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Supplementary Note 1 

To extend the understanding of early microbial development in connection with external variables, 

we analyzed 16S data (n=3,204 samples) using both omnibus and individual association tests. 

We first compared the taxonomic profiles between 16S amplicon and metagenomic sequencing 

on the genus level and observed an average Bray-Curtis dissimilarity of 0.283 (standard deviation 

0.183). This reflects known technical differences between the techniques arising from, for 

example, differences between the reference databases and the ability of 16S sequencing to 

detect taxa with lower relative abundances. By cross-sectional Permutational analysis of variance 

(PERMANOVA), we found that in addition to well-known features affecting the early microbial 

composition (birth mode, geographic location, and breastfeeding status), maternal antibiotic 

courses during pregnancy (permutation test, q-value=0.029) were associated with microbial 

composition shifts in the earliest stool samples collected at 2 months of age (Supplementary 

Table 2). 

 

We next associated the gut microbial diversities (Chao1 richness, Shannon’s diversity index) with 

the above-mentioned external factors and observed associations with age at sample collection, 

breastfeeding, geography and antibiotics consistent with previous studies (Supplementary Table 

3)38,75,76. Children living outside cities harbored more rich microbiomes compared to children in 

urban households throughout the first three years (q-value=0.025, Supplementary Figure 1B), 

confirming that microbial exposures from rural environments are directly reflected in the gut. We 

confirmed that this association was not confounded by differences between the countries (i.e., 

higher rate of c-sections and otherwise contrasting microbiome in Russian) by conducting the 

analysis without Russians and found that this association persisted within Finnish and Estonian 

children (linear mixed effects model, nominal p = 0.0002).  

 



 

We found several associations between the microbiome and linear growth [an increase in the 

length (height) of a child]. Height at age three (linear mixed effects model, q-value=0.097, 

Supplementary Figure 1C) and growth rate (average increase in height per year) during the first 

three years of life (q-value=0.10) were associated with microbial diversity; taller and faster growing 

children had higher diversity trajectories throughout the three year follow-up, suggesting a link 

between the gut microbiome and linear growth in early childhood. On a taxonomic level, the height 

(q-value=0.0025, Supplementary Figure 1D) and weight (q-value=0.0047) at age three and 

height (q-value=0.012) and weight (q-value=0.00080) gain during the first three years were 

positively correlated with the relative abundance of genus Dialister. An earlier study found that 

malnourished Bangladeshi children (with weight-for-height Z-scores below -3) harbored immature 

gut microbiota52. Another case-control comparison between Indian children with stunted and 

normal growth found differences in their gut microbiota77. In Europe, a study found associations 

between the early gut microbiota at age three months and BMI at age 5-6 years in children from 

Finland and the Netherlands. These differences were stronger among children with a history of 

antibiotic use78. Indeed, early antibiotic use has been associated with growth in livestock, animal 

models and humans79, an effect which is likely at least partially mediated through the gut 

microbiome80. The associations between early growth and the microbiome in the DIABIMMUNE 

cohort support the hypothesis that the early gut microbiome is an important factor in normal growth 

during infancy and early childhood. All in all, the findings of our association analyses, summarized 

in Supplementary Tables 2, 3 and 4, contribute to the understanding of early microbial 

colonization and community assembly in the human gut. 

Supplementary Note 2 

We isolated and sequenced eight Bacteroides dorei strains—three of these isolates were from 

two DIABIMMUNE stool samples (including two different isolates from a single stool sample) and 



 

five from adult stool samples from the Prospective Registry in IBD Study at Massachusetts 

General Hospital (PRISM) cohort—using PacBio long read sequencing. This data enabled 

assembly of high-quality genomes, and when merged with seven existing NCBI isolate genomes, 

they expanded the species’ pangenome (the collection of genes or gene families found in the 

genomes of a given species) by 7,828 genes to almost 18,000 unique gene families 

(Supplementary Table 6). Each newly sequenced isolate genome harbored between 276 and 

1,168 (median 750) unique accessory genes, which on average represented 13% of the genes in 

each B. dorei strain (Supplementary Table 6). For all 15 B. dorei isolates, this variability 

translated to an average of 70% inter-strain similarity in gene content, which is considerably lower 

than the observed SNP-based similarity (Supplementary Figure 2B). Each of the newly-

sequenced strains encoded between 17 and 63 accessory gene islands (regions consisting of 

contiguous accessory genes) that were significantly longer compared to randomly permuted data 

(>15 genes, P<0.01) (Supplementary Figure 2C). Five of these were encoded on contigs that 

could be circularized, suggesting an episomal entity, likely a plasmid (Supplementary Table 7). 

