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1. Derivation of the intact operational model 

The conventional Black-Leff operational model is extended to explicitly consider functional 

selectivity.  As illustrated in Figure 1, for the intact operational model, the equilibria are linked 

among different receptor conformation states and there is mutual depletion of these receptor 

states.  Though there may exist a theoretically unlimited number of active states, only two 

different active receptor conformations are considered in current derivation. The following 

derivation can be easily generalised into the case of multiple active states.  

In the binding process, the formation of active states is jointly governed by the equilibrium 

dissociation constants 𝐾𝐴1  and 𝐾𝐴2 , which determine ligand’s affinity for 𝐴𝑅∗  and 𝐴𝑅∗∗ , 

respectively:  

𝐴 ∙ 𝑅𝑢𝑏
𝐴𝑅∗

= 𝐾𝐴1                                                                                                                                      (𝐴. 1) 

𝐴 ∙ 𝑅𝑢𝑏
𝐴𝑅∗∗

= 𝐾𝐴2                                                                                                                                      (𝐴. 2) 

In the binding process, the receptor is distributed amongst the one unbound (inactive) and two 

bound (active) states, so the total receptor concentration (𝑅𝑡) is: 

𝑅𝑡 = 𝑅𝑢𝑏 + 𝐴𝑅
∗ + 𝐴𝑅∗∗                                                                                                                 (𝐴. 3) 

Solving the equations leads to the amount of each receptor state: 

𝑅𝑢𝑏 =
𝑅𝑡

(
1
𝐾𝐴1

+
1
𝐾𝐴2
) ∙ 𝐴 + 1

                                                                                                            (𝐴. 4) 

𝐴𝑅∗ =
𝑅𝑡 ∙ 𝐴/𝐾𝐴1

(
1
𝐾𝐴1

+
1
𝐾𝐴2
) ∙ 𝐴 + 1

                                                                                                            (𝐴. 5) 

𝐴𝑅∗∗ =
𝑅𝑡 ∙ 𝐴/𝐾𝐴2

(
1
𝐾𝐴1

+
1
𝐾𝐴2
) ∙ 𝐴 + 1

                                                                                                          (𝐴. 6) 

The stimulus for pathway 1 is given by: 

𝑆1 = 𝐴𝑅
∗                                                                                                                                             (𝐴. 7) 

For the cellular signalling of pathway 1, a rectangular hyperbolic function (Eq. A8) is 

postulated for the relationship between the stimulus and the observed response.  



𝐸1
𝐸𝑚1

=
𝑆1

𝑆1 + 𝐾𝐸1
                                                                                                                                 (𝐴. 8) 

Where 𝐸𝑚1 is the maximal possible response of the pathway 1 and 𝐾𝐸1 is the concentration of 

the active receptor state I (𝐴𝑅∗) that produces 50% of the maximal response for pathway 1.   

Substituting stimulus with Eq.A5 yields the equation of the intact operational model for 

pathway 1 (Eq.A9): 

𝐸1
𝐸𝑚1

=

𝜏1
𝐾𝐴1

∙ 𝐴

𝜏1
𝐾𝐴1

∙ 𝐴 + (
1
𝐾𝐴1

+
1
𝐾𝐴2
) ∙ 𝐴 + 1

                                                                                         (𝐴. 9) 

Here, 𝜏1 is the term that quantifies the efficacy of the agonist to produce response and the 

efficiency of stimulus-response coupling. 𝜏1 is defined as the ratio 𝑅𝑡/𝐾𝐸1. Thus, 𝜏1 is system-

dependent, ligand-dependent and measurement-dependent. 

