
 
 

1 
 

Supplementary Information for 1 
 2 
Pareto Optimality Explanation of the Glycolytic Alternatives in Nature 3 
 4 
Chiam Yu Ng, Lin Wang, Anupam Chowdhury, and Costas D. Maranas 5 
 6 
Corresponding author: Costas D. Maranas  7 
Email:  costas@psu.edu 8 
 9 
 10 
This PDF file includes: 11 
 12 

Supplementary Information Text 13 
Figs. S1 to S8 14 
Tables S1 to S2 15 
References for SI reference citations 16 
 17 

Other supplementary materials for this manuscript include the following:  18 
 19 

Supplementary Data Files S1 to S6  20 



 
 

2 
 

Supplementary Information Text 21 

Integer cut constraints and the runtime reduction of optStoic. 22 

Integer cut constraints are introduced in the optStoic formulation to exhaustively identify 23 
alternate optimal pathways that satisfy the design equation. Herein, we define 𝑘 as the 24 
number of iteration for running optStoic algorithm (𝑘 ∈ ሼ1, 2, … , 𝜅ሽ).  25 
 26 
The formulation of optStoic in the method section (see main text) was reformulated as a 27 
combination of linear relations by introducing two non-negative real number (or integer) 28 
variables for each 𝑣 as followed:  29 
 𝑣 ൌ 𝑣

 െ 𝑣
, ∀𝑗 ∈ 𝑱 

 where 𝑣 ∈ ℤ , 𝑣
 ∈ ℤஹ and 𝑣

 ∈ ℤஹ  

or ൫𝑣 ∈ ℝ , 𝑣
 ∈ ℝஹ and 𝑣

 ∈ ℝஹ൯ 

ห𝑣ห ൌ 𝑣
  𝑣

 
 30 
To this end, binary variables 𝑦

 and 𝑦
 are defined as followed: 31 

 
𝑦

 ൌ ቊ 1, if reaction 𝑗 carries non-zero flux in the forward direction (𝑣
 > 0) 

0, otherwise                                                                                             
 

(1)

 
𝑦

 ൌ ൜
1,  if reaction 𝑗 carries non-zero flux in the reverse direction (𝑣

 > 0)  
0,  otherwise                                                                                            

 
(2)

Likewise, 𝑦
ೖ

 and 𝑦
ೖ

 are binary variables associated with the solution from the 𝑘-th 32 

iteration. At iteration 𝑘 ൌ 𝜅, the following constraints are added to the modified optStoic 33 
formulation:  34 

 ሺ1 െ 𝑦
 െ 𝑦

ሻ

∈𝑱 |௬ೕ
ೖ

ା௬ೕ
ೝೖ
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  ሺ𝑦
  𝑦

ሻ

∈𝑱 |௬ೕ
ೖ

ା௬ೕ
ೝೖ
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 1 
𝑘 ൌ 1, 2, … , 𝜅 െ 1 (3)

𝑦
   𝑦

  1  
(4)

 

𝑦
𝜀  𝑣

  𝑦
𝑀  

(5)
 

𝑦
𝜀  𝑣

  𝑦
𝑀  (6)

Constraint 3 is the integer cut constraint that ensures that at least one of reaction 𝑗 that was 35 
identified in the previous iteration 𝑘 is inactive in the current iteration. Constraint 4 36 
enforces that only one of the binary variables (corresponding to the flux directions) for 37 
each reaction 𝑗 is active. Finally, constraints 5 and 6 restrict the flux (in forward or reverse 38 
direction) to be strictly positive whenever the corresponding binary variable is active. The 39 
parameter 𝜀 is a user-defined small positive real number. The MILP problems were solved 40 
using the CPLEX v.12.6.1 solver accessed through the GAMS (v24.4.1) modeling system 41 
and Gurobi Optimizer v6.5.1 using Python 2.7.  42 
 43 
The runtime of the modified optStoic algorithm depends on the size of the search space 44 
(i.e. database size). Therefore, blocked reactions (i.e., reactions incapable of carrying flux) 45 
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were identified first upon imposing the bounds on exchange fluxes (see constraint 4 in main 46 
text) and excluded from the search space before running the algorithm. We also observed 47 
that the runtime of optStoic significantly increases when more integer cuts are added. This 48 
is caused by a large number of integer variables introduced in the second term of constraint 49 
3 at each iteration 𝑘: 50 