Anecdotally, similarity between B. dorei strains isolated from the DIABIMMUNE samples was 

greater than similarity between B. dorei strains isolated from adults. DIABIMMUNE B. dorei strains 

had 91% similarity between isolates from the same individual and 83-89% similarity between 

isolates from different children from different countries (Supplementary Figure 2B). In 

comparison, B. dorei isolates from adults in the PRISM cohort were on average 68% genetically 

similar, suggesting that the gut microbiome later in life is inhabited by more genetically diverse B. 

dorei strains and likely reflecting more heterogeneous dietary regimes and lifestyles81. Whether 

that happens through strain replacement or evolution and/or adaptation of early colonizers 

remains unclear.  

 

In comparison to the pangenome constructed from the isolate genomes, the de novo assembled 

pangenome of B. dorei consisted of roughly 28,000 genes and included 93% of the genes 



 

identified in the isolate sequences from DIABIMMUNE samples and 82% of genes identified in 

the remaining PRISM isolate sequences. The lower recall rate (sensitivity) of the latter reflects 

that PRISM metagenomes (or any other adult samples) were not included in the de novo 

assembly, suggesting that the constructed pangenome of B. dorei was not fully saturated and will 

be extended by using additional metagenomes or isolates from different populations. We expect 

the same trend to be true for the other species as well. 

 

The metagenomic pangenomes generated in this study were assembled from short read Illumina 

sequencing data. Among the alternative approaches are long-read sequencing technologies, 

particularly PacBio, that produce ultra-long assemblies and high-quality draft genomes. To date 

this technology has been used to aid scaffolding of short-read (typically Illumina) based genome 

assemblies82. Direct applicability of the long read sequencing technologies to the traditional (bulk) 

metagenomics is however limited by its cost and throughput83. If a typical long read sequencing 

method (e.g., PacBio) was applied directly to a metagenomic sample, few of the most abundant 

species in a sample would be sequenced at full-genome breadth. Potentially, sample segregation 

into species-specific sub-samples using, for instance, cell sorting would allow a broader coverage 

of the population, though they would likely compromise on the concentration of the DNA, which 

is required to be high for long read sequencing technologies. In addition, current extraction 

methods aim to lyse a diversity of species often resulting in smaller, overly-sheared, DNA 

fragments from easily lysed species and longer fragments from others. Thus, obtaining 

representative high molecular weight DNA from a mixed community remains a large hurdle. 

Supplementary Note 3 

We detected 42,412 CRISPR spacers using Crass45, a software for the identification and 

reconstruction of CRISPR loci from unassembled metagenomic samples, for a subset of 



 

DIABIMMUNE stool samples (n=112) from 22 subjects with additional virome sequencing data40. 

On average, we found 382 ± 188 (SD) spacers and 29 ± 11 (SD) repeats per sample, with a 

positive correlation (Spearman's r=0.26; p=0.005) between number of spacers per sample and 

the subject age at sample collection (Supplementary Figure 3). This positive association 

disappeared after controlling for the sample alpha diversity (Shannon index), suggesting that 

higher CRISPR counts in older subjects result from the introduction of taxa that carry CRISPR 

loci rather than the acquisition of spacer sequences into the existing CRISPR loci in the infants’ 

communities. We determined the fraction of CRISPR spacer sequences mapping to the viral 

contigs (indicating immunity against these viruses) assembled in a previous virome study40. In 

total, we found matching viral contigs for 2,463 (5.8%) spacer sequences, and the vast majority 

(n=2,085, 85%) of these viral contigs were phages (Supplementary Figure 4, Supplementary 

Table 8). Specifically, 217 spacers matched to viral contigs from the same individual, and 6 

spacers matched to contigs from the same stool sample. To gain insight into the taxonomic 

annotation of the bacteria carrying CRISPR spacers in their CRISPR cassette, we mapped the 

42,412 spacer and 3,272 repeats to the full assembly of the DIABIMMUNE dataset for the 112 

samples with virome data. For 93% (n=2,285) of the spacers with a match in the virome dataset, 

we also found a match to the DIABIMMUNE assembly. To taxonomically annotate CRISPR-

cassette carriers, we identified contigs with CRISPR cassettes including spacers matching the 

virome data sets by filtering all contigs without repeat matches or spacers not mapping to the 

virome data, resulting in 658 spacers matching contigs with one or more repeats from 32 different 

taxa (Supplementary Table 9). We observed a positive correlation between CRISPR spacer 

frequency and the average relative abundance of the carrier species (Spearman's R=0.452); 

however, some species, such as B. vulgatus and F.  prausnitzii, tended to have more spacers 

than expected by this trend alone (Supplementary Figure 4B). 