Similarly, the intact operational model for pathway 2 (Eq. A10) is derived: 

𝐸2
𝐸𝑚2

=

𝜏2
𝐾𝐴2

∙ 𝐴

𝜏2
𝐾𝐴2

∙ 𝐴 + (
1
𝐾𝐴1

+
1
𝐾𝐴2
) ∙ 𝐴 + 1

                                                                                       (𝐴. 10) 

Given pharmacological response data only, the original form of the intact operational model 

(Eq.A9 and A10) is not structurally identifiable.  There are infinite possible combinations of 

parameters that render the same result.  For example, the two parameter sets, (𝜏1 = 1, 𝐾𝐴1 =

10−9 , 𝜏2 = 5 , 𝐾𝐴2 = 10
−8 ) and (𝜏1 = 10 , 𝐾𝐴1 = 10

−8 , 𝜏2 = 0.5 , 𝐾𝐴2 = 10
−9 ), produce 

exactly identical curves. 

To solve the structural identifiability issue related to the original form of the intact operational 

model, a re-parameterisation is applied.  Here, 𝐾𝐴
′  is denoted as the apparent equilibrium 

dissociation constant. 𝑅1  and 𝑅2  are denoted as the transduction coefficient (the ratio of 

transducer ratio and the equilibrium dissociation constant): 

𝐾𝐴
′ =

1

1
𝐾𝐴1

+
1
𝐾𝐴2

                                                                                                                              (𝐴. 11) 

𝑅1 =
𝜏1
𝐾𝐴1

                                                                                                                                           (𝐴. 12) 



𝑅2 =
𝜏2
𝐾𝐴2

                                                                                                                                           (𝐴. 13) 

Substituting 𝐾𝐴
′  and 𝑅1 into Eq.A9 yields the simplified intact operational model for pathway 

1: 

𝐸1
𝐸𝑚1

=
𝑅1 ∙ 𝐴

𝑅1 ∙ 𝐴 + (
𝐴
𝐾𝐴
′ + 1)

                                                                                                             (𝐴. 14) 

The equation is then simplified by dividing above and below by 𝑅1 ∙ 𝐴: 

𝐸1
𝐸𝑚1

=
1

1 +
(
𝐴
𝐾𝐴
′ + 1)

𝑅1 ∙ 𝐴

                                                                                                                     (𝐴. 15) 

Similarly, the simplified intact operational model for pathway 2 is derived: 

𝐸2
𝐸𝑚2

=
1

1 +
(
𝐴
𝐾𝐴
′ + 1)

𝑅2 ∙ 𝐴

                                                                                                                     (𝐴. 16) 

 

2. Derivation of the generalised intact operational model 

The binding process is the same as before (Eq.A1-A6).  For cellular signalling, instead of a 

rectangular hyperbolic function, a logistic function (Eq. A17) is postulated to describe the 

relationship between the active receptor state and the observed response.   

𝐸1 =
𝐸𝑚1 ∙ 𝐴𝑅

∗𝑛1

𝐾𝐸1
𝑛1 + 𝐴𝑅∗𝑛1

                                                                                                                     (𝐴. 17) 

Where 𝐸𝑚1 is the maximal possible response of pathway 1 and 𝐾𝐸1 is the concentration of the 

active receptor state I (𝐴𝑅∗) that produces 50% of the maximal response for pathway 1.   

Substituting Eq. A5 into Eq. A17 yields Eq. A18:  

𝐸1 =
𝐸𝑚1 ∙ (

𝜏1
𝐾𝐴1
)
𝑛1
∙ 𝐴𝑛1

(
𝜏1
𝐾𝐴1
)
𝑛1
∙ 𝐴𝑛1 + (𝐴 ∙ (

1
𝐾𝐴1

+
1
𝐾𝐴2
) + 1)

𝑛1
                                                                     (𝐴. 18) 

 



In order to simplify Eq. A18, re-parameterisation is applied.  Substituting 𝐾𝐴
′  and 𝑅1  into 

Eq.A18 and reorganising yields Eq.A19: 

𝐸1 =
𝐸𝑚1 ∙ 𝑅1

𝑛1 ∙ 𝐴𝑛1

𝑅1
𝑛1 ∙ 𝐴𝑛1 + (

𝐴
𝐾𝐴
′ + 1)