 ሺ𝑦
  𝑦

 ሻ

∈𝑱 |௬ೕ
ೖ

ା௬ೕ
ೝೖ

ஷଵ 

 51 

Upon removal of the blocked reactions, there are still over 3,000 reactions exist in the set 52 

ሼ𝑗 ∈ 𝑱 |𝑦
ೖ

 𝑦
ೖ

ൌ 0ሽ. To solve this issue, we imposed an additional constraint on the 53 
objective function as followed: 54 

 55 

 ห𝑣ห
∈𝑱\𝑱𝒆𝒙𝒄𝒉𝒂𝒏𝒈𝒆

ൌ 𝑧∗ 56 

 57 
and used the following integer cut to prevent the same pathway from being identified for 58 
the same objective value 𝑧∗.  59 

 ሺ1 െ 𝑦
 െ 𝑦

 ሻ

∈𝑱 |௬ೕ
ೖ

ା௬ೕ
ೝೖ

ୀଵ 

 1, ∀ 𝑘 ൌ 1, 2, 3, … 60 

We run the modified optStoic algorithm in parallel for each fixed objective value 𝑧∗ to 61 
further reduce the total runtime. 62 

Assessing the thermodynamic feasibility of a pathway. 63 

The thermodynamic feasibility of each pathway under physiological concentration ranges 64 
are assessed using the max-min driving force (MDF) formulation (1).  65 
Step 1: The ∆𝐺ᇱ°for each reaction involved in a pathway (𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉ሻ is estimated using 66 
the Component Contribution method (2) at pH 7, 25°C and ionic strength of 0.1 M (3, 4).  67 
Step 2: The MDF problem is solved for each pathway, which minimizes the maximum 68 
∆𝐺

ᇱ of a pathway by optimizing over the concentrations of all metabolites in the pathway. 69 
The optimization formulation is given by:  70 
 max


           min


൛െ∆𝐺

ᇱൟ   ሺ𝑀𝐷𝐹ሻ            (7)

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  ∆𝐺
ᇱ ൌ ∆𝐺

ᇱ°  𝑅𝑇  𝑆
் ln c

∈𝑰𝒑𝒂𝒕𝒉

, ∀ 𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉 (8)

                         ln 𝑐
   ln c  ln 𝑐

௫ , ∀ 𝑖 ∈ 𝑰𝒑𝒂𝒕𝒉 (9)

                         ln 𝑟
୫୧୬  ln 𝑟  ln 𝑟

୫ୟ୶ , ∀ 𝑝 ∈ 𝑷   (10)
 71 
where 𝑰𝒑𝒂𝒕𝒉 is the set of all metabolites and 𝑱𝒑𝒂𝒕𝒉 is the set of all reactions in a pathway, 𝑐 72 
is the concentration of metabolite 𝑖, 𝑅 is the gas constant, 𝑇 is the temperature, 𝑟 is the 73 
concentration ratio for an ordered pair of metabolites 𝑝 (e.g., 𝑝 ൌ74 
ሺ𝐴𝑇𝑃, 𝐴𝐷𝑃ሻ, 𝑟ሺ்,ሻ ൌ 𝑐்/𝑐), and 𝑷 is a set of metabolite pairs (e.g., 𝑷 ∈75 
ሼሺ𝐴𝑇𝑃, 𝐴𝐷𝑃ሻ, ሺ𝑁𝐴𝐷𝑃𝐻, 𝑁𝐴𝐷𝑃ାሻ, ሺ𝑁𝐴𝐷𝐻, 𝑁𝐴𝐷ାሻሽ). Note that the 𝑆 matrix here refers to 76 

the stoichiometric matrix of the pathway with 𝑆 ∈ ℝ|𝑰𝒑𝒂𝒕𝒉|ൈห𝑱𝒑𝒂𝒕𝒉ห .  77 
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 78 
Constraint 8 relates the Gibbs free energy of reaction (∆𝐺