 



 

Members of the genus Bacteroides are highly versatile carbohydrate-utilizers, typically 

representing a large proportion of the healthy gut microbiome throughout life84. Our analysis 

revealed that members of this genus harbor some of the largest, highly strain-specific accessory 

genomes often with hundreds of unique genes per strain. This is mirrored by Bacteroides ability 

to adapt their carbohydrate-active enzyme repertoire to the available resources determined by 

host diet. Bacteroides-targeting phages are among the most common members of the human gut 

virome, providing a plausible mechanism for extensive LGT and genomic plasticity in 

Bacteroides85. Indeed, phages enable LGT, for example, between Staphylococcus aureus 

strains86 and within the Enterobacteriaceae family87, and the study defining the virome in a subset 

of DIABIMMUNE samples found co-occurrence between multiple viral contigs and Bacteroides 

spp.40. Similarly, the most abundant members of the human gut virome, crAss-like phages, were 

recently associated with Bacteroidetes, especially Bacteroides spp.88. We showed that 

Bacteroides carried CRISPR spacers targeting phages in the corresponding subjects’ guts 

identified by virome sequencing. While the CRISPR-Cas adaptive immune system has been 

shown to limit LGT89-91, more recent studies have shown that CRISPR-Cas-mediated immunity 

enhanced LGT92. Here we used CRISPR spacers as a proxy to reveal phage-bacteria interactions 

that correlate with extensive evidence of LGT in Bacteroides, suggesting that phages contribute 

to genomic diversity in this genus.  

Supplementary Note 4 

To more broadly contextualize the gut bacteria in DIABIMMUNE and to compare the developing 

gut microbiome with established adult microbiomes, we compared the strains in this study with 

the strains of healthy adults in the Human Microbiome Project (HMP) study22. In addition to the 

gut, HMP obtained metagenomic data from three other major body areas: skin, oral cavity, and 

vagina. We first stratified the species observed in the DIABIMMUNE gut samples into four 



 

categories by their typical habitat in HMP. Each bacterial species was assigned to one of four 

habitats (adult gut, skin, oral cavity, or vagina) by the highest mean relative abundance in HMP 

data (Supplementary Figure 5A, Supplementary Table 10). By applying these strata to 

DIABIMMUNE samples, we saw an increasing abundance of adult gut bacteria with age at sample 

collection that reflected maturation of microbial composition (Supplementary Figure 5B). There 

was a reciprocal longitudinal dissipation of vaginal and skin bacteria (Supplementary Figure 5C, 

D), which were commonly seen in higher abundances during the first months of life. 

 

Bacteria typical to the oral cavity are found in infant guts more often compared to adults28. Indeed, 

bacteria typical of the oral cavity in HMP spiked during the first year of life in Finnish and Estonian 

infants (Supplementary Figure 5E). Bacteria in this strata included common opportunistic 

pathogens (pathobionts) such as members of genera Veillonella, Haemophilus and 

Streptococcus (Supplementary Table 10), many of which have also been isolated from the upper 

gastrointestinal tracts of elderly adults93. We used 16S sequencing data to confirm that these 

genera were more abundant in Finnish and Estonian infants compared Russian infants during the 

same time period (Supplementary Table 4). In Russian infants, the migration of these oral 

bacteria may be prevented by higher levels of Bifidobacterium spp. in the gut, which provide 

colonization resistance against such opportunistic bacteria94. This may also partly explain the 

differences in infant immune development between the countries in this study, as colonization of 

oral bacteria has been shown to drive Th1 cell induction and inflammation95. 