𝑛1
                                                                                                      (𝐴. 19) 

The basal response from pathway 1 can be empirically incorporated into Eq. A19 as an ad hoc 

parameter, 𝐵𝑎𝑠𝑎𝑙1.  This yields the generalised intact operational model for pathway 1: 

𝐸1 = 𝐵𝑎𝑠𝑎𝑙1 +
(𝐸𝑚1 − 𝐵𝑎𝑠𝑎𝑙1) ∙ 𝑅1

𝑛1 ∙ 𝐴𝑛1

𝑅1
𝑛1 ∙ 𝐴𝑛1 + (

𝐴
𝐾𝐴
′ + 1)

𝑛1
                                                                            (𝐴. 20) 

The equation is then simplified by dividing above and below by 𝑅1
𝑛1 ∙ 𝐴𝑛1: 

𝐸1 = 𝐵𝑎𝑠𝑎𝑙1 +
(𝐸𝑚1 − 𝐵𝑎𝑠𝑎𝑙1)

1 + (
(
𝐴
𝐾𝐴
′ + 1)

𝑅1 ∙ 𝐴
)

𝑛1
                                                                                           (𝐴. 21) 

For curve-fitting purposes, the parameters 𝐾𝐴
′  and 𝑅1 are recast as logarithms (i.e., 10𝑙𝑜𝑔𝐾𝐴

′
, 

10𝑙𝑜𝑔𝑅1): 

𝐸1 = 𝐵𝑎𝑠𝑎𝑙1 +
(𝐸𝑚1 − 𝐵𝑎𝑠𝑎𝑙1)

1 + (
(

𝐴

10𝑙𝑜𝑔𝐾𝐴
′ + 1)

10𝑙𝑜𝑔𝑅1 ∙ 𝐴
)

𝑛1
                                                                                 (𝐴. 22) 

Similarly, the generalised intact model for pathway 2 (Eq. A23) is derived: 

𝐸2 = 𝐵𝑎𝑠𝑎𝑙2 +
(𝐸𝑚2 − 𝐵𝑎𝑠𝑎𝑙2)

1 + (
(

𝐴

10𝑙𝑜𝑔𝐾𝐴
′ + 1)

10𝑙𝑜𝑔𝑅2 ∙ 𝐴
)

𝑛2
                                                                                 (𝐴. 23) 

3. The ligand preference profile could be regarded as the first normalisation step 

in calculating a ligand bias metric 

The post hoc computation of ligand bias (the relative preference of a ligand for a particular 

pathway) consists of two successive normalisation processes.  As shown in Eq. A24, a test 

ligand’s transduction coefficient from one pathway is first normalised to that of a reference 



ligand from the same pathway in order to accommodate observational bias.  This normalised 

transduction coefficient ∆𝑙𝑜𝑔𝑅  is then further normalised to that of a second pathway to 

account for system bias. 

∆∆𝑙𝑜𝑔𝑅1−2 = (𝑙𝑜𝑔𝑅1
𝑡𝑒𝑠𝑡 − 𝑙𝑜𝑔𝑅1

𝑟𝑒𝑓
) − (𝑙𝑜𝑔𝑅2

𝑡𝑒𝑠𝑡 − 𝑙𝑜𝑔𝑅2
𝑟𝑒𝑓
)                                          (𝐴. 24) 

As demonstrated in Eq.A25, the order of these two normalisation steps is interchangeable.  It 

is mathematically equivalent to first calculate a ligand’s preference profile towards a particular 

pathway and then normalise this profile to that of a reference ligand. 

∆∆𝑙𝑜𝑔𝑅1−2 = (𝑙𝑜𝑔𝑅1
𝑡𝑒𝑠𝑡 − 𝑙𝑜𝑔𝑅2

𝑡𝑒𝑠𝑡) − (𝑙𝑜𝑔𝑅1
𝑟𝑒𝑓
− 𝑙𝑜𝑔𝑅2

𝑟𝑒𝑓
)                                           (𝐴. 25) 

Here, this preference profile is defined as the difference of a ligand’s transduction coefficients 

in the two pathways (Eq.A26). 