ᇱ) with the standard Gibbs free 79 
energy of reaction (∆𝐺ᇱ°) and the mass action ratio. The concentrations of all metabolites 80 
are allowed to vary between 1 µM (𝑐

) and 100 mM (𝑐
௫) in constraint 9. 81 

Concentration ratios of common cofactor pairs (e.g., NADPH/NADP+, NADH/NAD+ and 82 
ATP/ADP) play an important role in a cell as they determine the driving force of a large 83 
number of biosynthesis reactions (5). The concentration ratios of energy and redox 84 
cofactors are therefore allowed to vary within the maximum and minimum values found in 85 
the literature (6-8) and the Bionumbers database (9) in constraint 10. Constraint 9 is 86 
optional depending on the case study. Herein, we assumed that the designed pathway 87 
operates at steady-state and within a single compartment of a cell at a temperature (𝑇) of 88 
25°𝐶, an ionic strength of 0.1 M and pH 7.0. The pathway with a positive objective 89 
function (MDF) indicates that it is thermodynamically infeasible within the given 90 
physiological concentration (and ratio) ranges is omitted from the subsequent step. 91 
Importantly, the objective function of the enzyme cost minimization problem is convex 92 
only when all ∆𝐺

ᇱ ൏ 0 in a pathway. The MDF problem is solved using Gurobi Optimizer 93 
v6.5.1 solver and Python script modified from the Component Contribution Python 94 
package (2). 95 
We have previously found that when imposing the metabolite concentration ranges 96 
(constraint 9) strictly to experimentally measured metabolite levels, the MDF formulation 97 
is often over-constrained and may become infeasible due to several factors. They include: 98 
(i) measurement errors of the absolute intracellular metabolite concentrations, (ii) 99 
estimation errors of Gibbs free energy from group-contribution based approaches, (iii) the 100 
MDF formulation assumes that metabolite concentrations are homogenous (i.e., 101 
compartmentalization of metabolites and potential occurrence of substrate-channeling are 102 
ignored), and (iv) MDF analysis is performed with a pathway and not on the entire 103 
metabolic network. In addition, when we added the uncertainties in ∆𝐺

ᇱ° to the MDF 104 
formulation (i.e., allowing the ∆𝐺

ᇱ° of each reaction to vary between a range given by 105 
∆𝐺

ᇱ° േ SE୨ in constraint 8), we found that MDF analysis will identify the more optimistic 106 
solution given the degree of freedom to have a more negative ∆𝐺

ᇱ°. Since, we are 107 
comparing between pathways, the relative contribution of the errors of ∆𝐺

ᇱ° estimation 108 
has a lesser contribution towards the overall analysis and would not affect our conclusions. 109 
Therefore, MDF analysis of the pathways is studied within a larger physiological 110 
metabolite concentration ranges, and the errors of Gibbs free energy are not considered in 111 
the study. 112 

Minimization of protein cost. 113 

The minimal enzyme demand in units of mg protein/mmol glucose/h for each one of the 114 
thermodynamically feasible pathways is then estimated based on the enzyme cost 115 
minimization (ECM) method (10, 11). The formulation is as followed: 116 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   PC ൌ 
1

𝑣ா_
 𝑀ா,𝜆ா,



ሺ𝐸𝐶𝑀ሻ 

 

(11)
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 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝜆ா,

