	3 (dotted lines) or		
	1000 (solid lines)		
SECONDARY	3 (dotted lines) or		
	1000 (solid lines)		

 Table S7. Initial Concentrations used in the simulation of secondary site cleavage (see Tables S5-S6)

 Species
 Initial Concentration (nM)

[1] Rippe, K., von Hippel, P. H., and Langowski, J. (1995) Action at a distance: DNA-looping and initiation of transcription, *Trends in biochemical sciences 20*, 500-506.