𝑙𝑜𝑔𝑅1:2 = 𝑙𝑜𝑔𝑅1 − 𝑙𝑜𝑔𝑅2                                                                                                             (𝐴. 26) 

 

4. The intact operational model cannot account for very different 𝐸𝐶50 values of 

a ligand behaving as partial agonists in different pathways 

From the generalised operational model, the following relationship is derived (the same as 

Eq.11 and 12 in the original operational model paper 4): 

𝐸𝑚𝑎𝑥
𝐸𝑚

=
𝜏𝑛

𝜏𝑛 + 1
                                                                                                                                (𝐴. 27) 

𝐸𝐶50 =
𝐾𝐴

√𝜏𝑛 + 2
𝑛

− 1
                                                                                                                     (𝐴. 28) 

Normally, for a partial agonist, its maximal response (𝐸𝑚𝑎𝑥) will not exceed 80% of maximal 

system response (𝐸𝑚).  Hence, according to Eq. A27, the range of 𝜏𝑛 is from 0 to 4. 

In the intact operational model, the values of 𝐾𝐴 are the same for different signalling pathways 

(all equal to 𝐾𝐴
′).  Thus, the ratio of 𝐸𝐶50 in two pathways is derived as Eq. A29: 

(𝐸𝐶50)1
(𝐸𝐶50)2

=

√𝜏2
𝑛2 + 2

𝑛2
− 1

√𝜏1
𝑛1 + 2

𝑛1
− 1

                                                                                                           (𝐴. 29) 



As the range of 𝜏𝑛  is from 0 to 4, we maximise the ratio by maximising numerator and 

minimising denominator (Eq. A30): 

(𝐸𝐶50)1
(𝐸𝐶50)2

=

√𝜏2
𝑛2 + 2

𝑛2
− 1

√𝜏1
𝑛1 + 2

𝑛1
− 1

 <  
√4 + 2

𝑛2
− 1

√0 + 2
𝑛1

− 1
=
√6

𝑛2
− 1

√2
𝑛1

− 1
                                                     ( 𝐴. 30) 

For the normal range of n (from 0.5 to 2), the ratio of 𝐸𝐶50 from a partial agonist in both 

pathways cannot exceed 84.5 (Eq. A31 and A32). 

(𝐸𝐶50)1
(𝐸𝐶50)2

 <  
√6

𝑛2
− 1

√2
𝑛1

− 1
≤

√6
0.5

− 1

√2
2
− 1

= 84.5                                                                                  (𝐴. 31) 

(𝐸𝐶50)1
(𝐸𝐶50)2

 <  84.5                                                                                                                             (𝐴. 32) 

 

5. The relationship between the intact operational model and Rajagopal’s model 

The Eq.A9 and A10 are reorganised by dividing above and below with 
1

𝐾𝐴1
+

1

𝐾𝐴2
: 

𝐸1
𝐸𝑚1

=

(

𝜏1
𝐾𝐴1

1
𝐾𝐴1

+
1
𝐾𝐴2

) ∙ 𝐴

(

𝜏1
𝐾𝐴1

1
𝐾𝐴1

+
1
𝐾𝐴2

+ 1) ∙ 𝐴 +
1

1
𝐾𝐴1

+
1
𝐾𝐴2

                                                                              (𝐴. 33) 

𝐸2
𝐸𝑚2

=

(

𝜏2
𝐾𝐴2

1
𝐾𝐴1

+
1
𝐾𝐴2

) ∙ 𝐴

(

𝜏2
𝐾𝐴2

1
𝐾𝐴1

+
1
𝐾𝐴2

+ 1) ∙ 𝐴 +
1

1
𝐾𝐴1

+
1
𝐾𝐴2

                                                                              (𝐴. 34) 

The apparent transducer ratios for pathway 1 (𝜏1
′ ) and pathway 2 (𝜏2

′ ) are defined as Eq.A35 

and A36, respectively. 