ൌ
𝑣

𝑘௧,
ା ቆ1 െ exp ቆ

∆𝐺
ᇱ

𝑅𝑇
ቇቇ

ିଵ

ቌ1   ෑ ൬
𝐾ெ,

𝑐
൰

ೕ
శ

∈𝑰𝐫𝐞,𝐣

ቍ , ∀ 𝑗

∈ 𝑱𝒑𝒂𝒕𝒉 
 

(12)

 
                       ∆𝐺

ᇱ ൌ  ∆𝐺
ᇱ°  𝑅𝑇 ln

∏ 𝑐

ೕ
ష

 ∈ 𝑰𝐩𝐫,𝐣

∏ 𝑐

ೕ
శ

 ∈ 𝑰𝐫𝐞,𝐣

, ∀ 𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉 

 

(13)

                       ∆𝐺
ᇱ ൏ 0, ∀ 𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉 (14)

                      𝑐
  c  𝑐

௫, ∀ 𝑖 ∈ 𝑰𝒑𝒂𝒕𝒉 (15)
                      𝑟

୫୧୬  𝑟  𝑟
୫ୟ୶ , ∀ 𝑝 ∈ 𝑷  (16)

 117 
where 𝑀ா, is the molecular weight of enzyme per active site for reaction 𝑗, 𝑣ா_ is the 118 
glucose uptake flux (mmol Glucose/h), 𝜆ா, is the enzyme level for reaction j, 𝑣 is the flux 119 
through reaction j, 𝑘௧,

ା is the turnover number of the reaction in the forward direction, 120 
𝑰𝐫𝐞,𝐣 is the set of reactants in reaction j, 𝑰𝐩𝐫,𝐣 is the set of products in reaction 𝑗, the set of all 121 
metabolites in the pathway 𝑰𝒑𝒂𝒕𝒉 is the union of 𝐼୰ୣ,୨ and 𝐼୮୰,୨, 𝐾ெ, is the Michaelis-Menten 122 
constant of the enzyme for reaction 𝑗 towards metabolite 𝑖, 𝑞

ା  and 𝑞
ି  is the stoichiometric 123 

coefficient of metabolite 𝑖 in reaction 𝑗. 𝑞
ା  0 if metabolite 𝑖 is a reactant in reaction 𝑗 124 

and 𝑞
ା ൌ 0 otherwise, whereas 𝑞

ି  0 if metabolite 𝑖 is a product in reaction 𝑗 and 𝑞
ି ൌ125 

0 otherwise. Note that in the preprocessing step, all the reactions are re-arranged such that 126 
flux 𝑣 through each of them is strictly positive. 127 
 128 
The objective function (equation 11) involves the minimization of the sum of the enzymatic 129 
cost (µg Protein/ mmol Glucose/ h) for each reaction in the pathway normalized by the 130 
glucose uptake rate. Constraint 12 defines the enzyme level for a reaction 𝑗 as a function 131 
derived from the reversible Michaelis-Menten kinetic equation (10). Constraint 13 is 132 
equivalent to constraint 8 recasted using concentrations. Constraint 14 ensures that all 133 
reactions have a negative change in free energy and prevents division by zero in equation 134 
12. Constraints 15 and 16 impose the bounds on the concentration ranges and concentration 135 
ratio ranges. The above formulation can be simplified by substituting the concentration 136 
variable 𝑐 with logarithmic concentrations 𝑥 ൌ ln 𝐶 and thus converting the product term 137 
into a summation.  138 
 139 
According to Flamholz et al. (10), the enzyme cost minimization (ECM) formulation can 140 
be rewritten by substituting 𝑥 ൌ ln 𝑐 as followed: 141 
 142 
 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   PC ൌ 
1

𝑣ா_
 𝑀ா,𝜆ா,



ሺ𝐸𝐶𝑀ሻ 

 