 

Some bacterial species, including the oral taxa Veillonella parvula and Haemophilus 

parainfluenzae that had the highest mean relative abundance in DIABIMMUNE subjects, consist 

of distinct, body site-specific clades22. To examine how these clades were related to the strains 

appearing in the infant guts, we integrated the metagenomic strain SNP haplotypes with the HMP 

data. V. parvula strains in infant guts were similar to adult oral V. parvula strains found on buccal 



 

mucosa and dental plaque but distinct from a more diverse clade typical of adult tongue 

microbiome (Supplementary Figure 5F, G). Conversely, the variability of the infant gut strains of 

H. parainfluenzae spanned HMP tongue and buccal mucosa strains but tended to be distinct from 

adult dental plaque strains (Supplementary Figure 5H, I). In infants, genera Veillonella and 

Haemophilus have been associated with formula feeding and different human milk 

oligosaccharide structures96,97. These observations demonstrate strain-level differences in oral 

bacteria colonizing the infant gut in relation to the adult oral microbiome. 
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Supplementary Figure 1. A Samples analyzed by 16S rRNA amplicon and metagenomic sequencing 
(WMS). Rows represent subjects. B Chao1 richness of the microbial profiles with respect to age stratified 
by the household location (n=2,668 samples from urban and n=318 samples from rural households). Chil-
dren born in rural households harbor more diverse gut microbiota (q-value = 0.025). C Children’s height at 
the age of three is correlated with gut microbial diversity (q-value = 0.097). D Mean relative abundance of 
Dialister spp. in 16S sequencing profiles longitudinally stratified by subjects’ height at age three. Height 
categories in the illustrations C and D were defined as follows. Above average: height z-score > 1, average: 
-1 < height z-score ≤ 1, below average: height z-score ≤ -1. In C and D, n=213 in “Below average”, n=1,911 
in “Average” and n=664 in “Above average” categories. In B-D, the curves show LOESS fit for the relative 
abundances and shaded area shows 95% confidence interval for each fit, as implemented in 
geom_smooth() function in ggplot2 R package.
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Supplementary Figure 2. Strain diversity across species and in B. dorei. A Density plots of the SNP 
haplotype similarities per species based on all pairwise comparisons (dominant strain per species per sample) 
and stratified to intra-subject (blue) and inter-subject (red) comparisons; data in Fig. 2A represented as a 
density plot. B Pairwise gene content similarities for B. dorei isolate genomes sequenced and assembled in 
this study and NCBI reference genomes available at the time of writing. C Distribution of accessory gene 
islands (adjacent accessory genes) in B. dorei isolates genomes from this study (left panel) is compared with 
randomly distributed accessory genes (right panel). Number above each boxplot indicates count of gene 
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CRISPR repeatsCRISPR spacers

O
bs

er
ve

d 
oc

cu
re

nc
e

0 300 600 900
Age at collection

0 300 600 900
Age at collection

CRISPR repeatsCRISPR spacers

0 300 600 900
Age at collection

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

300
600
900

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

E017751

E018113

E018268

E022137

E026079

T013815

T014292

T025418

1200 E017751

E018113

E018268

E022137

E026079

T013815

T014292

T025418

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

20

40

60

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

300
600
900

1200

E001463

E003251

E003989

E006574

E010590

E010629

E010937

E016924

E001463

E003251

E003989

E006574

E010590

E010629

E010937

E016924

0 300 600 900
Age at collection

Supplementary Figure 3

Supplementary Figure 3. Total number of CRISPR spacers correlates with age at sample collection. 
Individual plots display the association between age at sample collection and the number of identified 
CRISPR spacers and CRISPR repeats for individuals. The dashed line shows the average number of 
CRISPR spacers and repeats across all samples. 
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Supplementary Figure 4. Number of CRISPR spacers matching the gut virome per individual. A 
Each subplot shows one individual. Grey bars indicate the number of spacers with mapping to the global 
virome contigs. Blue bars indicate the number of spacers (n=2,240) with mapping to the virome contigs 
that are drawn from samples of the same subject. Red and blue bars indicate the number of spacers that 
map to virome contigs that are drawn from the same sample (n=6) and from the same individual (n=217), 
respectively. Dashed horizontal lines show the average number of CRISPR spacer matches across all 
samples. B Positive Spearman correlation between mean relative abundance and observed number of 
CRISPR spacers per species (n=32 species).
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Supplementary Figure 5. Co-analysis of the adult microbiomes in HMP and the early gut microbiome in 
DIABIMMUNE. A Boxplot of total relative abundances of bacteria typical of different body areas in HMP data. Each 
bacterial species in HMP was assigned to one of the four strata by the body area with the highest mean relative 
abundance of the given species. Color shows the bacterial strata and x-axis shows their total relative abundances in 
different body areas. N=2,212 gut samples, N=5036 oral samples, N=1,236 skin samples, N=936 vaginal samples. The 
box shows the interquartile range (IQR), the vertical line shows the median and the whiskers show the range of the data 
(up to 1.5 times IQR). See also Supplementary Table 7. B-E Total relative abundance of bacterial species in longitudinal 
DIABIMMUNE samples classified as adult HMP (B) gut, (C) vaginal, (D) skin and (E) oral species. The color shows the 
country of origin and the curves show LOESS fit as detailed in the Supplementary Figure 1 legend. N=1,154 samples. 
F-I Ordination and phylogenetic tree of (F, G) Veillonella parvula (N=562 SNP haplotypes) and (H, I) Haemophilus 
parainfluenzae (N=1,100 SNP haplotypes) SNP haplotypes in HMP and DIABIMMUNE samples. 



