1 SUPPLEMENTARY MATERIAL

2	Genetic differences in floc formation among three closely related Competibacteraceae clades
3	at a full-scale activated sludge wastewater treatment plant and putative linkages to process
4	performance
5	
6	Veronica R. Brand ^a , Laurel D. Crosby ^b , Craig S. Criddle ^{a,#}
7	
8	^a Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305
9	^b Stanford Genome Technology Center, Palo Alto, CA 94304
10	
11	#Corresponding author: Craig Criddle, ccriddle@stanford.edu
12	
13	Number of pages: 6
14	Number of Supplementary Tables: 2
15	Number of Supplementary Figures: 3
16	

17 Supplementary Tables

- 18 Table S1- Average Nucleotide Identity (ANI) values for selected Competibacter-lineage
- 19 genomes. All groups listed are '*Candidatus*.'

	CPB_ P15 CA14.1	CPB_ M38 CA23.2	CA23.1	C. odensis Run BJ11	Conten- dobacter sp. UBA 2788	Compet- ibacter sp. UBA 3908	Compet- ibacter sp. UBA 2792	Compet- ibacter sp.1 UBA 2368	C. denit- rificans Run AD11	UBA 2383 UBA 2383
CPB_P15 CA14.1	1									
CPB_M38 CA23.2	0.76	1								
CA23.1	0.77	0.78	1							
Contendobacter odensis RunBJ11	0.77	0.77	0.76	1						
Contendobacter sp UBA2788	0.77	0.78	0.77	0.86	1					
Competibacter sp UBA3908	0.77	0.79	0.78	0.79	0.80	1				
Competibacter sp UBA2792	0.75	0.77	0.75	0.76	0.77	0.81	1			
Competibacter sp1 UBA2368	0.75	0.77	0.76	0.76	0.77	0.79	0.77	1		
Competibacter denitrificans RunAD11	0.74	0.75	0.75	0.75	0.75	0.77	0.75	0.77	1	
UBA2383 UBA2383	0.75	0.75	0.75	0.75	0.75	0.76	0.74	0.74	0.73	1

20 ANI values calculated using pyani (https://github.com/widdowquinn/pyani) using the BLAST method

21

Table S2- Summary of Plant Data for 2014-2015

23

Parameter	n	Range ^a	Average	Standard deviation
Primary TSS, mg/L	407	110-2000	404.3	172.0
Secondary TSS, mg/L	730	60-564	147.1	46.5
Mixed Liquor TSS, mg/L	730	1179-3907	2257	495
Waste Return Activated Sludge TSS, mg/L	730	3618-13860	7402	1929
Effluent TSS, mg/L	425	5-44	14.6	6.7
Secondary Influent Flow, MGD	730	43-170	58.1	16.8
Recycle Rate	425	0.15-1.00	0.42	0.12
Solids Retention Time, d	730	0.7-3.5	1.54	0.42
Mixed Liquor Volatile Suspended Solids, mg/L	206	600-4300	2024	621
pH	612	6.4-7.0	6.8	0.1
Influent cBOD, mg/L	406	50-273	160.4	37.8
Effluent cBOD, mg/L	418	3-36	9.8	4.0
Dispersed large coccoid cells, abundance ^b	233	0.5-6	2.79	1.30

24 ^aRange represents minimum and maximum values for full time period

25 ^bAbundance rated per Jenkins method (1)

26 Supplementary Figures

29 Figure S1- Contigs in metagenome samples from the Northern California plant. Coverage plots

- 30 for (A) samples 2014-03-25 and 2013-09-19, and (B) samples 2015-07-21 and 2015-10-27.
- 31 Extracted bins are marked. Contigs are colored by phyla based on predicted essential genes using
- 32 the 'mmgenome' workflow (2).
- 33

0.75 0.50 0.25 0.00 UBA2383 UBA2404 UBA2383 UBA2383 CaBA_C95 CaBA_M38 CaBA_P15 Competibacter denitrificans UBA5948 Competibacter denitrificans Run_A_D11 Competibacter denitrificans UBA1593 Competibacter denitrificans UBA1928 Competibacter sp.1 UBA5948 Competibacter sp.1 UBA2782 Competibacter sp.1 UBA2368 Contendobacter sp. UBA2788 Contendobacter odensis UBA4410 Competibacter sp. UBA2792 Competibacter sp. UBA3908 CaBA_P15 CaBA_M38 CaBA_C95 UBA2383 UBA2383 Halothiobacillus neapolitanus c2 Competibacter sp.1 UBA6584 Ca. Contendobacter odensis Run_B_J1 Plasticicumulans acidovorans UBA2383 UBA2404

Plasticicumulans acidovorans Halothiobacillus neapolitanus c2 Competibacter sp. UBA3908 Competibacter sp. UBA2792 Ca. Contendobacter odensis Run_B_J1 Contendobacter odensis UBA4410 Contendobacter sp. UBA2788 Competibacter sp.1 UBA2368 Competibacter sp.1 UBA2782 Competibacter sp.1 UBA6584 Competibacter sp.1 UBA5948 Competibacter denitrificans UBA1928 Competibacter denitrificans UBA1593 Ca. Competibacter denitrificans Run_A_D11 Competibacter denitrificans UBA5948

35

- Figure S2- Average Nucleotide Identity plot of all available Competibacteraceae genomes (as of 36
- June 2018). Plot produced with pyani (https://github.com/widdowquinn/pyani) using the BLAST 37
- method. 38

Са.

1.00 identity

ANIb percentage

41 Figure S3- Standard curves for qPCR Assay. CaBA clone C21- CPB_M38; CaBA clone C95-

⁴² CPB_C95; CaBA clone C25- CPB_P15.

43 **REFERENCES**

- 44 1. Jenkins D, Richard MG, Daigger GT. 2004. Manual on the causes and control of activated
- 45 sludge bulking, foaming, and other solids separation problems. Lewis Publishers.
- 46 2. Karst SM, Kirkegaard RH, Albertsen M. 2016. mmgenome: a toolbox for reproducible
- 47 genome extraction from metagenomes. bioRxiv 059121.

48