(17)
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝜆ா, ൌ

𝑣

𝑘௧,
ା

1  exp ቀ∑ 𝑞
ାሺln 𝐾ெ, െ 𝑥ሻ∈𝑰𝐫𝐞,𝐣

ቁ

1 െ expሺ∑ 𝑆
் 𝑥∈𝑰𝒑𝒂𝒕𝒉


∆𝐺

ᇱ

𝑅𝑇 ሻ

, ∀ 𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉 

 

(18)

                        ∆𝐺
ᇱ ൌ  ∆𝐺

ᇱ°  𝑅 ∙ 𝑇 ∙  𝑆
்

∈𝑰𝒑𝒂𝒕𝒉

𝑥, ∀ 𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉 

 

(19)

                       ∆𝐺
ᇱ  0 െ 𝜀, ∀ 𝑗 ∈ 𝑱𝒑𝒂𝒕𝒉 (20)

                      ln 𝑐
   𝑥  ln 𝑐

௫ , ∀ 𝑖 ∈ 𝑰𝒑𝒂𝒕𝒉 (21)
                      ln 𝑟

୫୧୬  ln 𝑟  ln 𝑟
୫ୟ୶ , ∀ 𝑝 ∈ 𝑷  (22)

Using log-concentration simplifies the formulation as the product term in equations 12 and 143 
13 can be replaced by the summation term in equations 18 and 19, respectively. Note that 144 
we have set 𝜀 to a very small number (i.e., 1e-6) to ensure that the denominator of 𝜆, does 145 
not become zero. We increase 𝜀 stepwise by 10-fold up to 0.1 if the optimization failed to 146 
converge at a lower 𝜀 value. If the optimization still fails to terminate successfully at 𝜀 ൌ147 
0.1, we exclude the pathway from the final solution.  148 
 149 

The optimal concentrations of metabolites obtained from the MDF problem are used as the 150 
initial condition for the ECM problem, which is then solved using the sequential least 151 
squares quadratic programming method (Python SciPy package). Due to the lack of 152 
experimentally measured kinetic parameters, we assumed generic values (𝑀ா ൌ153 
40 𝑘𝐷𝑎, 𝑘௧ ൌ 79 𝑠ିଵ 𝑎𝑛𝑑 𝐾ெ ൌ 200 𝜇𝑀ሻ (12) for all kinetic parameters as was carried 154 
out in the original study (10). This implies that all enzymes were treated as equally fast in 155 
every pathway. The allowable metabolite concentration ranges are identical to that of the 156 
MDF analysis.  157 
 158 
  159 
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 160 

Fig. S1. Pathways shown here perform the overall conversion defined below the panels. 161 
(A) Design A is a pathway with disjoint subnetworks that generate cofactors such as ATP. 162 
This design is obtained using the previous optStoic formulation. (B) The 𝑺𝒊𝒏𝒕 matrix, which 163 
contains only internal reactions, was processed by removing rows containing cofactors. 164 
The basis of the null space of the resulting 𝑺𝒓𝒆𝒅 matrix is then obtained (𝒏𝒖𝒍𝒍ሺ𝑺𝒓𝒆𝒅ሻ ൌ165 
𝑵𝒓𝒆𝒅ሻ. Each row of the 𝑵𝒓𝒆𝒅 matrix is an internal cycle that results in no net non-cofactor 166 
metabolite production. The loop law is imposed as 𝑵𝒓𝒆𝒅

𝑻 𝑮 ൌ 𝟎, which implies that flux 167 
could traverse only through one of the directions in a loop. Two cases are shown here for 168 
the loop involving reaction R1 (D-Fructose-1,6-phosphate + H2O → D-Fructose-6-169 
phosphate + Pi) and R2 (D-Fructose-6-phosphate + ATP → D-Fructose-1,6-phosphate + 170 
ADP). In case (ii) (a), when reaction R1 is active (𝒗𝑹𝟏  𝟎), then reaction R2 can carry 171 
only zero flux or flux in the same direction with R1. (C) After adding the loop law 172 
constraints, we found that ATP and redox generation occurs only on the main carbon 173 
transfer pathway.  174 