𝜏1
′ =

𝜏1
𝐾𝐴1

1
𝐾𝐴1

+
1
𝐾𝐴2

                                                                                                                              (𝐴. 35) 



𝜏2
′ =

𝜏2
𝐾𝐴2

1
𝐾𝐴1

+
1
𝐾𝐴2

                                                                                                                              (𝐴. 36) 

Substituting 𝐾𝐴
′ , 𝜏1

′  and 𝜏2
′  into Eq.A33 and A34 yields the simplified intact operational model 

for pathway 1 (Eq. A37) and pathway 2 (Eq.A38): 

𝐸1
𝐸𝑚1

=
𝜏1
′ ∙ 𝐴

(𝜏1
′ + 1) ∙ 𝐴 + 𝐾𝐴

′                                                                                                               (𝐴. 37) 

𝐸2
𝐸𝑚2

=
𝜏2
′ ∙ 𝐴

(𝜏2
′ + 1) ∙ 𝐴 + 𝐾𝐴

′                                                                                                               (𝐴. 38) 

It is noted that the intact operational model (Eq.A37 and A38) shares the same mathematical 

form as Rajagopal’s model (Eq.7 in Rajagopal et al., 2011), though the interpretations of model 

parameters are different.  In the intact operational model, functional affinity is constrained to 

be the same among all the signalling pathways, reflecting the interactions among different 

active receptor states.  In Rajagopal’s model, the functional selectivity is not only the same for 

all the pathways, but also set to the equilibrium dissociation constant of the ligand for the 

receptor from a separate binding experiment. 

6. Assessment of the relationship between the marginal operational model and 

the intact operational model when the responses are measured under different 

conditions 

Under the circumstance that the responses are measured under very different conditions, the 

relationship between the marginal operational model and the intact operational model is 

assessed through the case that pathway 2 is perfectly eliminated by the experimental settings 

for the functional assay of pathway 1(i.e., complete pathway elimination assumption).   

When pathway 2 is perfectly eliminated, agonist is much more prone to stabilising 𝐴𝑅∗ than 

𝐴𝑅∗∗.  In other words, the affinity for 𝐴𝑅∗ (1/𝐾𝐴1) is much higher than that for 𝐴𝑅∗∗ (1/𝐾𝐴2).  

As conceptually demonstrated in Eq. A39 and A40, with 𝐾𝐴2  greatly exceeding 𝐾𝐴1 , the 

apparent equilibrium dissociation constant 𝐾𝐴
′  (Eq.4) approaches the equilibrium dissociation 

constant for pathway 1 (𝐾𝐴1).  

𝐾𝐴
′ =

1

1
𝐾𝐴1

+
1
𝐾𝐴2

  
𝐾𝐴2 ≫ 𝐾𝐴1
→         

1

1
𝐾𝐴1

                                                                                                 (𝐴. 39) 



𝐾𝐴
′ = 𝐾𝐴1                                                                                                                                           (𝐴. 40) 

Substituting Eq. A40 into Eq.5 yields the intact operational model for pathway 1 with 

completely eliminated pathway 2 (Eq. A38).  This is identical to the marginal operational 

model for pathway 1 (Eq.1): 

𝐸1 = 𝐵𝑎𝑠𝑎𝑙1 +
(𝐸𝑚1 − 𝐵𝑎𝑠𝑎𝑙1)

1 + (
(

𝐴
10𝑙𝑜𝑔𝐾𝐴1

+ 1)

10𝑙𝑜𝑔𝑅1 ∙ 𝐴
)

𝑛1
                                                                                (𝐴. 41) 

In this sense, the marginal operational model is a special case of the intact operational model 

when the responses from different pathways are measured under very different conditions. 

 