 

Supplementary Table Legends 

Supplementary Table 1. Cohort metadata. This Excel file provides sample and subject 

metadata. Detailed description of data are given on Sheet 1 (Table legend). 

 

Supplementary Table 2. PERMANOVA results. Multiple extrinsic and intrinsic factors were 

analyzed for connections with microbial composition using PERMANOVA. See PERMANOVA 

Descriptions sheet for details. Number of samples per test (N) is given on a separate column. 

 

Supplementary Table 3. Microbial alpha-diversity. Multiple extrinsic and intrinsic factors were 

analyzed for connections with microbial alpha-diversity using mixed effects linear modeling. P-

values are determined using two-sided test based on the t-statistic and corrected for multiple 

testing using Benjamini-Hochberg procedure. See Alpha div. Tests Descriptions sheet for details.  

 

Supplementary Table 4. Taxonomic associations. Multiple extrinsic and intrinsic factors were 

analyzed for connections with microbial taxa using MaAsLin linear modeling framework. See 

MaAsLin Descriptions sheet for details. Sample size (N) per test is shown as a separate column. 

 

Supplementary Table 5. Strain diversity of gut microbial species. Diversity of strains within 

microbial species were analyzed by SNP haplotyping and gene content on metagenomic 

assemblies. This table supplements Fig. 1A-C with additional statistics. MSA = multiple sequence 

alignment; MSA length gives the effective length of the SNP haplotypes per species. 

 

Supplementary Table 6. Extended B. dorei pangenome. Gene families on extended B. dorei 

pangenome constructed using seven NCBI isolate genomes and eight additional isolates 



 

sequenced in this study. Gene families were annotated using UniRef gene family annotations, 

and presence (1) or absence (0) of each isolate is shown. 

 

Supplementary Table 7. Tentative circular genomic elements in the sequenced B. dorei 

isolates. Circularity was predicted by identifying highly similar regions at the start and end of a 

contig using Sprai (http://zombie.cb.k.u-tokyo.ac.jp/sprai/index.html). Location of overlapping 

regions, identity and numbers of genes are indicated. 

 

Supplementary Table 8. CRISPR Spacer mapping to virome contigs and DIABIMMUNE 

assembly. Crass-derived CRISPR spacers that map to virome contigs. All spacers are shown 

(rows) that are found on the subset of 112 DIABIMMUNE samples that have a match to the 

associated virome contigs. Information of the origin of these CRISPR spacers are shown in blue, 

while informations to the target on the viral contigs are shown in green, and bowtie2 statistics of 

these alignments are displayed in grey. Mapping informations of spacers to DIABIMMUNE 

assembly of these samples are shown in orange which was used to infer the putative taxa of the 

CRISPR array carrier. 

 

Supplementary Table 9. Most frequent taxa assigned to CRISPR spacer carrier contigs with 

matches to virome contigs of the DIABIMMUNE assembly. 138 spacers that match to the 

virome contigs were found to belong to CRISPR arrays carried from Bacteroides species (red).  

 

Supplementary Table 10. Bacterial species by body site. Mean relative abundance of bacterial 

species in HMP data in four body sites (adult gut, skin, oral cavity, or vagina) and in DIABIMMUNE 

gut communities. Each DIABIMMUNE species was assigned to a body site given by the highest 

mean relative abundance in HMP data. 

 



 

Supplementary Table 11. Contributional diversities of biological process GO terms. We 

applied ecological similarity indices (alpha- and beta-diversity) to contributional breakdown 

(compositional profiles of the species-specific contributions to the given GO term) of 365 biological 

process GO terms. This table gives mean and median alpha- and beta-diversities per GO term. 

For beta-diversities, these measures were further stratified into inter- and intra-subject 

comparisons. For alpha diversities, we measured Pearson correlation with age and corrected the 

statistical significance for multiple testing using Benjamini-Hochberg technique. 
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