  175 
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 176 

Fig. S2. The distribution of the glycolytic pathway alternatives based on (A) total flux 177 
through a pathway, and (B) the number of reactions in a pathway. Note that the total flux 178 
through a pathway and the number of reactions are calculated without accounting for the 179 
exchange reactions. The colors represent the ATP yield per glucose (mol ATP/mol glucose) 180 
generated by a pathway at a fixed glucose uptake flux. Red dashed lines indicate the mean 181 
values, whereas blue dashed lines denote the median values. 182 
 183 
 184 
 185 
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 186 

Fig. S3. Distribution of absolute metabolite concentrations across different organisms (8).  187 
The fraction of metabolites that are within 1 µM and 100 mM are 97.1%, 97.7% and 97.5% 188 
for mammalian cells, yeast and E. coli, respectively. The fraction of metabolites that fall 189 
within 1 µM and 10 mM are 94.1%, 90.9% and 94.2% for mammalian cells, yeast and E. 190 
coli, respectively. 191 

  192 
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 193 

 194 

Fig. S4. The ATP yield versus minimal protein cost scatter plot. Note that the Y-axis is 195 
categorical. Jittering effect was applied to the plot to show the distribution more clearly. 196 
Pathways are color-coded based on the type of redox cofactors produced: (Blue) 2 NADH, 197 
(Green) 1 NADH and 1 NADPH, and (Red) 2 NADPH.  198 

199 
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  200 
 201 

202 
Fig. S5. Robustness analysis of the effect of ATP and ADP concentrations on the top ten 203 
1-ATP generating pathways. Note that the legends for the x and y-axes are the same for 204 
all the ten pathways. 205 
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 206 

 207 

Fig. S6. Robustness analysis of the effect of ATP and ADP concentrations on the top forty-208 
two 2-ATP generating pathways. Note that the legends for the x and y-axes are the same 209 
for all the 42 pathways. In addition, the ranges of the axes and heat map scales are the same 210 
for each panel.  211 

  212 
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A B C 

D E  
 

Fig. S7. Robust 1-ATP and 2-ATP generating glycolytic pathways within a broad range of 213 
ATP/ADP ratio. The pathway diagrams were generated using the pathway visualization 214 
tool described in the Method section. Pathway (A) is the 9th 1-ATP generating pathways 215 
ranked by protein cost in Fig. S5. Pathways (B), (C), (D) and (E) are 36th to 39th 2-ATP 216 
generating pathways ranked by protein cost in Fig. S6. 217 

  218 
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 219 
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Fig. S8. (A-D) All four variants of the semi-phosphorylative ED pathway and (E) the 220 
NADPH-dependent EMP pathway described in the text. The pathway diagrams were 221 
generated using the pathway visualization tool described in the Method section. (F) The 222 
tradeoff plot of the minimal protein cost and the ATP yield of all glycolytic pathway 223 
variants as shown in Figure 3 (B). In addition to the ED (pink star) and the EMP pathways 224 
(red star), the semi-phosphorylative ED pathway variants (A-D) are represented as light-225 
blue squares, whereas the NADPH-dependent EMP pathway is shown in the yellow square. 226 

  227 
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Table S1. Cofactors that were removed from the S matrix when generating the internal 228 
stoichiometric matrix (𝑺∗).  229 

KEGG ID Description KEGG ID Description 
C00001 H2O C00112 CDP 
C00002 ATP C00131 dATP 
C00003 NAD+ C00138 Reduced ferredoxin 
C00004 NADH C00139 Oxidized ferredoxin 
C00005 NADPH C00144 GMP 
C00006 NADP+ C00206 dADP 
C00007 Oxygen C00286 dGTP 
C00008 ADP C00360 dAMP 
C00009 Orthophosphate C00361 dGDP 
C00010 CoA C00362 dGMP 
C00011 CO2 C00363 dTDP 
C00013 Diphosphate C00364 dTMP 
C00015 UDP C00365 dUMP 
C00016 FAD C00390 Ubiquinol 
C00020 AMP C00399 Ubiquinone 
C00035 GDP C00458 dCTP 
C00044 GTP C00459 dTTP 
C00055 CMP C00460 dUTP 
C00063 CTP C01352 FADH2 
C00075 UTP 
C00080 H+ 
C00081 ITP   
C00104 IDP 
C00105 UMP   

 230 
231 
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Table S2A. The number of pathways that are thermodynamically feasible (MDF < 0) at 232 
physiological concentration ranges and ratio.  233 

Conditions # of 1-
ATP 
Pathways 

# of 2-
ATP 
Pathways 

# of 3-
ATP 
Pathways 

# of 4-
ATP 
Pathways 

# of 5-
ATP 
Pathways 

optStoic 5,739 3,430 1,873 659 215 
condition (i) 4,550 2,891 1,542 466 165 

condition (ii) 2,549 1,099 281 4 0 

condition (iii) 2,525 1,098 281 4 0 

condition (iv) 1,824 778 173 2 0 

condition (v) 538 105 0 0 0 

condition (vi) 2,558 1,099 281 4 0 

i. All metabolites are allowed to vary between 1 µM and 100 mM. 234 
ii. Same with (i), except that ATP and ADP concentrations are bounded based on 235 

Park et al. (8) (i. e. , 1.66 mM  𝐶்  11.4 mM;  0.429 mM  𝐶 236 
0.715 mMሻ. 237 

iii. Same with (ii), except that the concentration range of CO2 was bounded based on 238 
Park et al. (8) (i.e., 50 µM  𝐶ைమ

 10 mM). 239 
iv. All metabolites are allowed to vary between 1 µM and 100 mM except CO2. The 240 

range of CO2 was obtained from Park et al. (8) (i.e., 50 µM  𝐶ைమ
 10 mM). 241 

The ratio ranges for different cofactor pairs were imposed as followed: 0.2 242 
ಲು

ಲವು
 20, 0.2  ಿಲವುಹ

ಿಲವು
 100, 0.0005  ಿಲವಹ

ಿಲವ
 0.5 based on data collected 243 

from Bionumbers (9) and literature (6-8).  244 
v. All metabolites other than CO2 are allowed to vary between 1 µM and 10 mM. 245 

The range of CO2 was obtained from Park et al. (8) (i.e., 50 µM  𝐶ைమ
 10 246 

mM). The ratio ranges for different cofactor pairs were imposed as followed: 247 

0.2  ಲು

ಲವು
 20, 0.2  ಿಲವುಹ

ಿಲವು
 100, 0.0005  ಿಲವಹ

ಿಲವ
 0.5. 248 

vi. All metabolites are allowed to vary between 1 µM and 100 mM. The ratio ranges 249 

for different cofactor pairs were imposed as followed: 1  ಲು

ಲವು
 10,000. 250 

  251 
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Table S2B. All the constraints used for the simulation of Table S2A. 252 
 253 
Conditions (i) (ii) (iii) (iv) (v) (vi) 

(A) 1 µM  𝐶  100 mM  for all 
metabolite 𝑖 

+ + + +  + 

(B) 1.66 mM  𝐶்  11.4 mM;  
0.429 mM  𝐶  0.715 mM 

 + +    

(C) 50 µM  𝐶ைమ
 10 mM   + + +  

(D) 0.2  ಲು

ಲವು
 20;  

0.2  ಿಲವುಹ

ಿಲವು
 100;  

0.0005 
𝐶ேு

𝐶ே
 0.5 

   + +  

(E) 1 µM  𝐶   10 mM, for all 
metabolite 𝑖 

    +  

(F) 1  ಲು

ಲವು
 10,000      + 

  254 
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